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Preface

The 40th European Workshop on Computational Geometry (EuroCG 2024) was held on
March 13-15, 2024 in Ioannina, Greece. EuroCG is an annual, informal workshop whose
goal is to provide a forum for scientists to meet, present their work, interact, and establish
collaborations, in order to promote research in the field of Computational Geometry, within
Europe and beyond.

Concerning the scientific program, we received 78 submissions, which underwent a limited
refereeing process by the program committee in order to ensure some minimal standards and
to check for plausibility. We selected 67 submissions for presentation at the workshop. For
the workshop, we had 91 registered participants. EuroCG does not have formally published
proceedings; therefore, we expect most of the results outlined here to be also submitted to
peer-reviewed conferences and/or journals. This book of abstracts, available through the
EuroCG 2024 web site, should be regarded as a collection of preprints. In addition to the 67
contributed talks, this book contains abstracts of the invited lectures. The invited speakers
were Walter Didimo (University of Perugia, Italy), Ioannis Emiris (Athena Research Center
and National & Kapodistrian University of Athens, Greece), and Xavier Goaoc (Université
de Lorraine, Nancy, France).

Many thanks to all authors and to the members of the program committee and all external
reviewers for their insightful comments. We also thank the organizing committee members:
Konstantina Kyriakoudi, Maria Eleni Pavlidi, Giorgos Velissaris and Konstantina Tzouvara.
Finally, we are very grateful for the generous support of our gold sponsors: the Department of
Mathematics of the University of Ioannina and yWorks GmbH. We would like to thank also
various contributors for their valuable contributions: Katogi Averoff, Klidarithmos publisher,
Zagori Water and Green Beverages Group. Last but not least, we would like to thank the
University of Ioannina for offering the lecture halls of Karolos Papoulias Conference Center.

The conference gave out a best student presentation award. The prize was voted by
the EuroCG 2024 attendees to recognize the effort of young researchers to present their
work clearly and elegantly. The winners were Arjen Simons, for the presentation of paper
“Hausdorff morphs with fewer components”, and Miriam Goetze, for the presentation of
paper “Recognition Complexity of Subgraphs of 2- and 3-Connected Planar Cubic Graphs”.
Congratulations to Arjen and Miriam!

During the business meeting, Martin Balko presented the 2025 edition of EuroCG, which will
take place near Prague, Czech Republic. A single bid was presented for 2026 by Alexandra
Weinberger and, as a consequence, EuroCG 2026 will take place in Hagen, Germany.

Looking forward to seeing you next year all in Prague!

March 2024,
Michael A. Bekos and Charis Papadopoulos
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Orthogonal Graph Drawings and the Bend
Minimization Problem
Walter Didimo1

1 University of Perugia, Italy
walter.didimo@unipg.it

Abstract
Orthogonal drawings have a rich history and rank among the most extensively studied subjects
in graph drawing. They have wide-ranging applications in several real-world domains, including
circuit design, computer network schematization, database design, and software engineering. In an
orthogonal drawing of a graph, each edge is a sequence of horizontal and vertical segments, with a
bend being the point where a horizontal segment and a vertical segment intersect. Since bends can
adversely impact the readability of the graph layout, a central problem is how to compute orthogonal
drawings with the minimum number of bends.

Following a brief overview on the subject, this talk focuses on a line of research that leverages
the notion of "spirality", a measure of how much a component of an orthogonal drawing is rolled-up.
A general strategy based on this notion was introduced over 25 years ago. This strategy has been
recently revisited and refined to answer long-standing open questions, also in the presence of specific
layout constraints.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



Algebraic and combinatorial bounds on the
embedding number of distance graphs
Ioannis Z. Emiris1

1 Athena Research Center, Greece, and National & Kapodistrian University of
Athens, Greece
emiris@athenarc.gr

Abstract
Rigidity theory studies mechanisms with a prescribed number of degrees of freedom. Besides its
fundamental nature, the theory is particularly useful in modeling robotic and architectural devices,
swarms of drones or the structure of biomolecules. The main tool is distance graphs, which are
weighted graphs whose edges are labeled by the prescribed distance between the corresponding
nodes. Laman graphs in the plane are the most well-studied, but distance graphs can be defined and
find applications in any dimension. We focus on estimating the number of Euclidean embeddings of
generically minimally rigid graphs, namely graphs with a minimal number of edge constraints which
are rigid for sufficiently generic edge lengths. The field is today very active, and we outline recent
progress. More specifically, we exploit algebraic and combinatorial techniques to obtain nontrivial
upper bounds on the maximal number of embeddings given the number of nodes. Our results also
yield example graphs that provide lower bounds on the maximal number of embeddings. Conversely,
we consider ways of deriving relevant root counts for polynomial systems expressed by means of
distance graphs.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



Intersection patterns of geometric set systems
Xavier Goaoc1

1 Université de Lorraine, Nancy, France
xavier.goaoc@loria.fr

Abstract
In this talk, I will discuss some of the ways in which the geometry or topology of a family of sets
influence their intersection patterns, and illustrate how the resulting structures are harnessed by
some algorithms from computational geometry and computational topology.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



Nondango is NP-Complete
Suthee Ruangwises1

1 Department of Informatics, The University of Electro-Communications, Tokyo,
Japan
ruangwises@uec.ac.jp

Abstract
Nondango is a pencil puzzle consisting of a rectangular grid partitioned into regions, with some
cells containing a white circle. The player has to color some circles black such that every region
contains exactly one black circle, and there are no three consecutive circles (horizontally, vertically,
or diagonally) having the same color. In this paper, we prove that deciding solvability of a given
Nondango puzzle is NP-complete.

Related Version arXiv:2310.11447

1 Introduction

Nondango is a pencil puzzle published by Nikoli. The puzzle consists of a rectangular grid
partitioned into polyominoes called regions, with some cells containing a white circle. The
player has to color some circles black to satisfy the following constraints [20].
1. Every region contains exactly one black circle.
2. There are no three consecutive circles (horizontally, vertically, or diagonally) having the

same color (see Figure 1).

In this paper, we show that it is NP-complete to decide whether a given Nondango puzzle
has a solution.

▶ Theorem 1.1. Deciding solvability of a given Nondango instance is NP-complete.

As the problem clearly belongs to NP, the nontrivial part is to prove the NP-hardness.
We do so by constructing a reduction from the 1-in-3-SAT+ problem (deciding whether there
is a Boolean assignment such that every clause has exactly one literal that evaluates to true,
in a setting where each clause contains exactly three positive literals), which is known to be
NP-complete [27].

Figure 1 An example of a 6 × 6 Nondango puzzle (left) and its solution (right)

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



1:2 Nondango is NP-Complete
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some gadgets

some gadgets

some gadgets

Figure 2 Basic structure of a Nondango instance transformed from a formula consisting of clauses
C1 = x1 ∨ x2 ∨ x4, C2 = x2 ∨ x3 ∨ x5, C3 = x3 ∨ x4 ∨ x5, and C4 = x1 ∨ x2 ∨ x5

1.1 Related Work
Many pencil puzzles have been proved to be NP-complete, including Dosun-Fuwari [15],
Fillmat [30], Five Cells [18], Goishi Hiroi [5], Hashiwokakero [4], Herugolf [14], Heyawake [11],
Juosan [16], Kakuro [31], Kurodoko [21], Kurotto [16], LITS [6], Makaro [14], Moon-on-Sun
[19], Nagareru [19], Nonogram [29], Norinori [6], Numberlink [1], Nurikabe [10], Nurimeizu
[19], Nurimisaki [17], Pencils [23], Ripple Effect [28], Roma [9], Sashigane [17], Shakashaka
[8], Shikaku [28], Slitherlink [31], Sto-Stone [3], Sudoku [31], Suguru [24], Sumplete [25],
Tatamibari [2], Tilepaint [31], Toichika [26], Usowan [13], Yin-Yang [7], and Yosenabe [12].

2 Idea of the Proof

Given a 1-in-3-SAT+ formula, we will transform it into a Nondango puzzle. In the puzzle
grid, each variable and each clause is represented by a column (called a variable column) and
a row (called a clause row), respectively. In each clause row, a rectangular region of height 1
consists of the whole row. Inside the region, we place three circles (called variable circles) at
columns corresponding to the three variables appearing in that clause (see Figure 2).

We interpret a black (resp. white) circle in a Nondango solution as a true (resp. false)
literal. The constraint that exactly one literal in each clause is true is equivalent to that
exactly one circle in that region is black. However, a more challenging task is to force every
circle in each variable column to have the same color (which is equivalent to that each variable
must have the same truth value in every clause it appears). We will show how to construct
gadgets to enforce this constraint in the next section.
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Figure 3 A gadget for creating a forced white circle (left) and its only solution (right)

3 Reduction

We use the following gadgets to construct components of the Nondango puzzle with certain
properties.

3.1 Enforcing a Black Circle
Creating a circle that must be black in the solution is trivial; in a region with exactly one
circle, that circle must be black in the solution. We call such circle a forced black circle.

3.2 Enforcing a White Circle
We can create a circle that must be white in the solution by using a gadget represented
in Figure 3. As the bottom-right circle is placed next to two vertically consecutive forced
black circles, it must be white in the solution (otherwise there will be three consecutive black
circles in the solution). Analogously, we call such circle a forced white circle.

3.3 Enforcing Two Circles with Different Colors
For any region with exactly two circles, the colors of these two circles in the solution are
always different. However, if we want to force two circles in different regions to have different
colors in the solution, we can do so by using a gadget represented in Figure 4. The idea is
that there are four consecutive circles arranged diagonally, with a circle at one end being
forced white and at the other end being forced black. As a result, the two middle circles
must have different colors in the solution (otherwise there will be three consecutive circles
with the same color in the solution).

3.4 Connecting Two Consecutive Clause Rows with Common Variables
For two consecutive clause rows (e.g. clause rows for C2 and C3) which the corresponding
clauses share a variable, we use a gadget represented in Figure 5 (see also Figure 6 for its
solutions) to connect the two variable circles corresponding to that common variable. This
gadget forces these two variable circles to have the same color in the solution, thus ensuring
that the variable has the same truth value in both clauses. The idea behind this gadget is to
use multiple copies of the gadget in Section 3.3.

3.5 Skipping a Clause Row
As the gadget in the Section 3.4 can only connect consecutive clause rows, we also provide a
method to skip a clause row that does not contain the given variable. For example, if x1

EuroCG’24
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. . . . . .
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. . . . . .

...

A

B

Figure 4 A gadget for enforcing two circles with different colors (left) and its only two solutions
(right), where {A, B} = {black, white}

appears in C2 and C4, but not in C3, we need to connect the clause rows of C2 and C4 while
skipping the one of C3

1.
We can do so by using a gadget represented in Figure 7 (see also Figure 8 for its solutions).

The idea behind this gadget is that we put a forced white circle as a variable circle in the
clause row we want to skip, so that the color constraint for other circles in that row will not
be affected.

3.6 Filling Empty Area
We can simply make each connected empty area into one region, with one circle placed inside
it, not touching any boundary. That circle is forced to be black without affecting other
regions.

Recall that we interpret a black (resp. white) circle in a Nondango solution as a true (resp.
false) literal. We can see that the Nondango puzzle we construct has a solution if and only if
the original 1-in-3-SAT+ problem is satisfiable. As the reduction is clearly parsimonious, we
can conclude that deciding solvability of a given Nondango puzzle is NP-complete.

1 In fact, this gadget is unnecessary if we instead construct a reduction from the planar positive rectilinear
1-in-3-SAT problem, which is also NP-complete [22], where the clause rows can be arranged such that
we do not need to skip a clause row. However, we include this gadget for the sake of completeness.
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Figure 5 A gadget connecting two consecutive clause rows, forcing the two variable circles to
have the same color
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Figure 6 The only two solutions of the puzzle in Figure 5, where {A, B} = {black, white}
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Figure 7 A gadget to skip a clause row, starting from the lower clause row and skipping the
upper clause row to connect to some clause row beyond it
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Figure 8 The only two solutions of the puzzle in Figure 7, where {A, B} = {black, white}
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Abstract
Merge trees are a common topological descriptor for data with a hierarchical component. The
interleaving distance, in turn, is a common distance measure for comparing merge trees. In this
abstract, we introduce a form of ordered merge trees and extend the interleaving distance to a
measure that preserves orders. Exploiting the additional structure of ordered merge trees, we then
describe an O(n2) time algorithm that computes a 2-approximation of this new distance with an
additive term G that captures the maximum height differences of leaves of the input merge trees.

Related Version A full version of the paper is available at arxiv.org/abs/2312.11113.

1 Introduction

Merge trees are a common topological descriptor for data with a hierarchical component,
such as terrains and scalar fields. However, standard merge trees focus solely on the hierarchy
and do not represent other salient geometric features of the data. Specifically, our work is
motivated by the study of braided rivers (see Figure 1). A braided river is a multi-channel
river system, known to evolve rapidly [13, 17]. There exist methods to generate a river
network from a snapshot of the terrain [7, 14, 16]. We model a river network as a hierarchy of
braids. We use a merge tree to represent this hierarchy: each leaf represents a single channel
in the network, and each internal vertex represents two braids merging (see Figure 1).

It is our goal to analyse the evolution of the channel network over time. The standard
way to compare two merge trees is the interleaving distance [19]. However, the interleaving
distance has two main drawbacks. Firstly, the standard interleaving distance is unable to
capture any intrinsic order, e.g. from bank to bank in braided rivers, that might be present in

Figure 1 (Left) the Waimakariri River in New-Zealand is a braided river. Photo was taken by
Greg O’Beirne [21]. (Right) representing a river network by a merge tree.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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the data. Secondly, there is no known efficient algorithm to compute even an approximation
of the interleaving distance.1 To tackle both issues, we introduce the monotone interleaving
distance: an order-preserving distance measure on ordered merge trees.

Contributions. We show that the monotone interleaving distance can be defined in terms
of a single map between the input merge trees, two maps, or a labelling. Moreover, we
give an algorithm that computes an approximation of this distance in O(n2) time. Finding
an efficient algorithm to compute the monotone interleaving distance exactly, or to prove
NP-hardness of computing the distance, remains an open problem. We first review the
relevant background in Section 2. In Section 3 we introduce a form of ordered merge trees
and define monotone interleavings, monotone δ-good maps and monotone labellings. We
give constructions to prove that all of these lead to the same distance. Finally, in Section 4
we describe an efficient algorithm to approximate the monotone interleaving distance. All
omitted proofs can be found in the full version on arXiv.

Related work. The interleaving distance was first introduced as a measure for persistence
modules [8]. It has since been well-studied from a categorical point of view [3, 4, 5, 6, 9,
10, 11, 15, 22], and has been transferred to numerous topological descriptors [2, 18, 20].
Morozov et al. [19] defined the interleaving distance for merge trees. Agarwal et al. [1]
established a relation between the interleaving distance and the Gromov-Hausdorff distance.1
The interleaving distance on merge trees was redefined by first Touli and Wang [23], and
later Gasparovich et al. [12]. Touli and Wang also gave an FPT-algorithm to compute the
interleaving distance. Recently, the result by Gasparovich et al. has been used to design
algorithms for computing geometry aware labellings [24, 25].

2 Preliminaries

A merge tree is a pair (T, f), where T is a rooted tree and f : T → R ∪ {∞} is a continuous
height function that is increasing towards the root, with f(v) = ∞ if and only if v is the
root. Here, f is defined not only on the vertices of T , but also on points of T interior to the
edges. Specifically, f is linearly interpolated along the edges. For a point x ∈ T , we denote
by Tx the subtree of T rooted at x. Furthermore, for a given value δ ≥ 0, we denote by xδ

the unique ancestor of x with f(xδ) = f(x) + δ ∈ T .
Now consider two merge trees (T, f) and (T ′, f ′) and fix a value δ ≥ 0. Intuitively, a

δ-interleaving describes a mapping α from T to T ′ that sends points exactly δ upwards, and
a similar map β from T ′ to T , such that both compositions of α and β send any point to its
unique ancestor 2δ higher. Figure 2 shows an example of a δ-interleaving.

▶ Definition 1 (Morozov et al. [19]). Given two merge trees (T, f) and (T ′, f ′), a pair of
maps α : T → T ′ and β : T ′ → T is called a δ-interleaving if for all x ∈ T and y ∈ T ′:

(C1) f ′(α(x)) = f(x) + δ,
(C2) β(α(x)) = x2δ,

(C3) f(β(y)) = f ′(y) + δ, and
(C4) α(β(y)) = y2δ.

The interleaving distance dI is defined as the smallest δ such that there exists a δ-interleaving.

1 Agarwal et al. [1] actually prove that approximating the Gromov-Hausdorff distance with a factor better
than 3 is NP-hard. As many have observed, this proof also applies to the interleaving distance.
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x2δ

0

δ

2δ
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y2δ

Figure 2 Two merge trees and part of a δ-interleaving. Mapping a point x from T to T ′ through α

(in blue), and mapping it back to T via β (in red) gives the unique ancestor x2δ of x.

The maps α and β are both δ-shift maps, i.e. continuous maps that send points exactly δ

higher. Touli and Wang [23] give an alternative definition of the interleaving distance in
terms of a single δ-shift map with additional requirements. They call this map a δ-good map.
Gasparovich et al. [12] show that the interleaving distance can also be defined in terms of
labelled merge trees: merge trees equipped with label-maps. Formally, let n ≥ 0. We denote
[n] := {1, . . . , n}. A map π : [n] → T is called a label map if each leaf in T is assigned at
least one label. Note that π is not restricted to vertices, and may map different labels to
the same point. The induced matrix M = M(T, f, π) of a labelled merge tree is defined by
Mi,j = f(lca(π(i), π(j))), where lca(·, ·) is the lowest common ancestor of two points. See
Figure 3 for an example of a labelled merge tree and its induced matrix.

For a matrix M , the ℓ∞-norm is defined as ∥M∥∞ = maxi,j |Mi,j |. For two unlabelled
merge trees (T, f) and (T ′, f ′), we refer to a pair of equally-sized label maps (π, π′) as a
δ-labelling if ∥M(T, f, π) − M(T ′, f ′, π′)∥∞ = δ. The δ-good interleaving distance dG

I and
the label interleaving distance dL

I are defined as the smallest δ such that there exists a δ-good
map or a δ-labelling. It has been shown that dI = dG

I = dL
I [12, 23].

3 An Order-Preserving Interleaving Distance

We consider a new class of merge trees, which we call ordered merge trees. For a point x ∈ T

with f(x) ≤ h, we denote by x|h the unique ancestor of x at height h. An ordered merge tree
(T, f, (≤h)h≥0) is a merge tree (T, f) equipped with a set of total orders on the level sets of
T , such that these orders are consistent (see Figure 4). Formally, for two heights h1 ≤ h2

1

5

2, 3
h1

h2

h3

h4

h5

h6

4


h2 h6 h6 h5

. h1 h1 h6 h6

. . h1 h6 h6

. . . h5 h5

. . . . h3


h4

Figure 3 Example of a labelled merge tree and its induced matrix.
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h1

h2
≤h2

≤h2

≤h1
≤h1

≤h1

Figure 4 Two layers of an ordered merge tree.

and two points x1, x2 in f−1(h1), we require that x1 ≤h1 x2 implies x1|h2 ≤h2 x2|h2 .
An ordered merge tree induces a binary relation ⊑ on the complete tree T : for x1, x2 ∈ T ,

we define x1 ⊑ x2 if x1|h ≤h x2|h, where h = max(f(x1), f(x2)). This induced relation is
not antisymmetric, and thus not a total order. If we restrict ⊑ to the set of leaves of T ,
denoted ⊑L, we do obtain a total order. We refer to ⊑L as the induced leaf-order of T .

Monotone interleaving distance. We now define an order-preserving distance measure for
ordered merge trees. Specifically, we say a δ-shift map α : T → T ′ is monotone if for all
height values h ≥ 0 and for any two points x1, x2 ∈ f−1(h) it holds that x1 ≤h x2 implies
α(x1) ≤′

h+δ α(x2). A monotone δ-interleaving is a δ-interleaving (α, β) such that the maps
α and β are both monotone (see Figure 5). A monotone δ-good map, in turn, is a δ-good
map α that is also monotone. Lastly, a δ-labelling (π, π′) of size n is monotone if for all
ℓ1, ℓ2 ∈ [n] it holds that π(ℓ1) ⊏ π(ℓ2) implies π′(ℓ1) ⊑′ π′(ℓ2). The monotone interleaving
distance dMI is defined as the smallest δ such that there exists a monotone δ-interleaving.
Similarly, we can define the monotone δ-good, and the monotone label interleaving distances,
denoted dG

MI and dL
MI. Our main result is the following.

▶ Theorem 2. The distances dMI, dG
MI and dL

MI are equal.

To prove Theorem 2, we describe constructions between monotone δ-interleavings, monotone δ-
good maps, and monotone δ-labellings. The first construction, from a monotone δ-interleaving
to a monotone δ-good map, follows directly from the regular setting (by Touli and Wang
[23]). The construction of a monotone δ-labelling from a monotone δ-good map follows from
a refinement of the construction by Gasparovich et al. [12].2 We use yF to denote the lowest
ancestor of y ∈ T ′ in the image of α. Moreover, for two distinct points x1, x2 ∈ T , we say x1
is smaller than x2 if x1 ⊑ x2. The existing construction is as follows.

2 We remark that they use a slightly different (but equivalent) definition for a δ-good map.

Figure 5 Parts of an optimal regular (left) and an optimal monotone (right) interleaving.
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α−1(ŵı̂)
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ĥ1
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Figure 6 The refined step (S2). The grey parts of T ′ do not lie in the image of α. We add the
pair (x̂, w5) to Π. In this example, w = w5, S = {1, 2, 3, 6}, i = 5, Si = {1, 2, 3} and ı̂ = 3.

(S1) For every leaf u ∈ L(T ), add (u, α(u)) to an initially empty set Π.
(S2) For every leaf w ∈ L(T ′), take an arbitrary point x ∈ α−1(wF ). Add (x, w) to Π.
(S3) Consider an arbitrary ordering Π = {(xℓ, yℓ) | ℓ ∈ [n]}, and set π(ℓ) = xℓ, π′(ℓ) = yℓ.

We refine (S2), by choosing a specific x ∈ α−1(wF ). Intuitively, we first identify all points x̄

that lead to a violation of the monotonicity property if we choose x smaller than x̄. Such a
violation occurs if x̄ is an ancestor of a labelled point whose corresponding labelled point in
T ′ is smaller than w. We then take x to be the largest point among the points x̄.

(S2) For every leaf w ∈ L(T ′), sort the set of leaves in T ′
wF by induced leaf-order, denoted

W = {w1, . . . , wm}. Define S ⊆ [m] such that for k ∈ S, wF
k is a strict descendant of

wF . Fix i ∈ [m] such that wi = w, and define Si = {k ∈ S | k < i}. Now consider the
set X = α−1(wF )

If Si is empty, take x to be the smallest point in X and add (x, w) to Π.
If Si is not empty, consider the largest index ı̂ ∈ Si. Define Y as the set of strict
descendants of wF that were labelled in (S1). Consider the following height values:

ĥ1 := max{f ′(wF
k ) | k ∈ S}, ĥ2 := max{f ′(y) | y ∈ Y }, ĥ = max(ĥ1, ĥ2) (1)

Consider the unique ancestor ŵı̂ of wı̂ at height ĥ. Note that ŵı̂ is a strict descendant
of the point wF and that it lies in the image of α. Let Xı̂ ⊂ X be the set of ancestors
of points in α−1(ŵı̂). Take x̂ to be the largest point in Xı̂ and add (x̂, w) to Π.

See Figure 6 for an illustration. We can show that the resulting δ-labelling is monotone.
Lastly, we construct a monotone δ-interleaving from a monotone δ-labelling. To do so,

we extend an existing construction of a δ-good map α from a δ-labelling by Gasparovich et
al. [12]. Specifically, for all x ∈ T , they consider an arbitrary label ℓ from the subtree Tx and
set yℓ = π′(ℓ)|f(x)+δ. Gasparovich et al. show that the point yℓ is well-defined, and argue
that the resulting map α is a δ-good map. We can construct a δ-interleaving (α, β) by using
this construction twice: first to build a map α : T → T ′ and next to build a map β : T ′ → T .

Monotone leaf-label interleaving distance. We now turn to a restriction of the (monotone)
label interleaving distance. Specifically, if we restrict a label map to map only to the leaves
of T , we obtain a leaf-label map. A δ-leaf-labelling is a pair of leaf-label maps that is also a
δ-labelling. The leaf-label interleaving distance dLL

I , in turn, is defined as the smallest δ for
which there exists a δ-leaf labelling. We can show that this distance is an approximation of
the interleaving distance, in both the regular and monotone setting. We define the leaf-gap G

of two trees T and T ′ as the maximum height difference of any pair of leaves in T and T ′.

EuroCG’24
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▶ Theorem 3. The monotone leaf-label interleaving distance between (T, f, (≤h)) and
(T ′, f ′, (≤′

h)) is bounded by 2δ + G, where δ = dMI(T, T ′) and G is the leaf-gap of T and T ′.

4 Approximating the Monotone Interleaving Distance

In this section we describe an algorithm to compute the monotone leaf-label interleaving
distance between two ordered merge trees (T, f, (≤h)) and (T ′, f ′, (≤′

h)). We denote the
leaves of T and T ′, sorted by leaf-order, by L(T ) = {u1, . . . , um} and L(T ′) = {w1, . . . , wm′},
respectively. We can show that we can permute the labels of a monotone labelling (ω, ω′) on T

and T ′, such that the resulting label maps respect the induced leaf-orders of their trees. That
is, for any two labels i, j ∈ [n] with i < j, we have ω(i) ⊑L ω(j) and ω′(i) ⊑′

L ω′(j). Assume
(ω, ω′) is such a monotone leaf-labelling. Let M = M(T, f, ω) and M ′ = M(T ′, f ′, ω′) be the
corresponding induced matrices and set M = M(T, T ′) := |M − M ′|. We refer to entries
Mi,i as the diagonal of M, and to entries Mi,j with j − i = 1 as the upper-diagonal of M.

▶ Lemma 4. The maximum of M lies on the diagonal or upper diagonal of M.

We now describe a dynamic program to compute the monotone leaf-label interleaving distance
between T and T ′. We denote by T [i] the subtree of T consisting of only the first i leaves.
For i ∈ |L(T )| and j ∈ |L(T ′)|, we maintain a value ∆[i, j] that stores the monotone
leaf-label interleaving distance between T [i] and T ′[j]. Consider an optimal monotone
leaf-labelling (ω, ω′) for T [i] and T ′[j] with a minimum number of k labels, such that ω

and ω′ respect the leaf-orders of T and T ′, respectively. From Lemma 4 we know that
to compute dLL

MI(T [i], T ′[j]), it suffices to compute the diagonal and upper-diagonal entries
of M = M(T [i], T ′[j]). As ω(k) = ui and ω′(k) = wj , we have Mk,k = |f(ui) − f ′(wj)| =: ε.
To compute the other relevant elements of M, we consider the three options for label k − 1:

(1) ω(k − 1) = ui, (2) ω(k − 1) = ui−1, (3) ω(k − 1) = ui−1,

ω′(k − 1) = wj−1, ω′(k − 1) = wj , ω′(k − 1) = wj−1.

First assume case (1) applies. Then we know that Mk−1,k = |f(ui) − f ′(lca(wj−1, wj))|.
Furthermore, ∆[i, j − 1] captures the remaining relevant entries of M. We set δ1 =
max(∆[i, j − 1], Mk−1,k). Similarly, we can set δ2 and δ3 for cases (2) and (3) respec-
tively. Finally, at each iteration, we set ∆[i, j] = max(ε, min(δ1, δ2, δ3)). We can show that
∆[i, j] = dLL

MI(T [i], T ′[j]). The algorithm returns ∆[|L(T )|, |L(T ′)|].
We can use our algorithm to compute a monotone interleaving as follows. First, we

compute the lowest common ancestors of all consecutive pairs of leaves in T or T ′. This
allows us to construct ∆ in O(n2) time, where n = |L(T )| + |L(T ′)|. Recovering an optimal
leaf-labelling from the dynamic program can be done in a standard way. Next, we can
construct two partial maps αL : L(T ) → T ′ and βL : L(T ′) → T using the construction from
Section 3 in O(n) time. Lastly, one can recover a complete interleaving (α, β) from αL and
βL using continuity and δ-shift map properties. Our final result follows from Theorem 3:

▶ Theorem 5. Given two ordered merge trees T and T ′, there exists an O(n2) algorithm
that computes a monotone δ-interleaving between T and T ′, where δ ≤ 2dMI(T, T ′) + G.
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Abstract
Constructing partitions of colored points is a well-studied problem in discrete and computational
geometry. We study the problem of creating a minimum-cardinality partition into monochromatic
islands. Our input is a set S of n points in the plane where each point has one of k ≥ 2 colors. A
set of points is monochromatic if it contains points of only one color. An island I is a subset of S

such that CH(I) ∩ S = I, where CH(I) denotes the convex hull of I. We identify an island with
its convex hull; therefore, a partition into islands has the additional requirement that the convex
hulls of the islands are pairwise-disjoint. We present three greedy algorithms for constructing island
partitions and analyze their approximation ratios.

Related Version arXiv:2402.13340

1 Introduction

Constructing partitions of colored points is a well-studied problem in discrete [8, 12] and
computational geometry [1, 4, 5, 16]. The colors of the points can be present in the constraints
and the optimization criterion in different ways. For example, one may require the partition
to be balanced—see the survey by Kano and Urrutia [12] for many such instances—or
monochromatic [1, 4, 5, 8]. Alternatively, one may want to minimize or maximize the
diversity [16] or discrepancy [3, 7] of the partition. Furthermore, one can use different
geometries to partition the points, such as triangles [1], disks [5], or lines [4].

We study the problem of creating a minimum-cardinality partition into monochromatic
islands [2]. Our input is a set S of n points in the plane where each point has one of k ≥ 2
colors. A set of points is monochromatic if it contains points of only one color. An island I

is a subset of S such that CH(I) ∩ S = I, where CH(I) denotes the convex hull of I. We
identify an island with its convex hull; therefore, a partition into islands has the additional
requirement that the convex hulls of the islands are pairwise-disjoint.

Related work. Bautista-Santiago et al. [2] study islands and describe an algorithm that
can find a monochromatic island of maximum cardinality in O(n3) time, improving upon
an earlier O(n3 log n) algorithm [10]. Dumitrescu and Pach [8] consider monochromatic
island partitions and prove how many islands are sufficient and sometimes necessary for
different types of input. Bereg et al. [3] use island partitions to define a notion of coarseness
that captures how blended a set of red and blue points are. Agarwal and Suri [1] study
the following problem: given red and blue points, cover the blue points with the minimum
number of pairwise-disjoint monochromatic triangles. They prove that this problem is
NP-hard and describe approximation algorithms. Their NP-hardness reduction can be used
to prove that covering and partitioning points of only one color into the minimum number of

∗ W. Meulemans is partially supported by the Dutch Research Council (NWO) under project number
VI.Vidi.223.137.
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Figure 1 Left: optimal island partition; middle-left: disjoint-greedy island partition; middle-right:
overlap-greedy island cover; right: line-greedy separating lines.

monochromatic islands—the points of the other colors serving only as obstacles—is NP-hard,
as observed by Bautista-Santiago et al. [2]. We suspect that the problem we study is NP-hard
as well, which motivates us to focus on approximation algorithms.

Overview. In the remainder, we consider only monochromatic islands. We denote by
OptP the minimum cardinality of an island partition of S. In the following sections, we use
three greedy algorithms—disjoint-greedy, overlap-greedy, and line-greedy—to construct island
partitions. Disjoint-greedy creates an island partition by iteratively picking the island that
covers most uncovered points and does not intersect any island chosen before. We sketch a
proof that shows that disjoint-greedy has an approximation ratio of Ω(n/ log2 n). The overlap-
greedy algorithm greedily constructs an O(log n)-approximation of the minimum-cardinality
island cover. We prove that any algorithm that transforms an island cover returned by
overlap-greedy into an island partition has approximation ratio Ω(

√
n), and describe one such

algorithm that has approximation ratio O(Opt2
P log2 n). Lastly, we investigate the relation

between constructing a minimum-cardinality island partition and finding the minimum
number of lines that separate the points into monochromatic regions. In particular, we show
that greedily choosing the line that separates most pairs of points of different color induces
an O(OptP log2 n)-approximation to the minimum-cardinality island partition. Figure 1
illustrates the greedy algorithms. The full paper contains all technical details.

2 Disjoint-Greedy

We sketch our lower bound construction that shows that disjoint-greedy has an approximation
ratio of Ω(n/ log2 n). Consider a family of problem instances that have the form of two
opposing complete binary trees of height ℓ (Figure 2). Sets of points are placed close together
at the nodes of these trees. The idea is that by placing sufficiently many points at the nodes,
and by placing obstacle points appropriately, the disjoint-greedy algorithm iteratively picks
points of two opposing nodes such that the problem instance is split into two symmetric
nearly independent parts that have nearly the same structure as the original instance. This
results in disjoint-greedy returning a partition into Ω(2ℓ) islands (Figure 3). However, there
exists a partition such that each layer in the tree consists of a constant number of islands,
resulting in O(ℓ) islands in total (Figure 4). In our construction, the number of red points at
a node at height i ∈ {0, . . . , ℓ−1} is 2i+6 and the number of blue points at a node is constant.
Hence, the problem instance contains Θ(ℓ · 2ℓ) points in total and the approximation ratio of
disjoint-greedy is Ω(2ℓ/ℓ) = Ω(n/ log2 n).
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Figure 2 The problem instance for ℓ = 5. The lines in the figure are not part of the problem
instance, but illustrate its structure. The purple squares represent red and blue points lying close
together inside a square. The red disk inside the square represents many red points placed together
inside a disk. The centers of the purple squares lie within the strip bounded by the two dashed lines.

Figure 3 The solution returned by disjoint-greedy.

Figure 4 An alternative solution, serving as an upper bound for the optimal solution.

3 Overlap-Greedy

A greedy algorithm that iteratively picks the island that covers most uncovered points
results in an O(log n) approximation to the minimum-cardinality island cover. This follows
immediately from viewing the problem as a set cover problem, where islands form the sets.
We refer to this greedy algorithm as overlap-greedy. Below, we explore how to transform the
island cover returned by overlap-greedy into an island partition. We assume that the greedy
algorithm breaks ties by choosing an island that covers the fewest previously covered points.

We first define the relation between island covers and partitions based on them. Intuitively,
islands that intersect can be transformed into a set of pairwise-disjoint islands by splitting
them. In the transformation, each island has a corresponding family of islands into which
it is split. The union of such a family should be a subset of the original island—a subset,
not equal, because a point that was originally covered by multiple islands should be part of
exactly one island after the transformation. This motivates the following definition.

▶ Definition 1 (Compatible). Families I ′
1, . . . , I ′

m are compatible with islands I1, . . . , Im if:
Families I ′

1, . . . , I ′
m cover the same points as I1, . . . , Im:

⋃
k

⋃ I ′
k =

⋃
i Ii;

For every i, we have
⋃ I ′

i ⊆ Ii;
Islands

⋃
k I ′

k are pairwise-disjoint.
Islands I ′

1, . . . , I ′
m′ are compatible with islands I1, . . . , Im if there exists a partition of

{I ′
1, . . . , I ′

m′} into families that are compatible with I1, . . . , Im.

EuroCG’24



3:4 Greedy Monochromatic Island Partitions

Figure 5 A lower bound on the cardinality of solutions compatible with islands returned by
overlap-greedy. Left: overlap-greedy cover; middle: a partition compatible with the overlap-greedy
cover; right: an optimal island partition.

Thus, we arrive at the following problem: given m islands I1, . . . , Im obtained by overlap-
greedy, find compatible families I ′

1, . . . , I ′
m with | ⋃

k I ′
k| minimum. Solving this problem

optimally is non-trivial. A natural approach to tackle the problem is to create an arrangement
of the islands I1, . . . , Im and extract compatible families from that arrangement. However,
two minor issues arise: the faces in the arrangement may not be convex, and the quality
of the solution is not immediately clear as the number of faces in the arrangement may
be arbitrarily greater than m. To resolve these issues, we build an arrangement iteratively.
Before describing this process, we give a lower bound on the approximation ratio of algorithms
that return islands compatible with those returned by overlap-greedy.

▶ Lemma 2. Any algorithm that returns islands compatible with those returned by overlap-
greedy has approximation ratio Ω(max{OptP,

√
n}).

Proof. Let k ∈ N≥1. Consider a problem instance that consists of k evenly spaced vertical
blue lines each formed by k + 1 evenly spaced blue points, and symmetrically k evenly
spaced horizontal red lines (Figure 5). The cover returned by overlap-greedy has cardinality
2k and is induced by exactly those lines that were just described (Figure 5, left). Any
partition that is compatible with the overlap-greedy cover has cardinality at least 2k + k2

(Figure 5, middle). Indeed, each intersection between two lines in the overlap-greedy
cover forces an additional island in a compatible partition. An optimal island partition
has cardinality OptP = 2k + 1 and consists of either all horizontal or all vertical islands
(Figure 5, right). The number of points n = O(k2). Thus, the approximation ratio of
an algorithm that produces solutions compatible with that of overlap-greedy is at least
2k+k2

2k+1 = Ω(k) = Ω(OptP) = Ω(
√

n) = Ω(max{OptP,
√

n}). ◀

3.1 Upper Bound
As mentioned earlier, our algorithm for creating a compatible island partition from an island
cover works in an iterative manner. Throughout the iterations, we keep track of a restricted
planar subdivision, which we call an island arrangement, to bound the cardinality of the
island partition constructed by the algorithm. To simplify the arguments, we assume all
islands in the island cover have cardinality at least three and that no three points are collinear.
Then, a compatible island partition can be created from the faces of the island arrangement.
See Figure 6 for an overview of the transformation from island cover to island partition.

We now define the notion of an island arrangement. In the following, vertices, edges, and
faces of a planar subdivision are collectively referred to as features.
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Figure 6 Left: an island cover I1, . . . Im returned by overlap-greedy; middle: an island arrangement
of I1, . . . , Im; right: an island partition compatible with I1, . . . , Im induced by the arrangement.

▶ Definition 3 (Island arrangement). An island arrangement of islands I1, . . . , Ii is a planar
subdivision with the following additional requirements:

Bounded faces are convex;
Every bounded feature is a subset of CH(Ij) for some 1 ≤ j ≤ i;
For every 1 ≤ j ≤ i, CH(Ij) is covered by bounded features.

Let I1, . . . , Im be the islands chosen by overlap-greedy for some set of points S. Let
Ui = Ii \ ⋃

j<i Ij be the set of uncovered points island Ii covers. Because islands are chosen
greedily by overlap-greedy, they satisfy |Ui| ≥ |Ui+1| for i ∈ {1, . . . , m − 1} and for all i

island Ii is such that |Ui| is maximum. By using these properties, the following lemma can
be proven to hold for islands I1, . . . , Im.

▶ Lemma 4. Let δ denote the boundary operator on sets. For distinct 1 ≤ i < j ≤ m, the
number of intersections between δ(CH(Ii)) and δ(CH(Ij)) is at most 2OptP.

Using this lemma we can prove that an island arrangement of I1, . . . , Ii−1 with 1 ≤ i ≤ m

can be modified into an island arrangement of I1, . . . , Ii such that the increase in the number
of faces is bounded in terms of i and OptP. We call this modification an augmentation of the
arrangement. The following lemma makes one face for the new island Ii and modifies any
existing features to make room. We refer to this as a bold augmentation of the arrangement.

▶ Lemma 5 (Bold augmentation). Given an island arrangement A of I1, . . . , Ii−1 with f

faces, there exists an island arrangement A′ of I1, . . . , Ii with at most f + 2OptP · (i − 1)
faces such that there is exactly one face whose closure equals CH(Ii).

By repeatedly applying Lemma 5, an island cover returned by overlap-greedy can be
transformed into a compatible island partition. Let bold overlap-greedy be the algorithm
that first runs overlap-greedy to obtain islands I1, . . . , Im, then repeatedly applies the bold
augmentation step to create an island arrangement A of I1, . . . , Im, and finally extracts an
island partition from the faces of A. The following bound holds on its approximation ratio.

▶ Corollary 6. Bold overlap-greedy has approximation ratio O(Opt2
P log2 n).

4 Line-Greedy

In this section, we explore the relation between our problem and that of separating colors
with the minimum number of lines. In particular, we show that greedily chosen separating
lines induce an O(OptP log2 n)-approximation to the minimum-cardinality island partition.

A set of lines L separates a set of colored points S if each face in the arrangement A(L)
is monochromatic. The problem of finding the minimum-cardinality set of such separating
lines is W[1]-hard with the parameter being the solution size [4]. Furthermore, the problem

EuroCG’24
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Figure 7 Left: islands; right: expanded islands and their contact graph.

is NP-hard [14] and APX-hard [6], even when allowing only axis-parallel lines. The problem
can be viewed as a set cover problem where lines are used to cover line segments between
pairs of points of different color. Thus, the corresponding greedy algorithm, which we refer
to as line-greedy, yields a O(log n)-approximation [11, 13]. Line-greedy can be implemented
to run in O(kOptLn2 log n) time [11], where OptL is the optimal number of lines and k is
the number of colors of the input set.

If L separates S, then the faces of the arrangement A(L) induce a partition of S into
O(|L|2) islands. Conversely, an island partition P of S, with |P| ≥ 3, induces a set of O(|P|)
lines that separates S. This can be shown using a construction by Edelsbrunner, Robison,
and Shen [9]. We sketch their construction, adapted slightly for our use; see their paper for
details and proofs. Circumscribe a rectangle around all the polygons—the convex hulls of
the islands in P . Grow the polygons, by moving their sides, until they are maximal. Extend
each shared polygon side to obtain a set of lines. This set of lines separates the input points.
Furthermore, each line corresponds to an edge of the contact graph of the expanded polygons
(Figure 7). Because the contact graph is planar, there are at most 3|P| − 6 lines, yielding
the desired result. While the exact running time of the construction is unclear, it is clearly
polynomial. Pocchiola and Vegter [15] provide an alternative construction that makes use of
a pseudo-triangulation of the polygons. Their algorithm runs in O(n + |P| log n) time.

Thus, an optimal island partition induces an O(OptL)-approximation to the optimal
set of separating lines. Conversely, an optimal set of separating lines induces an O(OptP)-
approximation to the optimal island partition. There is an analogous relation between
approximation algorithms of the two problems. In particular, we have the following result.

▶ Lemma 7. Line-greedy induces an O(OptP log2 n)-approximation to the minimum-cardinality
island partition.

For a lower bound instance, place points in a square grid of k = 2ℓ rows and columns and
color them alternatingly as in a checkerboard. In addition, place points on the corners of thin
axis-parallel rectangles on the sides of the grid to encourage the line-greedy algorithm to use
axis-parallel lines (Figure 8). We suspect that for any ℓ ≥ 1 line-greedy returns horizontal
and vertical separating lines that separate the rows and columns of the grid as shown on the
left in Figure 8. However, a formal proof eludes us. If this were true, then the island partition
induced by the line-greedy solution would have cardinality Ω(k2). Because an island partition
of cardinality O(k) exists (Figure 8, right), this would result in an Ω(

√
n) = Ω(OptP) lower

bound on the approximation that is attained by an island partition induced by line-greedy.
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Figure 8 The figure shows an idea of a lower bound on the approximation that is attained by an
island partition induced by line-greedy.
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Abstract
We introduce two geometry-based morphing techniques that build upon the existing Voronoi and
mixed morphs. These morphs are Hausdorff morphs, meaning they linearly interpolate the Hausdorff
distance between the two polygons. Our new morphs are also Hausdorff morphs, and additionally
reduce the number of components in intermediate shapes. In an experimental analysis we record
data on the area, perimeter and total angular change throughout the morph, and the number of holes
and components. Our new morphs perform better in these aspects than their original counterparts
and the new component-reduced mixed morph also appears to introduce fewer visual artifacts in the
intermediate polygons.

1 Introduction

Shape morphing, also called shape interpolation, is the process of gradually transforming a
source shape to a target shape over time. Good morphs produce intermediate shapes that
preserve the input shapes’ appearances.

We focus on abstract morphing between 2D shapes. Abstract morphs do not concern
themselves with (semantic) reasons to transform certain parts of the source shape to the
target shape. This type of morphing can be used to morph between complex shapes that do
not have any clear correspondence.

To capture a morph is gradual, we may use distance measures between shapes: ideally,
the distance to the source shape should linearly increase, while the distance to the target
shape should linearly decrease. A morph is a Hausdorff morph, when it satisfies this property
using the Hausdorff metric [5]. The dilation morph [5] is such a Hausdorff morph, though
the resulting intermediate shapes tend to lack characteristic features of either input shapes;
see Figure 1. The Voronoi morph [3] is also a Hausdorff morph; compared to the dilation
morph, it greatly reduces the area of intermediate shapes and also retains more characteristic
features. This morph does however add superfluous components and noise: extra details
that are not present in the input shapes; see Figure 1. The above two morphs combine into
a mixed morph [3], which reduces, but does not eliminate these issues. We introduce the
Component-Reduced Voronoi morph (CRV morph): a Hausdorff morph based on improving
the Voronoi morph by reducing the number of extra components in intermediate shapes. We
also describe the Mixed Component-Reduced Voronoi morph (MCRV morph), by combining
our CRV morph with the dilation morph, resulting in intermediate shapes with considerably
less noise and fewer superfluous components.
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Figure 1 From left to right: two input shapes, with the origin of the plane indicated with a cross;
intermediate shapes of the dilation [5], Voronoi [3] and mixed [3] morphs at α = 1/2.

1.1 Preliminaries
Hausdorff distance. For two non-empty sets A and B, the Hausdorff distance is defined as

dH(A, B) := max (sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a))

where d denotes the Euclidean distance. dH(A, B) is a bottleneck metric that can be described
as the largest distance from all points in A and B to their closest point on the other shape.

Morphs. We regard morphs as a function from the interval [0, 1]. The parameter α operating
on this interval can be viewed as time. The function operates on two shapes A and B, and
outputs another shape Cα, where C0 = A and C1 = B. The output shape is referred to as
an intermediate shape.

Assume we are given two shapes A and B in the plane that is scaled so that dH(A, B) = 1.
A morph that outputs Cα is called a Hausdorff morph if it satisfies the Hausdorff property:
dH(A, Cα) = α and dH(B, Cα) = (1 − α), for all α ∈ [0, 1]. For shapes that do not have
a Hausdorff distance of 1, we can easily scale the plane uniformly to achieve a Hausdorff
distance of 1; as the considered morphs are scale-invariant, this does not affect results.

We define a component of a shape S, as a disjoint non-empty subset, such that two
components of S are always positively separated. S is equal to the union of all its components.

Dilation morph. The dilation morph [5] is defined as

Sα(A, B) := (A ⊕ Dα) ∩ (B ⊕ D1−α),

where ⊕ denotes the Minkowski sum defined as {a + b | a ∈ A, b ∈ B}, and Dα is a disc of
radius α. This operation is also called dilation. This morph produces the maximal shape to
support the Hausdorff property. Therefore, any Hausdorff morph is a subset of Sα.

Voronoi morph. The Voronoi morph [3] moves points in the source shape to their closest
point on the target shape by a fraction of α and moves every point in the target shape to
their closest point in the source shape by a fraction of 1 − α. The union of these two sets
results in the intermediate shape at a given α. Formally, it is defined as

Tα(A, B) := {a + α(c(a, B) − a) | a ∈ A} ∪ {b + (1 − α)(c(b, A) − b) | b ∈ B},

where c(p, X) denotes the point on a shape X that is closest to a point p. If a point is
equidistant to multiple points in the other shape, all options are included. To compute
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this morph, the Voronoi diagram V (A) of the vertices, open edges the polygonal region of
A, partitions B into regions; the Voronoi cells of V (A). Slices of B are defined as disjoint
non-empty subsets of B, such that two slices in one region of the partitioning by V (A) are
always positively separated. Note that two slices in adjacent regions may not be positively
separated. Symmetrically, A is partitioned into slices by V (B).

Mixed morph. The mixed morph [3] is defined as

Mα,φ(A, B) := ((Tα(A, B) ⊕ Dφ) ⊖ Dφ) ∩ Sα,

where ⊖ denotes the Minkowski difference, defined as A ⊖ B := (Ac ⊕ B)c, where Ac is the
complement of A. It first dilates Tα by taking the Minkowski sum with a small disc. After
that, it erodes the shape by taking the Minkowski difference with a disc of the same radius,
causing small gaps and holes to close while keeping the rest of the shape intact. To make
sure it is also a Hausdorff morph, the intersection with Sα is taken.

2 Component-Reduced Voronoi Morph

We introduce the Component-Reduced Voronoi morph (CRV morph), which benefits from the
advantages of the Voronoi morph, while reducing the number of components. This morph
identifies which slices converge to extra components in the Voronoi morph, and tries to move
them along with neighboring slices. Two slices of a shape S are neighboring if they are not
positively separated. Every slice in the Voronoi morph has a target. This target is the site of
the Voronoi cell by which the slice is partitioned. This site can be a vertex, edge or polygonal
region of the other shape. Every slice is scaled and translated towards its target during the
morph. In the CRV morph, the target of a slice can be set to the target of a neighboring
slice. In that case, the slice is redirected. When two neighboring slices have the same target
due to redirection, they will always be part of the same component during the morph. We
call the targets of redirected slices alternative targets. Slices cannot always move along with
a neighboring slice; the alternative target has to be valid. An alternative target is valid when
the Hausdorff distance between the slice and target is smaller than dH(A, B), and it satisfies
one of the following conditions: (1) it is the primary target of a neighboring slice that is
part of a larger component, or (2) it is the alternative target of a neighboring slice that is
redirected along with a larger component.

If a slice has a valid alternative target, it will be redirected, making the alternative target
the new target of the slice. When a slice has multiple valid alternative targets, it will be
redirected to the alternative target to which the directed Hausdorff distance is smallest.
Assuming the final targets are given, we formally define our new morph Uα as:

Uα(A, B) := {a + α(c(a, ts) − a) | a ∈ A, ts ∈ B} ∪ {b + (1 − α)(c(b, ts) − b) | b ∈ B, ts ∈ A},

where c(p, ts) is the closest point on the final target ts of the slice in which point p is located.
If a slice has no valid alternative targets, its target remains the closest point on B. Note
that if no slices are redirected, Uα(A, B) = Tα(A, B).

Alternative targets are valid only if their Hausdorff distance is smaller than that of the
two input shapes. This means that redirected targets never determine the Hausdorff distance
between an intermediate shape and the input shapes. Therefore, Uα is a Hausdorff morph:

▶ Theorem 1. Let A and B be two compact sets in the plane with dH(A, B) = 1. Then for
any 0 ≤ α ≤ 1, we have dH(A, Uα) = α and dH(B, Uα) = 1 − α.
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2.1 Mixed Component-Reduced Voronoi morph
We also define the Mixed Component-Reduced Voronoi morph (MCRV morph) Um

α,φ, to reduce
noise on the boundary of intermediate shapes in the CRV morph as

Um
α,φ(A, B) := ((Uα(A, B) ⊕ Dφ) ⊖ Dφ) ∩ Sα,

where ⊖ denotes the Minkowski difference, defined as A ⊖ B := (Ac ⊕ B)c, where Ac is the
complement of A. Dφ denotes a disc of radius φ. This means that Um

α,0 = Uα. To make sure
Um

α,φ is a Hausdorff morph, the intersection with Sα is taken.

2.2 Algorithm
The algorithm to compute the CRV morph uses the algorithm to compute the Voronoi morph
as the first step. To compute Uα we assume A and B are (sets of) solid polygons that may
contain holes. The basic algorithm on these input sets works as follows:
1. Compute Tα at α = 1/2 as described in de Kogel et al. [3]. This results in a set of slices,

with each slice transformed and scaled halfway to their target.
2. Determine which slices belong to which components in the halfway Voronoi morph for

both input shapes separately.
3. For each input shape construct a graph G where each slice is a vertex and two neighboring

slices are connected by an edge. For each slice, determine the closest neighboring
component in G, using any graph searching algorithm.

4. For both shapes A and B, sort all slices separately based on two ascending sort keys.
The primary sort key is the area of the component they belong to and the secondary key
is the shortest-path distance from the slice itself in G to the closest slice in G that is part
of an adjacent component in the initial shape.

5. For each slice s, in order of the previously sorted slices, determine which neighbors in
the original shape are valid alternative targets based on the described criteria. The valid
alternative target that is closest, in terms of the directed Hausdorff distance from slice s

to the target, will be set as the new target. If slice s has no valid alternative targets, the
primary target remains. If slice s is redirected, it is marked a follower of its neighboring
slice l that s is redirected along with. If l is redirected, the target of slice s is set to the
new target of l, if the Hausdorff distance allows for it. If the Hausdorff distance does not
allow s to also be redirected again, the target of s slice is reset to its primary target.

6. Each slice in A is scaled and translated to its target in B. If the target is an interior
component of the other shape, the slice will be stationary throughout the morph. If the
target is a vertex, the slice will be uniformly scaled towards that vertex by a fraction
of α. If the target is an edge, the slice will scale perpendicular to the supporting line of
that edge by a factor of α. Slices in B are scaled towards their targets in A in the same
manner, except that they are scaled by a factor of 1 − α.

7. Combine slices of A and B into one multipolygon.
We sort components from small to large in order to ensure that larger components can move
along with smaller components if that smaller component is redirected to the target of an
even larger component. Within each component, slices are sorted based on the distance
to a neighboring component in terms of slices, to allow slices with no directly neighboring
components to move along with neighboring slices that can be redirected.

Um
α,φ can simply be computed when Uα is constructed by dilating and eroding Uα with a

disc of radius φ, and intersecting the result with Sα.
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The Voronoi morph can construct any intermediate shape in O(n2 log n) time [3]. Our
morph additionally relies on a sorting algorithm and a shortest path algorithm on a graph
with n edges: both can be found in standard books [2]. The all-pairs shortest path in graph
can be computed in O(V 3). We have at most O(n2) slices, resulting from the intersections
between a polygon and the Voronoi diagram of the other polygon. Therefore, an intermediate
shape can be constructed in O(n6) time. In practice such a worst case scenario is very
unlikely to occur. For the shapes used in our experiments (see Section 3), computing one
intermediate shape took approximately five seconds on commodity hardware.

3 Experiments

We compare the Voronoi, CRV, mixed and MCRV morphs experimentally on two data
sets: animal outlines from [1] and country outlines from [4]. The animal dataset contains a
collection of nine outlines of animals, averaging 143 vertices, that all comprise one component.
The country dataset contains 13 country outlines, averaging 1548 vertices and 12 components.
We compute the four morphs for all animal pairs and all country pairs from these sets. The
input shapes are scaled to have the same area and translated to have a common centroid.

For all experiments we record the perimeter, area, total angular change (sum of all
enclosed boundary loops’ angular changes), and the number of components and holes. We
record this for α values starting at zero and increasing in steps of 1/8. For the perimeter
and area we record the ratio between the value and a linear interpolation. The number of
components and holes are discrete and directly recorded at every value of α except for zero
and one.

4 Results

Figures 2 and 6 show visual examples of the four morphing techniques.
The CRV morph can effectively reduce the number of extra components created in the

Voronoi morph. Table 1 shows the average number of components created in the animal
data set during the CRV morph to be more than three times less than that in the Voronoi
morph. In Figure 2 we see that the CRV morph removes all extra components created in the
Voronoi shark-spider morph. The mixed morph can also reduce the number of components,
but as indicated by label 2 in Figure 2, this type of component reduction can still result in
superfluous details that are not present in the CRV morph.

In terms of area, perimeter and total angular change, Figures 3, 4 and 5 indicate that
the CRV and MCRV morphs perform slightly better or similar to their Voronoi and mixed
morphs counterparts. In terms of holes the CRV morph performs worse than the Voronoi
morph, but most of these holes are resolved in the MCRV morph which only has slightly
more holes than the Mixed morph. The number of components and holes are recorded as the
average over all α values except 0 and 1.
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Figure 2 Intermediate shapes at α = 1/2 when morphing between the outlines of a shark and
spider shown in Figure 1. The images show the Voronoi, mixed, CRV and MCRV morphs from left
to right. The labeled ellipses are highlighted parts of the shape in which details differ.

Voronoi Mixed CRV Mixed CRV

Category Mean SD Mean SD Mean SD Mean SD

Components 11.262 4.686 4.210 2.480 3.710 2.263 3.016 2.024
Holes 0.282 0.589 0.337 0.663 1.690 1.787 0.508 0.770

Table 1 Component and hole count distributions for each morphing method for all tested values
of α except 0 and 1. Only the animal data set is included, as these shapes only have one component.
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Figure 3 Normalized average area for the animals and countries data set experiments.
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Figure 4 Normalized average perimeter for the animals and countries data set experiments.
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Figure 5 Average total angular change for the animals and countries data set experiments.

Figure 6 Intermediate shapes for α ∈ {0, 1
4 , 1

2 , 3
4 , 1} when morphing between outlines of Germany

and Italy. The columns show the Voronoi, mixed, CRV and MCRV morphs from left to right.
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Abstract
A polyomino is an edge-connected set of cells on the square lattice. Every row or column of a totally-
concave (TC) polyomino consists of more than one sequence of consecutive cells of the polyomino.
We show that the minimum area (number of cells) of a TC polyomino is 21 cells. We also suggest,
implement, and run an efficient algorithm for counting TC polyominoes. Finally, we prove that the
associated sequence (κ(n)) has a finite growth constant λκ, and prove the lower bound λκ > 2.4474.

1 Introduction

A polyomino of area n is a connected set of n cells on the square lattice Z2, where connec-
tivity is through edges. Two (fixed) polyominoes are considered equivalent if one can be
transformed into the other by a translation.

Counting polyominoes is a long-standing problem in discrete geometry, originating in
statistical physics in the context of percolation processes [8] and popularized in Golomb’s
pioneering book [9] and by M. Gardner’s columns in Scientific American; The sequence A(n),
which lists the number of fixed polyominoes, is currently known up to n = 70 [1].

The growth constant of polyominoes has also attracted much attention in the literature.
Klarner [13] showed that the limit (a.k.a. Klarner’s constant) λ := limn→∞ n

√
A(n) exists.

The convergence of A(n + 1)/A(n) to λ, as n → ∞, was proved only three decades later by
Madras [14]. The best-known lower [4] and upper [5] bounds on λ are 4.0025 and 4.5252,
respectively. By applying numerical methods to the known values of A(n), it is widely
believed that λ ≈ 4.06, and the currently best estimate of λ is 4.0625696 ± 0.0000005 [11].
(Based on the new counts of A(n) till n = 70, a better estimate is 4.06256912(2) [12].)

In a totally-concave (TC) polyomino, each row and column consists of at least two maxi-
mal continuous sequences of cells, as is shown in Figure 1. It is hinted in Ref. [7, §14, p. 369,
problem 14.5.4] that the minimum possible area of a TC polyomino is 21. Let κ(n) be the
number of TC polyominoes of size (area) n. An algorithm for computing κ(n), for a given n,
is also sought as an open problem [Ibid., problem 14.5.5]. Among other results, we settle
the minimality conjecture and suggest an efficient algorithm.

In this paper, we investigate a few problems related to TC polyominoes. We prove that
the minimum possible area of such a polyomino is indeed 21; suggest an efficient algorithm
for counting TC polyominoes, and report the values of κ(n) till n = 35; show that the
seqeunce (κ(n)) has a growth constant λκ; and finally, prove that λκ > 2.4474.
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Symbolic Eatable With marked edges
(a) Area 21 (b) Area 24

Figure 1 TC polyominoes of various areas and flavors. The symbolic representation in (b)
distinguishes between hidden edges (green), inside edges (blue), and outside edges (red).

2 Minimum Area

▶ Theorem 2.1. The minimum area of a TC polyomino is 21.

The proof of this theorem follows a necessity-sufficiency format. Necessity is shown by
deducing upper and lower bounds on the area of TC polyominoes in m × ℓ bounding boxes;
These bounds contradict each other for areas less than 21. Sufficiency is evident by example.

Proof. A lower bound on the area of a TC polyomino within an m × ℓ bounding box is
achieved by partitioning the edges of such a polyomino into hidden, outside, and inside
edges, as shown in Figure 1(b). The top (resp., right/bottom/left) edge of a cell c is hidden
if there is a cell of the polyomino immediately above (resp., to the right of/below/to the
left of) c. An edge is outside if it is not facing any other edge. An inside edge is an edge
facing another edge, but not immediately, that is, with a gap of at least one cell. Consider
a TC polyomino. Denote by n its area, and by h, o, and i the number of hidden, outside,
and inside edges, respectively, of the polyomino. For example, by these definitions, the “U-
pentomino” ( ) has i = 2, o = 10, and h = 8. For the area-24 TC-polyomino depicted in
Figure 1(b), we have i = 24, o = 24, and h = 46. By duplicity of inside and outside edges in
rows and columns, we have that o = 2m+2ℓ and i ≥ 2m+2ℓ. We also have that h ≥ 2n−2
since the polyomino is connected and, hence, it must include at least n−1 cell adjacencies.
Since h + o + i = 4n, we have that n ≥ 2m + 2ℓ − 1.

For an upper bound on n, we may assume without loss of generality that m ≤ ℓ. Then,
a TC polyomino within an m × ℓ bounding box must be missing at least one cell from each
of the ℓ columns, none of which is in the top or bottom row (for guaranteeing concavity of
the columns), as well as at least two further cells, one in the top and one in the bottom row
(for guaranteeing concavity of these rows). Therefore, n ≤ mℓ − ℓ − 2.

Altogether, we have that 2m + 2ℓ − 1 ≤ n ≤ mℓ − ℓ − 2, with m ≤ ℓ. A simple case
analysis shows that the smallest n satisfying these constraints is 21, with m = 5 and ℓ = 6.

Hence, n ≥ 21 is a necessary condition for a TC polyomino. On the other hand, the
existence of a TC polyomino of area 21 is evident by Fig. 1(a). This completes the proof. ◀

This result was verified by our TC-polyomino counting programs (see Section 3). Figure 2
shows representatives of the 152 TC polyominoes of area 21. (None of these polyominoes have
any symmetries, hence, each of the 19 drawn polyominoes has eight distinct orientations.)
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Figure 2 The 19 TC polyominoes of area 21, up to rotation and mirroring.

3 An Efficient Counting Algorithm

3.1 Algorithm
We first implemented a prototype backtracking algorithm for counting TC polyominoes.
The program recursively concatenated concave columns to a growing polyomino. A branch
of this procedure was abandoned when the area of the polyomino grew too large or if it was
no longer possible for it to become connected with the addition of further columns. (This
happened when a component of the polyomino became permanently detached.)

We then designed a much more efficient algorithm, based on Jensen’s algorithm for
counting all polyominoes [10, 11]. In a nutshell, Jensen’s algorithm counts polyominoes
within horizontal bounding strips of height h, where 1 ≤ h ≤ ⌈n/2⌉. The algorithm considers
column by column from left to right, and cell by cell from top to bottom within each
column. At each cell, the algorithm considers either to have it occupied (belonging to the
polyomino) or empty (not belonging). At all stages, the algorithm does not keep in memory
all polyominoes but all possible right boundaries of polyominoes, that is, all combinations
of the last h cells considered. The algorithm maintains a database whose entries have keys
that are the different signatures, where a signature consists of a boundary plus all possible
connections between cells on the boundary by cells found to the left of it. In other words,
the keys reflect all possible splits of boundary cells into connected components, where the
connections are to the left of the boundary. In addition, a signature also includes two bits
that indicate whether or not the polyominoes associated with that entry touch the top and/or
bottom of the strip. The contents of each entry in the database is statistics of all partially-
built polyominoes (“partially” means that polyominoes may still consist of more than one
connected component), that is, the counts of all polyominoes parameterized by area, having
that specific signature. When the currently considered cell is chosen to be occupied, the
counts of polyominoes are updated by adding the numbers of fully-built polyominoes, that
is, polyominoes that consist of exactly one connected component and touch the top and
bottom of the strip.
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Figure 3 Plots of the number of signatures (while counting TC polyominoes), all poyominoes,
and TC polyominoes.

For counting TC polyominoes, we also need to ensure that each column and each row
consists of more than one consecutive sequence of cells. This is simple to achieve for columns:
At the end of processing a column, we discard from the database all entries that correspond
to columns that contain less than two sequences of occupied cells. For rows, we enhance
the signatures by splitting each one into at most 4h subsignatures: For each row, we keep a
number as follows: ‘0’ indicates that the first sequence of occupied cells has not been met
yet; ‘1’ means that we are in the middle of the first sequence; ‘2’ states that we are between
the first and second sequences; and ‘3’ signifies that we have already entered the second
sequence. (Once we reach ‘3,’ we do not need to update this indicator any more.) Then,
we count only polyominoes with signatures whose line indicators are all ‘3.’ Note that the
indicators of the top and bottom rows make the two bits described above redundant.

Jensen’s algorithm is efficient in the sense that it’s the only known algorithm whose run-
ning time, Õ(1.732n) [3], is smaller than the total number of polyominoes, Θ̃(λn). (Recall
that λ ≈ 4.063.) Our modification splits every signatures into at most 4n/2 = 2n sub-
signatures (in practice, into much less than that), thus, the running time of the modified
algorithm is Õ(3.464n), which is still much smaller than the total number of polyominoees.
Figure 3 plots in a semi-logarithmic scale the number of distinct signatures encountered
by the algorithm while computing κ(n)) (in red circles), together with the number of TC
polyominoes (cyan) and the total number of polyominoes (blue), all as functions of n, for
21 ≤ n ≤ 31.

3.2 Results

Our prototype program, implemented in Python, computed in 90 hours (elapsed time) κ(n)
up to n = 26 on a PC with a 64-bit system operating an i5-9400F Intel Core CPU at
2.90GHz with 12GB of RAM.

The modified version of Jensen’s algorithm was implemented in C++ and run on a 12th
generation Intel(R) i9-12900KF with 128GiB of RAM. Using about 41 hours of CPU, the
program computed κ(n) up to n = 35, obtaining the values reported in Table 1 and agreeing
with all values computed by the prototype program.
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Table 1 Counts of TC polyominoes.

n κ(n) n κ(n) n κ(n) n κ(n)
1–20 0 24 52,306 28 119,309,768 32 88,476,873,440
21 152 25 606,636 29 641,447,812 33 435,921,253,072
22 120 26 3,376,528 30 3,403,173,276 34 2,113,011,155,472
23 15,820 27 20,204,672 31 17,634,751,456 35 10,065,872,407,536

Figure 4 The concatenation of two TC polyominoes is always a TC polyomino.

4 Growth Constant

4.1 Existence
▶ Definition 4.1. (lexicographic order) For cells c1, c2, we say that c1 ≺ c2 if c1 lies in a
column which is to the left of the column of c2, or if c1 lies below c2 in the same column.

▶ Definition 4.2. (concatenation) Let P1, P2 be two polyominoes, and let c1 (resp., c2) be
the biggest (resp., smallest) cell of P1 (resp., P2). The concatenation of P1 and P2 is the
placement of P2 relative to P1, such that c2 is found immediately on top of c1.

▶ Theorem 4.3. The limit λκ := lim
n→∞

n
√

κ(n) exists and is finite.

Proof. We follow closely the proof of existence and finiteness of Klarner’s constant λ [13].
First, the sequence κ(n) is supermultiplicative, that is, κ(n)κ(m) ≤ κ(n+m) for all m, n ∈ N.
This is justified by a simple concatenation argument. Indeed, all TC polyominoes of area n

can be concatenated with all TC polyominoes of area m (see, e.g., Figure 4), yielding distinct
TC polyominoes of area n + m. Second, there exists a constant µ > 0 for which κ(n) ≤ µn

for all n ∈ N. For example, µ = λ, the growth constant of all polyominoes. (This follows
immediately from the fact that κ(n) ≤ A(n) ≤ λn.) By a lemma of Fekete (Klarner cites
Ref. [15, p. 852] for similar results), the claim follows. ◀

Remark In fact, it makes more sense (see Section 4.2) to explore ((4κ(n))1/n) instead
of ((κ(n))1/n). Figure 5 shows plots of the known values of (4κ(n))1/n and κ(n)/κ(n − 1).
Surprisingly, the ratio sequence seems empirically to be monotone decreasing (except some
low-order fluctuations), a property rarely found in other families of polyominoes.
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Figure 5 Plots of known values of (4κ(n))1/n and κ(n)/κ(n−1).

Figure 6 A few compositions of a sample pair of polyominoes.

4.2 A Lower Bound on λκ

We now present a computer-assisted proof of a lower bound on λκ.

▶ Definition 4.4. (composition) A composition of two polyominoes is a relative placement
of the two polyominoes, such that they touch (edge to edge), possibly in multiple places,
but do not overlap.

Figure 6 shows a few compositions of a pair of polyominoes P, Q. Note that some
compositions have the property that all cells of P are smaller than all cells of Q (or vice
versa), and some compositions do not. It is easy to observe that a composition of two TC
polyominoes is not always a TC polyomino.

▶ Lemma 4.5. (A simplified version of Theorem 1(a) in Ref. [2, p. 3]) Assume that the
limit µ := limn→∞ n

√
Z(n) exists for a sequence (Z(n)). Let c1 ̸= 0, c2 be some constants.

Then, if c1nc2Z2(n) ≤ Z(2n) ∀n ∈ N, then n
√

c1(2n)c2Z(n) ≤ µ ∀n ∈ N.

▶ Theorem 4.6. λκ > 2.4474.
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Figure 7 The at least four order-preserving compositions of a pair of TC polyominoes.

Proof. We use a composition argument, using the property that the extreme (rightmost
and leftmost) columns of any TC polyomino have at least two cells. This property allows
at least four lexicographic compositions of any pair of TC polyominoes P, Q that yield TC
polyominoes, that is, compositions in which all cells of P are lexicographically smaller than
all cells of Q. It can easily be verified that the minimum number of such compositions is
obtained when both the rightmost column of P and the leftmost column of Q contain exactly
two cells, with the same vertical gap between them. For such pairs of TC polyominoes, we
have the four lexicographic compositions shown in Figure 7.

Consequently, we have that 4(κ(n))2 ≤ κ(2n). Then, Lemma 4.5 implies that any term
of the form (4κ(n))1/n is a lower bound on λκ. Checking the known values of κ(n), we see
that n = 35 provides the best lower bound λκ ≥ (4κ(35))1/35 > 2.4474. ◀
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Abstract
Simplets, constituting elementary units within simplicial complexes (SCs), serve as foundational
elements for the structural analysis of SCs. Previous efforts have focused on the exact count or
approximation of simplet count rather than their frequencies, with the latter being more practical in
large-scale SCs. This paper enables simplet frequency analysis of SCs by introducing the Simplet
Frequency Distribution (SFD) vector. In addition, we present a bound on the sample complexity
required for accurately approximating the SFD vector by any uniform sampling-based algorithm. We
also present a simple algorithm for this purpose and justify the theoretical bounds with experiments
on some random simplicial complexes.

1 Introduction

In a range of disciplines, including biology, geology, and social science, the application of
simplicial complexes is frequently employed to extract essential structural insights. Simplicial
Complexes (SCs) are defined as networks of higher-order that possess the property of
downward closure, which makes them suitable for representing higher-order relationships
within network-like structures and their geometrical aspects [6, 11, 13]. In particular, SCs are
used to study the geometric and combinatorial structure of protein interaction networks [12],
epidemic spreading [17], co-authorship relations [26], analyze email communications [15], and
investigate the functional and structural organization of the brain [18].

Analyzing network behavior using small network building blocks, commonly known
as motifs, is common in numerous fields, including biological [1] and social networks [25].
Graphs are great examples where researchers use small building blocks called graphlets to
understand how networks behave based on local structures [23]. Graphlet analysis has many
applications in biological networks [10, 30], and social networks [2, 3]. By considering simplets
as fundamental elements within simplicial complexes, analogous to graphlets in the context
of SCs, we can examine the specific patterns formed by the simplices associated with different
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sets of nodes [22]. This approach offers a straightforward way of analyzing complex networks’
structural characteristics and their constituent parts.

Approximating Graphlet Count and Distribution. Numerous investigations have delved
into the precise enumeration of graphlet types or approximating their frequencies. Several
studies, like the ESU and RAGE algorithms, count the precise number of graphlets [29, 20].
Meanwhile, various algorithms like GRAFT, CC have employed sampling techniques to
estimate the frequency of graphlets [5, 7, 8, 9]. For instance, Bressan in [7] introduced a
random walk based method that preprocesses k-vertex graphlets, and gives a random graphlet
in the time complexity of kO(k) · log ∆, where ∆ is the maximum degree in the given graph.

Approximating Simplet Count and Distribution. Preti et al. introduced the concept of
simplets, and the FRESCO algorithm that indirectly estimates the quantity of each simplet
by utilizing a proxy metric referred to as support [21, 22]. B-Exact precisely enumerates up
to 4-node configurations through combinatorial techniques [4]. Importantly, each simplet
can correspond to zero, one, or more than one configuration. Kim et al. presented SC3,
a sampling-based algorithm for approximating simplet count, that utilizes color coding
techniques [14]. Thus far, a limited number of dedicated algorithms designed for counting
simplets either precisely or approximately. The concept of simplets is relatively novel, and
numerous opportunities remain untapped for their application in various contexts.

Contribution. Calculating the exact quantity of each graphlet type or simplet type is
frequently prohibitively expensive, and for numerous practical purposes, obtaining an esti-
mated count of various graphlet types and simplet types or approximating their frequency
distribution is usually adequate. This paper studies the concept of the Simplet Frequency
Distribution (SFD) for the first time (to the best of the authors’ knowledge), which can be
more practical in analyze of large-scale SCs. Alongside this new concept, we present an
algorithm to approximating the SFD vector based on uniform sampling of simplets.

More importantly, we present an upper-bound on the sample complexity (number of
samples needed) of any approximation algorithm based on a uniform sampling method.
By doing this, we aim to enhance our comprehension and analysis of simplicial complexes,
mapping them to vector spaces and using this vector for machine learning applications such
as classification. In overview, we present the following contributions.

Defining the concept of the Simplet Frequency Distribution (SFD) vector
Studying an upper bound on the number of samples we need for every sampling based
algorithm for approximating the SFD vector
Proposing an algorithm for approximating the SFD vector by uniform sampling of simplets

2 Preliminaries

Within this section, we lay out the foundational concepts employed in this paper.

Simplex. A n-simplex is the convex hull of n + 1 distinct points in n-dimensional space. A
face of an n-simplex σ is the convex hull of any non-empty subset S of its vertices.

Simplicial Complex. A simplicial complex K is a set of simplices that is closed under taking
faces, and the non-empty intersection of any two simplices σ, τ ∈ K is a face of both σ, τ .
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Figure 1 The set of all 18 simplet types with at least two and at most four vertices.
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Simplicial complexes provide a combinatorial and topological framework for studying the
structure of spaces through simplices, capturing both geometric and connectivity information.

Simplet. Simplets are small induced connected sub-complexes of a massive complex that
appear at any frequency. A complex H is an induced sub-complex of K if and only if, for any
simplex S in K whose vertices are a subset of V (H), S should also be in H. So, every simplet
can be identified by its vertices, typically regarded as being at least two. A simplet set is a
set of simplets of a simplicial complex. Simplet types are isomorphic classes of simplets. We
denote SK(i) as a set of all simplets of type i in K, where 1 ≤ i ≤ Nm, and Nm is the number
of simplet types with at most m vertices. Also, we denote Sm

K as the set of all simplets in K
with at most m vertices. We assume that m is a constant small number.

Simplet Frequency Distribution. The SFD vector of complex K characterizes the relative
frequencies of various simplets in K. By definition, |SK(i)| is the number of simplets of type
i in K, where i ∈ {1, . . . , Nm}. The frequency, denoted by ϕK(i), is obtained by dividing
|SK(i)| by

∑Nm

j=1 |SK(j)|. The vector (ϕK(1), . . . , ϕK(Nm)) is called the SFD vector of the K.
In Figure 2, we show an SFD vector for two sample SCs.

3 Approximating the SFD Vector

In this section, we focus on showing that if we have a method for sampling simplets uniformly
from an SC, we can have an (ϵ, δ)-approximation of the SFD vector. After that, we study
an algorithm for simple uniform sampling that is better than a trivial brute-force sampling
method. Consider a collection of independent samples Xk = X1, . . . , Xk drawn from a
distribution ϕ over a domain D. Here, ϕ(A) signifies the probability of selecting an element
from the set A ⊆ D. The empirical estimation of ϕ(A) based on the samples Xk is:

ϕ̂X(A) = 1
k

k∑

j=1
1A(Xj),

In this equation, 1A(Xj) is an indicator function that equals 1 when Xj belongs to A and
equals 0 otherwise. Additionally, let R be a family of subsets of D.

(ϵ, δ)-approximation. For any given ϵ, δ ∈ (0, 1), we say X ⊆ D is an (ϵ, δ)-approximation
of (R, ϕ), if with a probability of at least (1 − δ), it satisfies supA∈R|ϕ(A) − ϕ̂X(A)| ≤ ϵ.

3.1 Sample Complexity of Approximating the SFD Vector
We utilize the concept of Vapnik-Chervonenkis dimension (VC dimension), introduced in [27].
In short, for a domain D and a collection R of subsets of D, the VC dimension V C(D, R),
represents the maximum size of a set X ⊆ D that can be shattered by R, which means
{r ∩ X|∀r ∈ R} = 2|X|. We use VC dimension to determine the sample complexity for
approximating the SFD vector through simplet sampling models. Theorem 3.1 establishes
the VC dimension of the collection of simplet sets.

▶ Theorem 3.1 (VC Dimension of Simplets). Let R = {Si | 1 ≤ i ≤ Nm} be a family of all
simplet sets where Nm is the number of simplet types with at most m vertices, and D = Sm

K .
Then, we have V C(D, R) = 1.
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Figure 2 The SFD vector and the number of at most 4-vertices simplets for two sample SCs.
The simplet types in the table refer to the types in Figure 1.

Proof. We show that a set X with |X| > 1 can not be shattered with (D, R). Let X be
a set of simplets shattered with (D, R), and assume that |X| > 1. Let s1 and s2 be two
distinct elements of X. There are two possibilities. If elements s1 and s2 belong to the same
simplet type, then, set {s1} can not be shattered because there is no set Si, including only s1.
Otherwise, elements s1 and s2 belong to different simplet types, but then {s1, s2} can not be
shattered because no set Si contains both. Clearly every singleton set can be shattered by
one of the Sis, hence V C(D, R) = 1. ◀

The subsequent theorem from [24] illustrates the relationship between the upper bound
on the sample complexity of sampling-based (ϵ, δ)-approximations and VC dimension.

▶ Theorem 3.2. Let D be a domain and R be a family of subsets of D, with V C(D, R) ≤ d

and ϕ be a distribution on D. For every ϵ, δ ∈ (0, 1), every set X of independent samples
drawn from D using ϕ that satisfies

|X| ≥ c

ϵ2

(
d + ln 1

δ

)
,

is an (ϵ, δ)-approximation of (R, ϕ) for some positive constant c.

Combining Theorem 3.1 and Theorem 3.2 we conclude our main result.

▶ Proposition 3.3. Let X be a set of at least c
ϵ2 (1 + ln 1

δ ) simplets sampled uniformly from
simplicial complex K. Then, X obtains an (ϵ, δ)-approximation on the SFD vector of K.

Proposition 3.3 shows that we can approximate the SFD vector using sampling-based
algorithms, and the sample complexity of these approximations are independent of the
simplicial complex size. This property suggests the usage of approximation algorithms for
various simplicial complex sizes with the same sample complexity.
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3.2 Simplet Uniform Sampling Algorithm
In this section, we propose a uniform sampling algorithm for simplets in a connected simplicial
complex K that is better than a trivial brute-force method. The algorithm we present is a
Monte-Carlo Markov-Chain algorithm [28], that samples sufficiently many simplets uniformly
at random. We assume that K is connected with at least three vertices, and m ≥ 3.

For the sampling part, we perform a random walk on a directed graph Pm
K whose vertex

set (states) is a set of all simplets in complex K with at most m vertices. Out-neighbors
of every state s can be created by adding one vertex to s, removing one vertex from s, or
replacing one vertex in s with another vertex out of s.

The transition probability matrix T for the random walk is such that every cell T (i, j)
defines the transition probability from state i to j. If i and j are not neighbors, we set
T (i, j) = 0. Otherwise, we set T (i, j) = min( 1

d(i) , 1
d(j) ) where d(i) specifies the number of

out-neighbors of state i. Also, for every i, if the sum of transitions from i is not equal to
1, we allocate the remaining probability to a self-loop for i. Observe that since K is finite,
Pm

K is finite and since K is connected, the random walk is irreducible. Indeed, since K is
connected, there is a vertex u in K that is connected to at least two other vertices v, w. So
the three simplets on {u, v, w}, on {u, v}, and on {u, w} form a triangle in Pm

K with positive
probabilities on the edges, this means the random walk is aperiodic. Also T is symmetric,
meaning T = T T . This ensures that the random walk on Pm

K converges to the uniform
stationary distribution ( 1

|Sm
K | , . . . , 1

|Sm
K | ). So, using this random walk on Pm

K , we can select a
simplet from the input complex K with uniform distribution.

3.3 The SFD Vector Approximation Algorithm
Now, we propose the (ϵ, δ)-approximation algorithm on the SFD vector of K. For input
ϵ, δ ∈ (0, 1) and simplicial complex K, first the algorithm calculates the number ℓ of samples
needed, according to Proposition 3.3. After that it executes ℓ times the sampling algorithm,
presented above, to find the set X of ℓ simplets that are chosen uniformly at random. Based
on X, it computes ϕ̂X

K (i), that is a (ϵ, δ)-approximation for ϕK(i), for 1 ≤ i ≤ Nm. The
vector (ϕ̂X

K (1), . . . , ϕ̂X
K (Nm)) is therefore a (ϵ, δ)-approximation for the SFD vector of K.

Time Complexity of the SFD vector Approximation Algorithm The time complexity of the
(ϵ, δ)-approximation algorithm, consists of two components: the number of samples and the
time complexity for sample identification. Having established that O( 1

ϵ2 · (1 + ln 1
δ )) samples

are sufficient for (ϵ, δ)-approximation, our focus shifts to analyzing the time complexity of
the MCMC sampling algorithm. The mixing time tG

mix in a random walk on graph G is the
number of steps needed to be close to its stationary state with high probability. Lemma 3.4
limits the maximum degree of Pm

K , and then Lemma 3.5 shows an upper bound on t
Pm

K
mix in

terms of the number of vertices n, the maximum degree ∆ in K, and the diameter diam(K),
which is the length of maximum shortest path between any pair of vertices in K.

▶ Lemma 3.4. The maximum degree of Pm
K satisfies ∆(Pm

K ) ∈ O(m2 · ∆).

Proof. We can create neighbors of every state in Pm
K by adding a new vertex, removing a

vertex, or replacing two vertices. The number of neighbors by adding a new vertex is at
most m · ∆, by removing a vertex is at most m, and by replacing two vertices is at most
m · (m − 1) · ∆. Therefore, the maximum degree of every state in Pm

K is in O(m2 · ∆). ◀

▶ Lemma 3.5. The mixing time of the markov chain on Pm
K is in O(log(n) · ∆ · diam(K)2).
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Proof. Theorems (12.4) and (13.26) in [16] imply that the mixing time tG
mix of a random walk

on graph G with n vertices is in O(log(n) ·∆(G) ·diam(G)2). For Pm
K we can reach from every

state i to every other state j with diam(K) + m steps as follows: Assume v ∈ V (i), u ∈ V (j)
and assume a shortest path from v to u in K. Starting from i, in every step, we replace
one vertex from the current state with the unused closest vertex to v in the shortest path
from v to u, until we reach u. After that we replace vertices that are not in j with vertices
in j, starting from neighbors of u. We make sure that after each step the simplet remains
connected. So, diam(Pm

K ) = diam(K) + m and therefore in the markov chain Pm
K we have

t
Pm

K
mix ∈ O(log(n(Pm

K )) · ∆(Pm
K ) · diam(Pm

K )2) ∈ O(log(n) · ∆ · diam(K)2).

◀

▶ Corollary 3.6 (Time Complexity of (ϵ, δ)-approximation of SFD vector). Let K be a simplicial
complex with the number of vertices n, maximum degree ∆ and diameter diam(K). The time
complexity of (ϵ, δ)-approximation of SFD vector of K is O( 1

ϵ2 ·(1+ln 1
δ )·log(n)·∆·diam(K)2).

In practice, for a large sparse simplicial complex K, since ∆ and diam(K) are bounded, the
above bound is sublinear in the size of K (i.e. the number of vertices or K).

Implementation and Experiments. We implement an algorithm for counting the exact
number of simplets of different types and another algorithm for approximating the frequencies
based on uniform simplet sampling, with their source code accessible on GitHub [19].
This experimental outcome demonstrates that the confidence in the (ϵ, δ)-approximation is
unrelated to the size of the input complex.

4 Conclusion

This paper introduced the Simplet Frequency Distribution (SFD) vector and a method for
approximating it with simplet sampling algorithms. Also, we studied the sample complexity of
approximating the SFD vector for SCs and showed that the obtained bounds are independent
of SC size. We also showed that we can approximate the SFD vector with a specific error
and confidence, and the time complexity depends only on the time complexity of sampling
algorithm for finding a sample, that is sublinear in the algorithm we presented. It would be
beneficial to have such algorithms with time complexity that is independent of the SC size.

Combining these approaches with filtrations of simplicial complexes and exploring them
within alpha complexes would be interesting. Additionally, defining the vertex-specific SFD
vectors for each vertex in the complex could offer valuable insights into their potential to
convey more information about the global structure of the complex.
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Coloring problems on arrangements of pseudolines∗
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Abstract
Arrangements of pseudolines are a widely studied generalization of line arrangements. They are
defined as a finite family of infinite curves in the Euclidean plane, any two of which intersect at exactly
one point. One can state various related coloring problems depending on the number n of pseudolines.
In this article, we show that n colors are sufficient for coloring the crossings avoiding twice the same
color on the boundary of any cell, or, alternatively, avoiding twice the same color along any pseudoline.
We also study the problem of coloring the pseudolines avoiding monochromatic crossings.

Related Version arXiv:2402.12564

1 Introduction

An arrangement of pseudolines or pseudoline arrangement is a finite family of simple
continuous curves f1, · · · , fn : R → R2 in the Euclidean plane with

lim
t→∞

∥fi(t)∥ = lim
t→−∞

∥fi(t)∥ = ∞,

and the property that each pair fi, fj , i ̸= j crosses in exactly one point. A pseudoline
arrangement is simple, if at most two pseudolines cross in a single point, see Figure 1a and
Figure 1b for examples of a non-simple and a simple arrangement of 6 pseudolines.

(a) (b) (c)

Figure 1 A non-simple (a) and a simple (b) arrangement together with a corresponding tiling (c).

Pseudoline arrangements are widely studied objects. They were first described in 1926 by
Levi [18] and were further studied by Ringel [19] and Grünbaum [13]. Every line arrangement
is also a pseudoline arrangement. On the other hand, there exist arrangements of at
least n ≥ 8 pseudolines that cannot be „strechted“, i.e. they are not isomorphic to any line
arrangement, see [19] and [12]. But pseudoline arrangements are not only a generalization of
line arrangements: Isomorphism classes of simple arrangements are in correspondence with a
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Special thanks to Rimma Hämäläinen for the stimulating discussions on this topic.
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rich variety of other objects, such as rhombic tilings of 2-dimensional zonotopes (indicated in
Figure 1c), classes of reduced words of permutations and oriented matroids of rank 3. For a
general introduction to pseudoline arrangements we refer to [8], [10] and [2, ch. 6].

1.1 Related work
In 2006, Felsner, Hurtado, Noy and Streinu [9] studied the arrangement graph GA of a
pseudoline arrangement A, which consists of the crossings in A as vertices and its edges are
formed by the arcs between them. They give a short argument that GA can be colored using
three colors if A is simple. As GA is planar, it is clearly 4-colorable, including for non-simple
arrangements. In [5] one can find an infinite family of line arrangements that require 4 colors.

In 2013, Bose et al. [3] introduced further coloring problems on line arrangements. An
arrangement decomposes the Euclidean plane into cells: The example in Figure 1a consists
of 7 bounded cells and 12 unbounded cells. One of the most remarkable results in [3] states
that coloring the lines of a simple arrangement of n lines avoiding cells whose bounding lines
have all the same color requires at most O(

√
n) colors. This was improved to O(

√
n/ log n)

by Ackerman, Pach, Pinchasi, Radoičić and Tóth [1], extending it also to non-simple line
arrangements. Finding line arrangements that require many colors in such a coloring seems to
be a difficult task; in [3] they provide a construction that requires Ω (log /n log log n) colors.

1.2 Results
In [3] and [1], the language of hypergraph coloring serves as a common formalization of the
different coloring concepts and allows for the use of results from this field. If H = (V, E) is
a hypergraph, a vertex coloring of H is a coloring of the vertices avoiding monochromatic
edges, i.e. hyperedges whose contained vertices are assigned all the same color, while an edge
coloring of H is a coloring of the hyperedges with no vertex being incident to two edges of the
same color. The (vertex) chromatic number χ(H) is the minimal number of colors of a vertex
coloring, while the edge chromatic number χ′(H) is the minimal number of colors of an edge
coloring. Note that vertex coloring is not equivalent to edge coloring of the hypergraph dual.

Our results can all be stated in terms of two hypergraphs: The vertices of Hcell-vertex(A)
are the (bounded and unbounded) cells of A, and each crossing c defines a hyperedge consisting
of the cells that contain c on their boundary. At the same time, the hypergraph Hline-vertex(A)
is defined on the set of n pseudolines as vertices and each crossing in A defines a hyperedge
consisting of the pseudolines involved in c. Section 2 is devoted to problems in which the
crossings are colored. We show χ′(Hcell-vertex) ≤ n for every pseudoline arrangement:

▶ Theorem 1.1. Let A be an arrangement of n pseudolines. The crossings of A can be
colored using n colors so that no color appears twice on the boundary of any cell.

The abovementioned results in [3] and [1] are bounds on the chromatic number of a
hypergraph Hline-cell restricted to the case of line arrangements. However, none of the coloring
problems that are discussed in [3] relates lines with crossings. This is done in the following
two theorems, the first one of which shows χ′(Hline-vertex) ≤ n:

▶ Theorem 1.2. Let A be an arrangement of n pseudolines. The crossings of A can be
colored using n colors so that no color appears twice along any pseudoline.

Figure 2 shows an example of a coloring as guaranteed in Theorem 1.1 and in Theorem 1.2.
In Section 3, we study the number of colors required to color the pseudolines avoiding
monochromatic crossings. In addition to several minor results, we prove:
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Figure 2 Coloring that fulfills the statements of both Theorem 1.1 and Theorem 1.2.

▶ Theorem 1.3. Let A be an arrangement of n pseudolines. The pseudolines of A can be
colored using O(

√
n) colors avoiding monochromatic crossings of degree at least 4.

Here, the degree of a crossing is the number of pseudolines that intersect in said crossing.

2 Coloring crossings

In this section we sketch the proofs of Theorem 1.1 and Theorem 1.2. For complete proofs
we refer to the full version.

2.1 Avoiding twice the same color on the boundary of any cell
A pseudoline arrangement can always be drawn in a way in which the pseudolines are
x-monotone curves and no two crossings lie on a vertical line, see Figure 3a. This is also
known as a wiring diagram, see [10]. We call this a monotone drawing and aim for coloring
the crossings greedily from left to right. For any crossing c, a conflict ancestor is a crossing c′

that lies left of c and both c and c′ are on the boundary of a common cell. Figure 3a shows
an example: The red crossings are conflict ancestors of c.

c

(a)

c
F

(b)

c

F
t

c′

(c)

Figure 3 (a): Example for conflict ancestors; (b), (c): Case distinction for bounding their number.

Fix some crossing c in A. Consider the arrangement A′ obtained from A by dropping
all pseudolines that contain c. In A′ there is a cell F whose area contains the point c. All
conflict ancestors of c lie on the boundary of F . By distinguishing the cases in which F is an
unbounded or a bounded cell one can obtain that each crossing has at most n − 1 conflict
ancestors, see Figure 3b and Figure 3c and the proof in the full version. Theorem 1.1 now
follows: Color the crossings from left to right. Using n colors, we can always avoid the colors
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F

Figure 4 Construction that shows that Theorem 1.1 is tight.

1

2

3

4

5

2

1

5

4

3

Figure 5 Coloring simple arrangements is equivalent to edge-coloring of Kn.

that were already assigned to conflict ancestors. It is easy to see that Theorem 1.1 is tight:
There are arbitrarily large arrangements as in Figure 4 in which a cell F is incident to all
pseudolines.

2.2 Avoiding twice the same color along any pseudoline
In view of Theorem 1.2, we now focus on coloring the crossings of a pseudoline arrangement A
avoiding twice the same color along any pseudoline. If A is simple, this is equivalent to
edge-coloring of the complete graph Kn (see Figure 5) and n colors are sufficient. We deduce
the general case from the following recent breakthrough result by Kang et al. [15], which
solved a longstanding conjecture by Erdős, Faber and Lovász [7].

▶ Theorem 2.1 (D. Y. Kang, T. Kelly, D. Kühn, A. Methuku & D. Osthus, 2021).
For every simple hypergraph H with n vertices, χ′(H) ≤ n.

Here, a hypergraph H = (V, E) is simple if all hyperedges have cardinality at least 2 and
for all E1, E2 ∈ E , E1 ̸= E2 it holds that |E1 ∩ E2| ≤ 1.

Proof of Theorem 1.2. The statement is equivalent to the existence of an edge-coloring
of Hline-vertex using n colors. Hline-vertex is simple, because there can be at most one pseudoline
passing through any pair of crossings, otherwise this would mean a pair of pseudolines crossing
twice. Then the statement follows from Theorem 2.1. ◀

It would be nice to have a bound on the required number of colors that also takes
into account how far the arrangement is away from being a simple arrangement. For this
purpose, we introduce mx(A), which is defined as the maximal number of crossings along
any pseudoline in A. For simple arrangements we have mx(A) = n − 1. Excluding trivial
arrangements where all pseudolines cross in a single point (mx(A) = 1), it was shown
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Figure 6 Minimal coloring using 7 colors of an arrangement with mx = 4.

recently in [6] that the number of pseudolines is linearly upper bounded by mx(A), in
particular n ≤ 845 · mx(A) for large values of n. Therefore, mx(A) can be interpreted as a
measure of the size of an arrangement alternatively to the number of pseudolines n.

▶ Conjecture 1. There is a constant c so that the crossings of every pseudoline arrangement A
can be colored using mx(A) + c colors so that no color appears twice along any pseudoline.

Figure 6 shows an arrangement A with mx(A) = 4 that requires 7 colors. We were unable
to find any arrangement where the gap between these numbers is larger than 3. The following
proposition is a consequence of a result about hypergraph coloring by Kahn [14, 16]. It shows
that Conjecture 1 holds at least asymptotically and under a certain restriction.

▶ Proposition 1. For every k, ε > 0, there exists an mx0 ∈ N so that the following
holds: If a pseudoline arrangement A only contains crossings of degree at most k and
fulfills mx(A) ≥ mx0, then its crossings can be colored using (1 + ε) · mx(A) colors so that
no color appears twice along any pseudoline.

3 Coloring pseudolines

Again, complete proofs for this section can be found in the full version of this article. A
pseudoline coloring of an arrangement A is defined as a coloring of the pseudolines in A
such that there are no monochromatic crossings, i.e. crossings of pseudolines of a single color
class. We let χpl(A) denote the minimal number of colors in a pseudoline coloring of A.

3.1 Pseudoline colorings and ordinary points
The study of pseudoline colorings is closely related to the study of ordinary points. An ordinary
point is defined as a crossing of exactly two pseudolines, also known as simple crossing.
Every non-trivial pseudoline arrangement contains at least ⌈6n/13⌉ ordinary points [17].
Two pseudolines that cross each other in an ordinary point must be assigned different colors.
Hence, for simple arrangements A we have χpl(A) = n. In the following we want to take a
closer look at the relationship between χpl(A) and the structure of the ordinary points in
a pseudoline arrangement. For this purpose, we define the ordinary graph Go(A) that has
the n pseudolines of A as its vertices and two of them share an edge if and only if they cross
each other in an ordinary point. Clearly, χpl(A) ≥ χ(Go(A)). Let σk(n) denote the maximal
number of ordinary points that an arrangement of n pseudolines A with χpl(A) ≤ k can
have. Turán’s theorem, applied on Go(A), gives us close bounds on σk(n):
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▶ Proposition 2. We have σk(n) ∈ Θ(n2). More precisely, let tk(n) denote the Turán
number, i.e. the maximum number of edges that a graph on n vertices without containing
a (k + 1)-clique can have. Then we have tk(n) − n ≤ σk(n) ≤ tk(n).

We would like to know how much χpl(A) and χ(Go(A)) can differ. We observe:
▶ Proposition 3. There are arbitrarily large arrangements with χpl(A) = 2 · χ(Go(A)).

It is unknown to us whether the factor of 2 in Proposition 3 can be further improved.
When it comes to the complexity of computing χpl(A) we have the following result:

▶ Proposition 4. Given an arrangement of pseudolines A, it is NP-hard to compute χpl(A).

3.2 Avoiding monochromatic crossings of high degrees
Even though χpl(A) and χ(Go(A)) can differ by a multiplicative factor, as stated in Proposi-
tion 3, for most arrangements, χpl(A) does not seem to be far away from χ(Go(A)). This is
why our focus lies now on a variant of pseudoline colorings: Instead of avoiding monochro-
matic crossings of any degree, including ordinary points, we only forbid crossings of certain
degrees to be monochromatic. Lemma 3.1 can be proven using the Lovász Local Lemma.

▶ Lemma 3.1. Let l, r ∈ N and let A be an arrangement of n pseudolines. Then, using
(

4(l + r)
l − 1 n

) 1
l−1

∈ O(n 1
l−1 )

colors, A can be colored avoiding monochromatic crossings of degree within {l, l+1, · · · , l+r}.

Theorem 1.3 follows from Lemma 3.1 by first coloring the crossings of degree at most
√

n.
If we only want to avoid monochromatic crossings of a single degree, then we can obtain a
stronger result by applying a theorem by Frieze and Mubayi [11].
▶ Proposition 5. Let A be an arrangement of n pseudolines. Fix some l ≥ 3. Then, the
pseudolines in A can be colored using

c ·
(

mx(A)
log mx(A)

) 1
l−1

∈ O
((

n

log n

) 1
l−1
)

colors avoiding monochromatic crossings of degree exactly l, where c only depends on l.

4 Conclusion and Future Work

We consider Theorem 1.1 as our main result. When coloring the crossings avoiding twice the
same color along any pseudoline, Theorem 1.2 is a direct application of the recently proven
Erdős-Faber-Lovász conjecture. However, for the specific hypergraphs induced by pseudoline
arrangements, one could hope for a simple deterministic coloring procedure, like the one
proposed in [4] that requires ⌈(3/2)n − 2⌉ colors.

We mentioned Conjecture 1 as an open problem. One may also ask whether for sufficiently
large arrangements there always exists a coloring using n colors that satisfies the conditions
of Theorem 1.1 and Theorem 1.2 simultaneously. When it comes to pseudoline colorings,
we asked whether χpl(A) and χ(Go(A)) can differ by a factor larger than 2. Finally, in
view of Lemma 3.1, Theorem 1.3 and Proposition 5, we expect it to be possible to color the
pseudolines of every arrangement using O(n 1

l−1 ) colors avoiding monochromatic crossings of
degree at least l.



S. Roch 7:7

References
1 Eyal Ackerman, János Pach, Rom Pinchasi, Radoš Radoičić, and Géza Tóth. A note

on coloring line arrangements. Electron. J. Combin., 21(2):Article Number 2.23, 2014.
doi:10.37236/2660.

2 Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter Ziegler.
Oriented matroids, volume 46 of Encycl. Math. Appl. Cambridge University Press, 2nd
edition, 1999. doi:10.1017/CBO9780511586507.

3 Prosenjit Bose, Jean Cardinal, Sébastien Collette, Ferran Hurtado, Matias Korman, Stefan
Langerman, and Perouz Taslakian. Coloring and guarding arrangements. Discrete Math.
Theor. Comput. Sci., 15(3):139–154, 2013. URL: https://dmtcs.episciences.org/2072/
pdf.

4 W. I. Chang and E. L. Lawler. Edge coloring of hypergraphs and a conjecture of Erdős,
Faber, Lovász. Combinatorica, 8(3):293–295, 1988. doi:10.1007/BF02126801.

5 Man-Kwun Chiu, Stefan Felsner, Manfred Scheucher, Felix Schröder, Raphael Steiner, and
Birgit Vogtenhuber. Coloring circle arrangements: New 4-chromatic planar graphs. Eur. J.
Comb., 2023. doi:10.1016/j.ejc.2023.103839.

6 Adrian Dumitrescu. The Dirac–Goodman–Pollack conjecture. Discrete Comput. Geom.,
2023. doi:10.1007/s00454-023-00487-z.

7 Paul Erdős. On the combinatorial problems which I would most like to see solved. Combi-
natorica, 1:25–42, 1981. doi:10.1007/BF02579174.

8 Stefan Felsner and Jacob E. Goodman. Pseudoline arrangements. In Csaba D. Tóth,
Jacob E. Goodman, and Joseph O’Rourke, editors, Handbook of discrete and computational
geometry, Discrete Math. Appl., chapter 5. CRC Press, Boca Raton, FL, 3rd revised and
updated edition, 2017.

9 Stefan Felsner, Ferran Hurtado, Marc Noy, and Ileana Streinu. Hamiltonicity and colorings
of arrangement graphs. Discrete Appl. Math., 154(17):2470–2483, 2006. doi:10.1016/j.
dam.2006.04.006.

10 Stefan Felsner and Helmut Weil. Sweeps, arrangements and signotopes. Discrete Appl.
Math., 109(1-2):67–94, 2001. doi:10.1016/S0166-218X(00)00232-8.

11 Alan Frieze and Dhruv Mubayi. Coloring simple hypergraphs. J. Comb. Theory, Series B,
103(6):767–794, 2013. doi:10.1016/j.jctb.2013.09.003.

12 Jacob E. Goodman and Richard Pollack. Proof of Grünbaum’s conjecture on the stretcha-
bility of certain arrangements of pseudolines. J. Comb. Theory, Ser. A, 29:385–390, 1980.
doi:10.1016/0097-3165(80)90038-2.

13 Branko Grünbaum. Arrangements and spreads, volume 10 of Reg. Conf. Ser. Math. Amer.
Math. Soc., Providence, RI, 1972.

14 Jeff Kahn. Asymptotically good list-colorings. J. Comb. Theory, Ser. A, 73(1):1–59, 1996.
doi:10.1006/jcta.1996.0001.

15 Dong Kang, Tom Kelly, Daniela Kühn, Abhishek Methuku, and Deryk Osthus. A proof of
the Erdős-Faber-Lovász conjecture. Ann. Math. (2), 198(2):537–618, 2023. doi:10.4007/
annals.2023.198.2.2.

16 Dong Yeap Kang, Tom Kelly, Daniela Kühn, Abhishek Methuku, and Deryk Osthus. Graph
and hypergraph colouring via nibble methods: A survey, 2021. arXiv:2106.13733.

17 Jonathan Lenchner. Sylvester-Gallai Results and Other Contributions to Combinatorial and
Computational Geometry. PhD thesis, Polytechnic University, 2008.

18 Friedrich Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Berichte
Leipzig 78, 256-267, 1926.

19 Gerhard Ringel. Über Geraden in allgemeiner Lage. Elemente der Mathematik, 12:75–82,
1957. doi:10.5169/seals-19211.

EuroCG’24



Faces in Rectilinear Drawings of Complete Graphs∗

Martin Balko1, Anna Brötzner2, Fabian Klute3, and Josef Tkadlec4

1 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Czech Republic
balko@kam.mff.cuni.cz

2 Faculty of Technology and Society, Malmö University, Sweden
anna.brotzner@mau.se

3 Departament de Matemàtiques, Universitat Politècnica de Catalunya,
Barcelona, Spain
fabian.klute@upc.edu

4 Computer Science Institute, Faculty of Mathematics and Physics, Charles
University, Czech Republic
josef.tkadlec@iuuk.mff.cuni.cz

Abstract
We study extremal problems about faces in convex rectilinear drawings of Kn, that is, drawings
where vertices are represented by points in the plane in convex position and edges by line segments
between the points representing the end-vertices. We show that if a convex rectilinear drawing of Kn

does not contain a common interior point of at least three edges, then there is always a face forming
a convex 5-gon while there are such drawings without any face forming a convex k-gon with k ≥ 6.

A convex rectilinear drawing of Kn is regular if its vertices correspond to vertices of a regular
convex n-gon. We characterize positive integers n for which regular drawings of Kn contain a face
forming a convex 5-gon.

To our knowledge, this type of problems has not been considered in the literature before and so
we also pose several new natural open problems.

1 Introduction

Let G be a graph with no loops nor multiple edges. In a rectilinear drawing of G the vertices
are represented by distinct points in the plane and each edge corresponds to a line segment
connecting the images of its end-vertices. We consider only drawings where no three points
representing vertices lie on a common line. As usual, we identify the vertices and their
images, as well as the edges and the line segments representing them.

A crossing in a rectilinear drawing D of G is a common interior point of at least two
edges of D where they properly cross. A heavy crossing in D is a common interior point of
at least three edges of D where they properly cross. We say that D is generic if there are no
heavy crossings in D. That is, crossings in a generic drawing D are the points where exactly
two edges of D cross.

We focus on rectilinear drawings of complete graphs Kn on n vertices. We say that
a rectilinear drawing D of a graph Kn is convex if the points representing the vertices of
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Kn are in convex position. We say that a convex drawing D of Kn is regular if the points
representing the vertices of Kn form a regular n-gon; see Figure 1 for regular drawings of K8
and K12.

(a) (b)

Figure 1 Regular drawings of K8 (part (a)) and K12 (part (b)). Observe that none of these
drawings contains a 5-face.

A face in a rectilinear drawing D of Kn is a non-empty connected component of R2 \D.
Note that exactly one face of D is unbounded and that every bounded face of D is a convex
polygon. Thus, we can define the size of a bounded face F of D to be the number of vertices
of the polygon that forms F . If the size of F equals k, then we call F a k-face of D.

In this paper, we study extremal problems about the bounded faces of a given size in
convex drawings of Kn. To our knowledge, there has been no systematic study of this topic
despite the fact that it offers an abundance of natural and interesting problems. For example,
what is the largest face we can always find in a convex drawing of Kn for large n? What if
we restrict ourselves to generic convex drawings of Kn? Or to regular drawings of Kn? In
this paper, we address these questions and we pose several natural open problems.

2 Previous Work

Despite the fact that these problems are very natural and that rectilinear drawings of Kn

have been studied extensively, we did not find any relevant reference in the literature. The
existence of faces of a given size in regular drawings of Kn was recently considered by
Shannon and Sloane [14], who computed the values from Table 1, but we are not aware of
any publication. The total number of faces in a regular drawing of Kn was considered by
Harborth [8] and Poonen and Rubinstein [12], but these results do not distinguish faces of
different sizes and do not apply to all convex drawings of Kn. Finally, Hall [7] studied large
faces in convex drawings of Kn where the vertices are points from the integer lattice.

Concerning other graph classes, Griffiths [6] calculated the number of regions enclosed
by the edges of so-called regular drawings of the complete bipartite graphs Kn,n. There
are also various results about the complexity of faces in the more general setting of line
arrangements; for example [1, 2, 4, 5, 11]. However, we do not know any result that would
imply the existence of large bounded faces in all convex drawings of sufficiently large Kn.
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Closely related to our paper is the work of Poonen and Rubinstein [12] who gave a formula
for the number of crossings in regular drawings of Kn and used it to count the number of
faces in regular drawings of Kn. In particular, it follows from their formula that all regular
drawings of Kn with odd n have

(
n
4
)
crossings and thus are generic. They also showed

that, apart from the center, no point is the intersection of more than 7 edges of a regular
drawing of Kn for any positive integer n. We also note that these results are connected to
the well-known Blocking conjecture; see [10, 13].

3 Our Results

First, we address the question about the maximum size of a face that we can always find in
convex or regular drawings of Kn for large n. We observe that finding faces of size 3 or 4 in
convex drawings of Kn is not difficult.

I Proposition 3.1. Let n be a positive integer and D a convex drawing of Kn. Then, D

contains a 3-face if and only if n ≥ 3. Moreover, D contains a 4-face if and only if n ≥ 6.

To find larger faces, we restrict ourselves to generic convex drawings of Kn. In this case,
we can show that a 5-face always exists if we have at least five vertices.

I Theorem 3.2. For every positive integer n and every generic convex drawing D of Kn,
the drawing D contains a 5-face if and only if n ≥ 5.

On the other hand, we can provide examples of generic convex drawings of Kn with
arbitrarily large n that do not contain any k-face with k ≥ 6.

I Theorem 3.3. For every positive integer n, there is a generic convex drawing of Kn that
does not contain any k-face with k ≥ 6.

Thus, in the case of generic convex drawings of Kn, we can settle the question about
the largest face we can always find completely. A k-face with k ∈ {3, 4, 5} is guaranteed
in all sufficiently large drawings, while faces of sizes larger than 5 can be avoided (even
simultaneously). The problem, however, becomes significantly more difficult if we allow heavy
crossings.

We were not able to find a k-face with k ≥ 5 in every sufficiently large convex drawing
of Kn. In fact, finding larger faces becomes surprisingly difficult already for regular drawings
of Kn. Here, however, we can at least show that a 5-face always exists in all sufficiently large
regular drawings of Kn. In fact, we can even precisely characterize the values of n for which
a regular drawing of Kn contains a 5-face.

I Theorem 3.4. For a positive integer n, a regular drawing of Kn contains a 5-face if and
only if n /∈ {1, 2, 3, 4, 6, 8, 12}.

The proof of Theorem 3.4 is quite involved and is based on the results obtained by Poonen
and Rubinstein [12].

Finally, although we were not able to find a 5-face in all sufficiently large convex drawings
of Kn, we can at least show that every convex drawing of K7 contains at least one.

I Proposition 3.5. Every convex drawing of K7 contains a 5-face.
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k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
a(k) 3 6 5 9 7 13 9 29 11 40 13 43 15 212 17 231 19
Table 1 The values of a(k), the smallest n such that the regular drawing of Kn contains a k-face,

computed by Shannon and Sloane [14].

4 Open Problems and Discussion

The study of extremal questions about faces of a given size in convex drawings of Kn offers
plenty of interesting and natural problems. Here, we draw attention to some of them.

Although we were able to determine the largest size of a bounded face that appears in
every sufficiently large generic convex drawing of Kn, the same question remains unsolved
for general convex drawings of Kn. In particular, the following problem is open.
I Problem 4.1. Is there a positive integer n0 such that for every n ≥ n0 every convex drawing
of Kn contains a 5-face?

Since the regular drawing of K12 does not contain a 5-face, we have n0 ≥ 13, if it exists.
An affirmative answer to Problem 4.1 would imply that every sufficiently large regular
drawing of Kn contains a 5-face, a fact that was quite difficult to prove.

Considering the regular drawings of Kn, although we proved that all sufficiently large
regular drawings of Kn contain a 5-face, we do not know much about larger faces. It seems
plausible that we can find arbitrarily large faces in regular drawings of Kn as n grows.
I Problem 4.2. Is it true that for every integer k ≥ 3 there is an integer n(k) such that every
regular drawing of Kn with n ≥ n(k) contains a k-face?

For every integer k with 3 ≤ k ≤ 19, Shannon and Sloane [14] computed the value a(k),
which is the smallest n such that the regular drawing of Kn contains a k-face; see Table 1.
Note that even if a(k) exists, n(k) might not. Those computations suggest that the answer
to Problem 4.2 might be positive. In such a case, it would be interesting to determine the
growth rate of n(k) with respect to k. It follows from Proposition 3.1 and Theorem 3.4 that
n(3) = 3, n(4) = 6, and n(5) = 13. We encourage the reader to visit website1 to see the
regular drawings for themselves.

For k odd, we trivially have a(k) = k as the regular drawing of Kn with n odd contains
an n-face in the center. It might be interesting to explore the size of the largest faces in such
drawings if we exclude this n-face.

A more difficult version of Problem 4.2 would be to determine, for a given k ≥ 3, all
values of n such that every regular drawing of Kn contains a k-face.

Another possible direction is to count the minimum number of k-faces in a convex drawing
of Kn. For example, regarding 3-faces, it is simple to show that there are always at least
n(n− 3) by considering the area of a convex drawing around its 3-face as long as n ≥ 3, but
what is the growth rate of the minimum number of 3-faces with respect to n?
I Problem 4.3. What is the minimum number of 3-faces in a convex drawing of Kn? What
if the drawing is generic or regular?

In the whole paper, we focused on convex drawings. The problems we considered can also
be stated for all rectilinear drawings of Kn. Here, we can show that every generic rectilinear
drawing of Kn with n ≥ 10 contains a k-face with k ≥ 5. This follows easily since, by a result

1 fklute.com/regularkn.html
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of Harborth [9], every set P of at least 10 points in the plane without three collinear contains
a 5-hole, that is, a set H of 5 points in convex position with no point of P in the interior of
the convex hull of H. If we then apply this result on the vertex set of a generic rectilinear
drawing of Kn and use a similar reasoning as in the proof of Theorem 3.2 on the drawing
induced by the resulting 5-hole in D, then we find a bounded face of size at least 5 in D.

Finally, we considered the problem of finding a bounded face of size exactly k for a given
integer k, but it also makes sense to consider more relaxed variants of the above problems
where we want to find a bounded face of size at least k for a given integer k. In particular,
this leads to the following potentially simpler variant of Problem 4.1.

I Problem 4.4. Is there a positive integer n1 such that for every n ≥ n1 every convex drawing
of Kn contains a bounded face of size at least 5?

We note that a simple double-counting argument based on Euler’s formula yields the
existence of k-faces in generic convex drawings of Kn with k ≥ 4. If we knew that there
are many 3-faces in such drawings, then the argument gives the existence of k-faces with
k ≥ 5. This also illustrates that some insight for Problem 4.3 might have consequences for
our original questions.

5 Proof of Theorem 3.3

We prove that, for every positive integer n, there is a generic convex drawing of Kn that
does not contain a k-face with k ≥ 6. We apply a similar construction to the one used by
Balko et al. [3].

First, we state some auxiliary definitions. For an integer k ≥ 3, a set of k points in the
plane is a k-cup if all its points lie on the graph of a convex function. Similarly, a set of
k points is a k-cap if all its points lie on the graph of a concave function. Clearly, k-cups
and k-caps are sets of points in convex position. A convex polygon P is k-cap free if no k

vertices of P form a k–cap. Note that P is k-cap free if and only if it is bounded from above
by at most k − 2 segments (edges of P ). Analogously, P is k-cup free if no k vertices of P

form a k–cup. Observe that vertices of a k-face determine an a-cap and a u-cup that share
the leftmost and the rightmost vertex and satisfy a + u = k + 2. We use e(P ) to denote the
leftmost edge bounding P from above; see part (a) of Figure 2.

We inductively construct a certain generic convex drawing Dn of Kn with vertices
represented by points p1, . . . , pn that form an n-cup in the plane and their x-coordinates
satisfy x(pi) = i; see part (b) of Figure 2. Let V (Dn) denote the vertex set of Dn. We
recall that we identify the vertices of Kn and the points from Dn representing them. We
let V (D1) = {(1, 0)} and V (D2) = {(1, 0), (2, 0)}. Now, assume that we have already
constructed the drawing Dn−1 with V (Dn−1) = {p1, . . . , pn−1} for some integer n ≥ 3. We
choose a sufficiently large number yn, and we let pn be the point (n, yn). We then set
V (Dn) = V (Dn−1) ∪ {pn} and we let Dn be the drawing of Kn on this vertex set. The
number yn is chosen large enough so that the following three conditions are satisfied:

1. for every i = 1, . . . , n− 1, every intersection point of two line segments spanned by points
from V (Dn−1) lies on the left side of the line pipn if and only if it lies to the left of the
vertical line x = i containing the point pi,

2. if F is a 4-cap free face of Dn that is not 3-cap free, then there is no point pi below the
(relative) interior of e(F ),

3. no crossing of two edges of Dn lies on the vertical line containing some point pi.

EuroCG’24
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(a) (b) (c)

e(P )

P F ′

p1 p2

p3

p4

p5

p1
p2

p3

p4

D5

D5

F

Figure 2 (a) A 4-cap free and 5-cup free polygon P that is not 3-cap free nor 4-cup free. (b) A
construction of the drawing Dn for n = 5. If the point pn is chosen sufficiently high above V (Dn−1),
then each line segment pipn with i < n is very close to the vertical line containing pi and thus all
faces of Dn will be 4-cap free and 5-cup free. (c) The face F of Dn−1 is split into new faces of Dn

and contains the face F ′ that is 4-cap free and 5-cup free but not 3-cap free nor 4-cup free.

Choosing the point pn is indeed possible as for a sufficiently large y-coordinate yn of
pn we get that for each i, all the intersections of the line segments pipn with line segments
of Dn−1 lie very close to the vertical line x = i containing the point pi. Note that no line
segment of Dn is vertical and that there are no heavy crossings in Dn. Since p1, . . . , pn form
an n-cup, they are in convex position and Dn is a generic convex drawing of Kn.

It remains to prove that there are no k-faces with k ≥ 6 in D. To show that, we use the
following lemma.

I Lemma 5.1. Each bounded face of Dn is a 4-cap free and 5-cup free convex polygon.

Now, suppose for contradiction that there is a k-face F in Dn for some integer k ≥ 6. By
Lemma 5.1, the face F is a 4-cap free and 5-cup free convex polygon. On the other hand, the
vertex set of F is in convex position and thus determines an a-cap and a u-cup that share
the leftmost and the rightmost vertex and satisfy a + u ≥ 8. Therefore, we either have a ≥ 4
or u ≥ 5, However, this contradicts the fact that F is 4-cap free and 5-cup free.
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Abstract
Unique Sink Orientations (USOs) of cubes capture the combinatorial structure of many essential
algebraic and geometric problems. It is crucial to have systematic constructions of USOs for various
structural and algorithmic questions, including enumeration of USOs and algorithm analysis. While
some construction methods for USOs already exist, each one of them has some significant downside.
Inspired by cube tilings of space, we expand upon existing techniques to develop generalized rewriting
rules for USOs. These rewriting rules are a new construction framework which can be applied to all
USOs. Furthermore, they can generate every USO using only USOs of lower dimension.

Related Version arXiv:2211.06072

1 Introduction

A Unique Sink Orientation (USO) is an orientation of the hypercube graph, such that every
non-empty face (subcube) has a unique sink. See Figure 1 for an example. USOs were first
defined by Szabó and Welzl in 2001 [21]. They encode the combinatorial structure of several
problems, for examples the P-matrix linear complementarity problem, linear programming,
and many more [8, 11, 13, 17, 19]. USOs have also attracted attention as purely combinatorial
objects, with interest in structural and algorithmic directions [2, 5, 6, 7, 9, 10, 16, 18].

Figure 1 A Unique Sink Orientation of the 3-cube.

On the structural side, enumerating and sampling USOs are important unsolved challenges.
The main issues are that USOs are hard to recognize [9] and while they are very sparse
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Science Fund FWF, grant P 33278. Simon Weber is supported by the Swiss National Science Foundation
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Figure 2 Two examples of 4Z2-periodic tilings of R2 with their corresponding USOs.

among all cube orientations, there still exists a doubly exponential number (in terms of the
cube dimension) of them [16].

A few systematic construction methods for USOs are known: the product construction [18],
inherited orientations, flipping all edges of one dimension at once [21] and flipping equivalence
classes of edges (called phases) that preserves the USO condition [17]. Of all these methods,
only the product construction is able to increase the dimension of the USO, and only phase
flips are capable of theoretically generating all USOs of a fixed dimension — however no
systematic strategy for this is known and the mixing rate of the natural Markov chain based
on phase flips remains unknown too. We discuss the existing construction methods more
in-depth in the full version of the paper [1].

Results. Based on a remark of Schurr [17], we prove a one-to-one correspondence
between so-called 4Zk-periodic tilings and k-dimensional USOs. Representations of these
tilings can be manipulated in the language of string rewriting, in particular this technique
was used to disprove Keller’s conjecture on unit cube tilings [12, 14, 15]. We generalize these
construction techniques and translate them into the language of USOs. Our generalization
provides a very general framework with many parameters, and every choice of parameters
is a new construction which can be applied to any USO. Given both 1-dimensional USOs
and a specific 2-dimensional USO (the bow), repeated application of constructions from our
framework can be used to generate all USOs of dimension k ≥ 1, we thus call our framework
universal.

In the full version [1], we additionally show that we can realize all existing constructions
that are applicable to all USOs as special cases of our framework. We also point out another
special case of our construction as a new dimension-preserving modification, the partial swap.

2 Unit Cube Tilings and USOs

In a 4Zk-periodic tiling [20] we tile the k-cube C of side length 4 by 2k integer-grid aligned
k-cubes (tiles) of side length 2, such that (i) every point of K is contained in at least one
tile, and (ii) if a point is contained in multiple tiles, it lies on the boundary of all such tiles.
These tiles may wrap around the boundary of C, exiting on one side and entering again
on the opposite side (see Figure 2). This then defines a periodic tiling of Rk, as infinitely
repeating the tiling of C fills Rk.

It was shown by Szabó [20] that Keller’s conjecture [12] — a conjecture claiming that all
cube tilings of Rk contain two tiles that share a facet (so-called twins) — can be decided
by only considering these 4Zk-periodic tilings. Note that Keller’s conjecture has since been
resolved and is known to hold up to dimension 7 [3] and fail for dimensions 8 and above [15].

A 4Zk-periodic tiling can be described by a set of 2k strings in {0, 1, 2, 3}k, each string
describing the coordinates of the bottom left corner of one tile. A set of strings describes a
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valid 4Zk-periodic tiling if and only if for every pair of strings, there is at least one coordinate
in which the integer entries differ by exactly 2 [4, 14].

Schurr [17] briefly mentioned a bijection between 4Zk-periodic tilings and USOs of the
k-cube. We want to make this more explicit.

A set of strings describing a tiling also describes an orientation as follows. Each string
s ∈ {0, 1, 2, 3}k describes one vertex of the k-cube and the orientation of its incident edges:

If si = 0 or si = 1, then s is in the lower i-facet of the cube.
If si = 2 or si = 3, then s is in the upper i-facet of the cube.
If si = 0 or si = 2, then the edge from s in dimension i is downwards oriented.
If si = 1 or si = 3, then the edge from s in dimension i is upwards oriented.

In other words, the two bits of the binary encoding of si encode the location and the
orientation of the vertex in dimension i, respectively. Equivalently, we can also retrieve a
4Zk-periodic tiling from a k-cube and its orientation. See Figure 2 for an example and note
that we always mark upwards edges by a yellow background.

It remains to show that the set of strings describes an USO if and only if the tiling it
describes is valid. To see this, we use the characterization of USOs by the Szabó-Welzl
condition [21]: An orientation is USO if and only if for each pair of distinct vertices v, w,
there exists a dimension i in the subcube they span such that they both have the same
up-map in that dimension, i.e., both have an upwards i-edge or both have a downwards
i-edge. This corresponds directly to the condition that any pair of strings s, t differs by
exactly 2 in the i’th coordinate:

The difference of two strings si and ti is greater than 1 if and only if the vertices s and t

lie in different i-facets, and thus i is a dimension of the subcube these vertices span.
The difference of two strings si and ti is even if and only if the vertices s and t agree on
the orientation of their incident edge in dimension i.

Combining these two conditions yields that si and ti differ by exactly 2, as desired. Thus,
the Szabó-Welzl condition is equivalent to the condition for tiling validity.

3 Rewriting Rules

The first disproof of Keller’s conjecture by Lagarias and Shor [14] used string rewriting to
create higher dimensional tilings from lower dimensional tilings. In this section, we generalize
their technique to operations that can be applied to all USOs, so-called generalized rewriting
rules. We first define simple rewriting rules, which are used to rewrite a single digit in each
string of an USO. To define such a rule we need four lists, which specify what to replace each
possible digit with. From Lagarias and Shor’s approach we extract the conditions necessary
to hold for these four lists, such that the result is again an USO.
▶ Definition 3.1. Let S(0), S(1), S(2), S(3) ⊆ {0, 1, 2, 3}d with the properties that

(i)
(
S(0) ∪ S(2)) defines a d-dimensional USO (a 4Zd-periodic tiling) and S(0) ∩S(2) = ∅, and

(ii)
(
S(1) ∪ S(3)) defines a d-dimensional USO (a 4Zd-periodic tiling) and S(1) ∩ S(3) = ∅.

The sets
(
S(0), S(1), S(2), S(3)) define a simple rewriting rule. We define the function Sh

to apply this simple rewriting rule to a k-dimensional input USO K on dimension h ∈ [k]. It
maps subsets of {0, 1, 2, 3}k to subsets of {0, 1, 2, 3}k+d−1. Applying the simple rewriting
rule to a single vertex of the input USO is defined as follows:

Sh(v) :=
{

v1, . . . , vh−1, s1, . . . , sd, vh+1, . . . , vk | s ∈ S(vh)
}

.

We write Sh(K) (for a set K ⊆ {0, 1, 2, 3}k) for the union of the outputs of Sh when applied
to all elements of K, i.e., Sh(K) :=

⋃
v∈K Sh(v).
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For each string v ∈ K, Sh(v) produces a set of strings which depends on the value of the
entry vh. For each element s of S(vh), a string is generated by replacing the entry vh with s.
The single vertex v is thus mapped to |S(vh)| vertices. Note that some of the sets S(·) may
be empty. In this case, when |S(vh)| = 0, no strings are produced from v.

A particularly interesting operation on USOs is the following 1-dimensional rewriting
rule, which we call the partial swap: (S(0) = {0}, S(1) = {3}, S(2) = {2}, S(3) = {1}). We
analyze this rewriting rule in more detail in the full version of this paper [1].

▶ Example 3.2. To the USO K = {110, 310, 012, 202, 031, 230, 033, 222} we apply the partial
swap in dimension h = 2, i.e., we rewrite the second coordinate of each vertex. In the
resulting USO, the subgraphs KL and KU swapped places.

h

110 310

031 230

012 202

033 222

KL

KU

⇒
rule

rewriting
Apply

130 330

011 210

032 202

013 222

⇒
position
vertex

Fix

011 210

130 330

013 202

032 222

KU

KL

In the full version [1] we show the following lemma, i.e., that simple rewriting rules are
correct USO constructions.

▶ Lemma 3.3. Applying any rewriting rule Sh to an USO K of strings in {0, 1, 2, 3}k results
in a valid USO Sh(K) of strings in {0, 1, 2, 3}k+d−1.

3.1 Generalized Rewriting Rules
To arrive at their counterexamples to Keller’s conjecture, Lagarias and Shor used a more
general rewriting technique [14]. They do not only use the four digits 0, 1, 2, 3 in their input
tiling, but also “alternative digits” 0′ and 1′, which only differ from their normal counterparts
for the purposes of the rewriting, but specify the same coordinate for the tiling. We generalize
our construction based on this idea, by letting the input USO specify one of i labels at each
vertex.

For the full generality of our rewriting framework, the sets S(m) are replaced by a list of i

sets S
(m)
1,...,i each, where the indices correspond to the possible labels attached to the vertices

of the input USO. All the compatibility requirements are appropriately expanded.

▶ Definition 3.4. Let d, i ∈ N, S
(0)
1,...,i, S

(1)
1,...,i, S

(2)
1,...,i, S

(3)
1,...i ⊆ {0, 1, 2, 3}d where

(i)
(

S
(0)
j ∪ S

(2)
j′

)
defines a d-dimensional USO and S

(0)
j ∩ S

(2)
j′ = ∅ for all pairs j, j′ ∈ [i], and

(ii)
(

S
(1)
j ∪ S

(3)
j′

)
defines a d-dimensional USO and S

(1)
j ∩ S

(3)
j′ = ∅ for all pairs j, j′ ∈ [i].

The sets
(

S
(0)
1,...,i, S

(1)
1,...,i, S

(2)
1,...,i, S

(3)
1,...i

)
define a generalized rewriting rule. We define the

function Th to apply this generalized rewriting rule to a k-dimensional input USO K on
dimension h ∈ [k]. It maps subsets of {0, 1, 2, 3}k ×[i] to subsets of {0, 1, 2, 3}k+d−1. Applying
the generalized rewriting rule to a single vertex v labeled j of the input USO is defined as:

Th(v, j) :=
{

v1, . . . , vh−1, t1, . . . , td, vh+1, . . . , vk | t ∈ S
(vh)
j

}
.

We extend the function Th from single inputs to sets similarly to Definition 3.1.
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Note that we can use duplicate sets S
(m)
j = S

(m)
j′ in case we want to have fewer than i

sets for some m ∈ {0, 1, 2, 3}. Lemma 3.3 holds also for generalized rewriting rules, with the
proof applying mutatis mutandis since Definition 3.4 provides the necessary disjointness and
coherence conditions:

▶ Lemma 3.5. Let K be an USO of strings in {0, 1, 2, 3}k, and L : K → [i] an additional
labelling function. Then Th(K, L) is an USO of strings in {0, 1, 2, 3}k+d−1.

Intuitively, the effect of a generalized rewriting rule can be described as follows. Given
an input USO K and a rewriting rule, we replace edges of dimension h. For simplicity, we
focus on a single 2-face containing two edges of this dimension h: {v1, v2} and {w1, w2}. The
rewriting rule replaces those two h-edges by the d-dimensional USOs Th({v1, v2}, L) and
Th({w1, w2}, L). Instead of the edges {v1, w1} and {v2, w2}, there are now 2d new edges
between Th({v1, v2}, L) and Th({w1, w2}, L) as can be seen in Figure 3.

v1 v2

w1 w2
f

h

⇒

Apply
rewriting

rule

Th({v1, v2}, L)

Th({w1, w2}, L)

...

. . .

Figure 3 Sketch of the effect of the generalized rewriting rule on the 2-face f .

It holds that if {v1, v2} is a downwards edge, Th({v1, v2}, L) = S
(0)
L(v1) ∪ S

(2)
L(v2). If {v1, v2}

is an upwards edge, Th({v1, v2}, L) = S
(1)
L(v1) ∪ S

(3)
L(v2). Analogously, the edge {w1, w2} is

replaced by the respective union of sets. In either case, this is guaranteed to be an USO by
the conditions (i) and (ii) in Definition 3.4.

The edges between the USOs Th({v1, v2}, L) and Th({w1, w2}, L) copy their orientation
either from the edge {v1, w1} or from the edge {v2, w2}. Which of these edges is copied
depends on whether the resulting edge is incident to a vertex in Th({v1}, L) or Th({v2}, L).
This depends on how the sets S

(0)
j ∪ S

(2)
j′ (and S

(1)
j ∪ S

(3)
j′ respectively) are split into their

parts, i.e., which vertices of the d-USOs they describe lie in which set. Note that these unions
are split the same way, no matter j and j′.

▶ Example 3.6. The following is a generalized rewriting rule for d = 2.

S
(0)
1 = S

(1)
1 = {10}

S
(2)
1 = S

(3)
1 = {12, 33, 31}

S
(0)
2 = S

(1)
2 = {10}

S
(2)
2 = S

(3)
2 = {02, 22, 30} 10

12

31

33

S
(0)
1 ∪ S

(2)
1

10

02

30

22

S
(0)
2 ∪ S

(2)
2

We apply this rewriting rule to dimension h = 1 of the bow K = {01, 20, 03, 22} with the
labeling function L(01) = 2, L(03) = 1, L(20) = 2 and L(22) = 1. This means, we replace the
first coordinate of each vertex. The result is T1(K, L) = {101, 300, 020, 220, 103, 122, 312, 332}.

EuroCG’24
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01

03

20

22
h = 1

bow
⇒

Apply
rewriting

rule

101

103

020

122

220

300

312

332

4 Universality of the Construction

Our construction is universal, meaning it is sufficiently general to generate all USOs, using
only the 1-dimensional USOs, and the 2-dimensional “bow” as base cases.

▶ Theorem 4.1 (Universality). Starting with the set of both 1-dimensional USOs {0, 2} and
{1, 3}, one can generate every USO of dimension n ≥ 1 by repeated application of generalized
rewriting rules to the bow {01, 20, 03, 22}, where every set S

(m)
j used in a rewriting rule is a

subset of some set of strings describing an USO already obtained before.

To prove this theorem, we show the following lemma in the full version [1], which states
that for any n-dimensional USO there exists a generalized rewriting rule which creates this
USO by only using (n − 1)-dimensional USOs and the bow. From Lemma 4.2, Theorem 4.1
follows as a direct consequence.

▶ Lemma 4.2. Let K be an n-dimensional USO. Then there exists a generalized rewriting
rule

(
S

(0)
1,2 , S

(1)
1,2 , S

(2)
1,2 , S

(3)
1,2

)
, where each S

(m)
j is a (partial) (n − 1)-dimensional USO, and

K = T1(bow = {01, 20, 03, 22}, L), for L(01) = 2, L(03) = 1, L(20) = 2, L(22) = 1.

Proof (sketch). With the input labelling L, each set S
(0)
1,2 and S

(2)
1,2 is used to rewrite exactly

one string of the bow. Furthermore, each of these strings has a unique digit in the second
coordinate. We ignore the unused sets S

(1)
1,2 and S

(3)
1,2 , and define S

(0)
1,2 and S

(2)
1,2 by simply

splitting the strings of our target USO K depending on their last digit (and discarding that
last digit), i.e., depending on the two n-facets of K and the edges between them:

S
(0)
1 : rewrites 03, contains vertices of the upper n-facet of K with an upwards n-edge.

S
(0)
2 : rewrites 01, contains vertices of the lower n-facet of K with an upwards n-edge.

S
(2)
1 : rewrites 22, contains vertices of the upper n-facet of K with an downwards n-edge.

S
(2)
2 : rewrites 20, contains vertices of the lower n-facet of K with an downwards n-edge.

Thus, when applied to the bow, we end up with exactly our target USO. It remains to prove
that these sets form a valid generalized rewriting rule. For this, we can show that S

(0)
1 ∪ S

(2)
1

and S
(0)
2 ∪ S

(2)
2 are the two n-facets of K, while the other set combinations are the n-facets

of K after applying a partial swap. For details we refer to the full version [1]. ◀

5 Future Work

Unfortunately, our rewriting rules exhibit a similar weakness to the phase flips of Schurr.
While they are universal and each step in the universality proof is very systematic, our
construction does not yet provide a suitable way to enumerate all USOs. This is in part
because checking conditions (i) and (ii) of Definition 3.4 is computationally expensive. As
future work, we suggest searching for more interesting special cases of (generalized) rewriting
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rules, or for other more systematic ways to enumerate USOs. Our framework could also be
further generalized to rewrite multiple dimensions at once, similar to the approach taken by
Mackey [15] to find the 8-dimensional counterexample to Keller’s conjecture.
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Abstract
Arrangements of pseudolines are classic objects in discrete and computational geometry. They
have been studied with increasing intensity since their introduction almost 100 years ago. The
study of the number Bn of non-isomorphic simple arrangements of n pseudolines goes back to
Goodman and Pollack, Knuth, and others. It is known that Bn is in the order of 2Θ(n2) and finding
asymptotic bounds on bn = log2(Bn)

n2 remains a challenging task. In 2011, Felsner and Valtr showed
that 0.1887 ≤ bn ≤ 0.6571 for sufficiently large n. The upper bound remains untouched but in 2020
Dumitrescu and Mandal improved the lower bound constant to 0.2083. Their approach utilizes the
known values of Bn for up to n = 12.

We tackle the lower bound with a dynamic programming scheme. Our new bound is bn ≥ 0.2526
for sufficiently large n. The result is based on a delicate interplay of theoretical ideas and computer
assistance.

1 Introduction

Levi [12] introduced arrangements of pseudolines as a natural generalization of line arrange-
ments in 1926. An arrangement of pseudolines in the Euclidean plane R2 is a finite family of
simple curves, called pseudolines, such that each curve approaches infinity in both directions
and every pair intersects in exactly one point where the two curves cross. More generally, we
call a collection of pseudolines partial arrangement if every pair intersects in at most one
crossing-point. Pseudolines which do not intersect are said to be parallel. Note that, while
for partial arrangements of proper lines the relation ’parallel’ is transitive, this is no longer
true in partial pseudoline arrangements.

In this article, the focus will be on simple arrangements, that is, no three or more
pseudolines intersect in a common point (called multicrossing). Moreover, we consider all
arrangements to be marked, that is, they have a unique marked unbounded cell, which is
called north-cell. Two arrangements are isomorphic if one can be mapped to the other by an
orientation preserving homeomorphism of the plane that also preserves the north-cell.

While it is known that the number Bn of non-isomorphic arrangements of n pseudolines
grows as 2Θ(n2), it remains a challenging problem to bound the multiplicative factor of the
leading term of log2 Bn = Θ(n2). Our focus will be on finding better estimates on the lower
bound constant c− := lim infn→∞

log2 Bn

n2 . One can analogously define the upper bound
constant c+ := lim supn→∞

log2 Bn

n2 but it seems to be open whether c+ and c− coincide.
In the 1980’s Goodman and Pollak [9] investigated pseudopoint configurations, which are

dual to pseudoline arrangements, and established the lower bound c− ≥ 1
8 . An alternative

and simpler construction for c− ≥ 1
12 can be found in Matoušek’s textbook [13, Chapter 6].

∗ The extended version of this work was accepted at SoCG’24 [11] and will be merged with Justin Dallant’s
manuscript ‘Improved Lower Bound on the Number of Pseudoline Arrangements’ [4] for the SoCG’24
proceedings. First steps towards the results presented here were made in the Bachelor’s thesis of the first
author [3]. S.F. was partially supported by DFG Grant FE 340/13-1. M.S. and F.C.K. were supported
by DFG Grant SCHE 2214/1-1.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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B1

B2

B3

Figure 1 Left: An arrangement of 3 bundles of parallel lines and a collection of interior-disjoint
patches (highlighted red) such that each multicrossing point is covered by a patch. Right: A partial
pseudoline arrangement with the same parallel bundles obtained by rerouting within the patches.

Concerning the upper bound, Edelsbrunner, O’Rourke and Seidel [6] showed c+ < ∞. In
the 1990’s Knuth [10, Section 9] improved the bounds to c− ≥ 1

6 and c+ < 0.7925, and he
conjectured that c+ ≤ 0.5. The upper bound was lowered to c+ < 0.6974 by Felsner [7], and in
2011, Felsner and Valtr [8] further narrowed the gap by showing c− > 0.1887 and c+ < 0.6571.
In 2020 Dumitrescu and Mandal [5] proved the currently best lower bound c− > 0.2083.

In this article, we make a substantial step on the lower bound by proving c− > 0.2526.

▶ Theorem 1.1. The number Bn of non-isomorphic simple arrangements of n pseudolines
satisfies the inequality Bn ≥ 2cn2−O(n log n) with c > 0.2526.

2 Outline

Our approach is in the spirit of several previous bounds. We consider a specific partial
arrangement L of n lines consisting of k bundles L1, . . . , Lk of parallel lines. We then define
a class of local perturbations to L and consider the number of arrangements that can be
obtained by these perturbations. This number is a lower bound on Bn, and it can be improved
by recursively applying the same construction to each of the parallel classes Li.

The main difference between the approaches lies in the number of bundles k and the
notion of locality. Matoušek and also Felsner and Valtr used three bundles but the locality
was increased from considering just a triple intersection with its two simple resolutions to the
full intersection pattern of three bundles. Dumitrescu and Mandal [5] increased the number
k of bundles to up to 12 but still restricted to local resolutions of multicrossings.

Our approach combines higher values of k with an increased locality for the perturbations.
As illustrated in Figure 1, we allow reroutings of the arrangement within designated regions,
which we call patches. When rerouting the arrangement within a patch P , the order of the
crossings along the pseudolines may change. The boundary information of P fully determines
which pairs of pseudolines cross within P , but the order of crossings along the pseudolines
is not determined in general. Outside of P , the arrangement remains unaffected, which
allows us to count the number of reroutings for each patch independently. The total number
of perturbations is obtained as the product of the numbers computed for the individual
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P 1
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1
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7

4
33
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4
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Figure 2 An illustration of how to recursively compute the number of reroutings for a patch P .
When cutting along segment 1, highlighted purple, there are intersections with the segments 3, 4,
and 7. As the segments 3 and 7 do no cross within P , there are only three possibilities for placing
the three crossings along the segment 1, namely 4–3–7 (right top), 3–4–7 (right center) and 3–7–4
(right bottom).

patches. The number of possibilities within a patch are computed recursively via dynamic
programming; Figure 2 gives an illustration. Details are given in [11].

To eventually use computer assistance, we choose patches of high regularity and reasonably
small complexity. In fact, since our construction is highly regular, it is sufficient to determine
the rerouting possibilities only for a small number of patch-types. Only a negligible fraction
of patches along the boundaries are different. As we only want to find an asymptotic lower
bound on Bn, the small number of irregular patches along the boundary of the regions will
not be used in the counting.

To eventually prove Theorem 1.1, we perform the following two steps:

In the first step (Section 3) we specify the parameters of the construction: We construct
k = 6 bundles of

⌊
n
k

⌋
parallel lines (see [11] for a description of the approach with k = 4

bundles) and cover the multicrossing points by patches. By resolving the multicrossing
points within the patches, and taking the product over all patches we obtain an improved
lower bound on the number Fk(n) of partial arrangements with k bundles of

⌊
n
k

⌋
parallel

pseudolines.

In the second step (Section 4), we account for crossings in bundles of pseudolines which
had been parallel before. The product of the so-computed possibilities yields the improved
lower bound on the number Bn of simple arrangements on n pseudolines.

EuroCG’24
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3 Step 1: bundles of parallel lines, patches, and perturbations

For the start we fix an integer k and construct an arrangement L of k bundles of
⌊

n
k

⌋
parallel

lines as in [5]. If n is not a multiple of k, the remaining lines are discarded, or not used in
the counting. We then cover all multicrossing points by a family of disjoint regions, called
patches, and reroute the line segments within the patches so that all multicrossing points
will eventually be resolved and the arrangement becomes simple.

3.1 Construction with 6 bundles
In this section we consider a partial arrangement L of n lines consisting of 6 bundles of

⌊
n
6

⌋

parallel lines L1, . . . , L6 following [5]. See Figure 3 for an illustration. The construction
comes with four types of regions with multicrossings:

Ri for i ∈ {3, 4, 5} only contains multicrossings of order i and
R6 contains multicrossings of order 3 and 6.

Note that multicrossings of order 3 occur in R3 and R6.

R3

R3

R3

R3

R3

R4

R4

R4

R4 R5

R5

R5

R5

R5

R6

R5R4

L3

L5

L1

L6

L4

L2

R3

R4

Figure 3 Construction with 6 bundles as in [5].

For each of the four regions Ri we will use a different type of patch Pi that is based on a
regular tiling of the plane to ensure regularity; see Figure 4.

We have to determine the number µi of patches of type i. Since the number of crossings of
each order is asymptotically quadratic in n and each patch contains only a constant number
of crossings, the number µi of patches of type i is also quadratic. Again, it is important
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to note that the patches along the boundary of Ri behave differently. However, since there
are only linearly many of these deformed patches, they only affect lower order error terms.
Hence we can omit them in the calculations.

To obtain asymptotically tight estimates on the µi’s, we make use of the numbers λi(n)
of i-crossing points, which were determined by Dumitrescu and Mandal [5, Table 2]:

λ3(n) = 5n2−O(n)
144 , λ4(n) = n2−O(n)

144 , λ5(n) = n2−O(n)
144 , λ6(n) = n2−O(n)

144 .

For i = 4, 5, 6, the number λi coincides with µi · #{i-fold crossings in Pi} + O(n) because
only the region Pi contains i-crossings for i = 4, 5, 6. For i = 3, however, the situation
is a bit more complicated because P3 and P6 both contains 3-crossings. More specifically,
P6 contains twice as many 3-crossings as 6-crossings. With the multiplicities given in the
caption of Figure 4 we obtain:

µ3(P3, n) = λ3(n)−2·λ6(n)
#{3-crossings in P3} − O(n) = 3n2

144·100 − O(n)
µ4(P4, n) = λ4(n)

#{4-crossings in P4} − O(n) = n2

144·32 − O(n)
µ5(P5, n) = λ5(n)

#{5-crossings in P5} − O(n) = n2

144·12 − O(n)
µ6(P6, n) = λ6(n)

#{6-crossings in P6} − O(n) = n2

144·7 − O(n)

To compute the numbers F (Pi) of all possible perturbations within the patch type Pi for
i = 3, 4, 5, 6, we ran our program and obtained:

F (P3) = 1956055471674766249002559523437101670400
F (P4) = 10233480626615962155895931163981261674
F (P5) = 32207077855497546508132740267
F (P6) = 8129606100972933137253330355173

We provide a computer-assisted framework [1] that can fully automatically compute F (P )
for a given patch P , which is given as an IPE input file [2]. See [11] for more details. The
presented terms were computed within a few CPU hours on cluster nodes of TU Berlin with
up to 1TB of RAM. We also provide simpler patches for which the program only needs few
CPU seconds and low RAM. Those, however, give slightly worse bounds.

From Fk(n) ≥ ∏k
i=3 F (Pi)µi(n), we can now derive:

▶ Proposition 3.1. F6(n) ≥ 2cn2−O(n) with c > 0.2105.

More specifically, by writing ci := limn→∞
µi(n)

n2 · log2(F (Pi)), we can see the contributions of
the patches P3, P4, P5 and P6 to the leading constant c = c3+c4+c5+c6 from Proposition 3.1:

c3 ≈ 0.0272, c4 ≈ 0.0267, c5 ≈ 0.0548, c6 ≈ 0.1019.
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(a) (b)

(c) (d)

Figure 4 The four types of patches for our construction on k = 6 bundles:
(a) For R6 we use a hexagonal tiling where each patch P6 contains exactly 7 crossings of order 6 and
14 crossings of order 3.
(b) For R5 we use a hexagonal tiling where each patch P5 contains exactly 12 crossings of order 5.
(c) For R4 we use a rectangular tiling where each patch P4 contains exactly 32 crossings of order 4.
(d) For R3 we use a rhombic tiling where each patch P3 contains exactly 100 crossings of order 3.
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4 Step 2: resolving parallel bundles

With the second and final step, we want to obtain a simple arrangement of pairwise intersecting
pseudolines from a partial arrangement of k bundles of m =

⌊
n
k

⌋
parallel pseudolines. To do

so, we use a recursive scheme as in [8, 5] to make each pair of parallel pseudolines cross: For
each i = 1, . . . , k, we consider a disk Di such that

(1) Di intersects all parallel pseudolines of the bundle Li and no other pseudolines, and
(2) no two disks overlap.

Within each disk Di we can place any of the Bm arrangements of m pseudolines. This
makes all the pseudolines of a bundle cross. Figure 5 gives an illustration for the case k = 3.

B1

B2

B3

D3

D2

D1

Figure 5 Left: A partial arrangement of 3 bundles of parallel pseudolines and a collection of
interior-disjoint disks (highlighted blue) such that each bundle is covered by one disk.
Right: A proper pseudoline arrangement obtained by rerouting within the disks.

Since all D′
is are independent and there are Bm possibilities to reroute within each Di,

Bn ≥ Fk(n)︸ ︷︷ ︸
Step 1

· (Bm)k

︸ ︷︷ ︸
Step 2

holds, where m =
⌊

n
k

⌋
. With the following lemma we can derive c− ≥ k

k−1 c where c is the
constant obtained in Section 3. The construction with k = 6 bundles gives the lower bound
c− > 0.2526, and therefore completes the proof of Theorem 1.1.

▶ Lemma 4.1. If Fk(n) ≥ 2cn2−O(n) for some c > 0 then Bn ≥ 2 k
k−1 cn2−O(n log n).

5 Discussion

We performed quite some experiments to optimize the set of parameters. To obtain the new
lower bound constant c− > 0.2526 presented in Theorem 1.1, we started with the k = 6
parallel bundles construction from [5] and covered the multicrossings with a specific selection
of patches, which were inspired by regular tilings. Already the construction with k = 4
bundles gives F4(n) ≥ 2cn2−O(n) with c > 0.1608 and c− > 0.2144 (see [11]), which is already
an improvement to the previous best bound by Dumitrescu and Mandal [5]. While the
results from [5] suggest that larger values of k give better bounds, the computations get
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10:8 Counting Pseudoline Arrangements

more and more complex. In fact, as the number k increases, the complexity of the patches
increases. Since our program can only deal with patches containing about 30 to 40 segments
in reasonable time, depending on the structure of crossings within it, there is a trade-off
between the number of crossings within a patch and the number of bundles k in practice.
This was also the reason why we use different types of patch for the four regions.

In the future we plan to investigate constructions with k = 8 and k = 12 bundles which
as depicted in [5, Figures 9 and 13] come with more types of regions. It remains a challenging
part to find a good tiling/patches for each of them.

Also note that as long as one fixes k, the counting approach is implicitly limited by Fk(n),
which is much smaller than Bn. Since F3(n) = 2cn2+o(n2) with c = log2(3)

2 − 2
3 ≈ 0.1258

is known [8], it would be interesting to determine limn→∞
log2 Fi(n)

n2 for i = 4, . . . , 12. In
particular, we wonder how far from the truth the constant in Proposition 3.1 is.
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Abstract
Given a set of objects O in the plane, the corresponding intersection graph is defined as follows. A
vertex is created for each object and an edge joins two vertices whenever the corresponding objects
intersect. We study here the case of unit segments and polylines with exactly k bends. In the
recognition problem, we are given a graph and want to decide whether the graph can be represented
as the intersection graph of certain geometric objects. In previous work it was shown that various
recognition problems are ∃R-complete, leaving unit segments and polylines as few remaining natural
cases. We show that recognition for both families of objects is ∃R-complete.

Related Version Full Version: arXiv:2401.02172

1 Introduction

Many real-life problems can be mathematically described in the language of graphs. For
instance, Cellnex Telecom owns more than 2000 cell towers in Switzerland. We want to
assign each tower a frequency such that no two towers that overlap in coverage use the
same frequency. This becomes a graph coloring problem. Every cell tower becomes a vertex,
overlap indicates an edge and a frequency assignment corresponds to a proper coloring of
the vertices, see Figure 1.

In many contexts, we have additional structure on the graph that may or may not help us
to solve the underlying algorithmic problem. For instance, it might be that the graph arises
as the intersection graph of unit disks in the plane (each unit disk gives a vertex, and two
vertices are adjacent if their corresponding disks overlap). In that case, the coloring problem
can be solved more efficiently [10], and there are better approximation algorithms for the
clique problem [11]. This motivates a systematic study of geometric intersection graphs.

It is known for a host of geometric shapes that it is ∃R-complete to recognize their
intersection graphs [28, 14, 25, 27]. The class ∃R consists of all of those problems that are
polynomial-time equivalent to deciding whether a polynomial p ∈ Z[X1, . . . , Xn] has a root.
We will introduce ∃R in more detail below. ∃R-completeness is known for the recognition
problems of intersection graphs for segments, disks, unit disks, rays, grounded segments,
downward rays, and a few other examples.

∗ This research started at the 19th Gremo Workshop on Open Problems in Binn VS, Switzerland, in
June 2022. We thank the organizers for the invitation and for providing a very pleasant and inspiring
working atmosphere. Tillmann Miltzow is generously supported by the Netherlands Organisation for
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the Austrian Science Fund (FWF): W1230.
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to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 A fictional illustration of mobile coverage of Switzerland using cell towers.

In this work, we focus on two geometric objects; unit segments and polylines with exactly
k bends. Although we consider both types of geometric objects natural and well studied, to
the best of our knowledge the complexity of their recognition problem was left open.

1.1 Definition and Results
Given a finite set of geometric objects O, we denote by G(O) = (V, E), the corresponding
intersection graph. The set of vertices is the set of objects (V = O) and two objects are
adjacent (uv ∈ E) if they intersect (u ∩ v ̸= ∅). We are interested in intersection graphs that
come from different families of geometric objects.

Examples for a family of geometric objects are segments, disks, unit disks, unit segments,
rays, and convex sets, to name a few of the most common ones. In general, given a geometric
body O ⊂ R2 we denote by O the family of all translates of O. Similarly, we denote by O

the family of all translates and rotations of O. For example, the family of all unit segments
can be denoted as u , where u is a unit segment.

Classes of geometric objects O naturally give rise to classes of graphs C(O): Given a
family of geometric objects O, we denote by C(O) the class of graphs that can be formed by
taking the intersection graph of a finite subset from O.

If we are given a graph, we can ask if this graph belongs to a geometric graph class.
Formally, let C be a fixed graph class, then the recognition problem for C is defined as
follows. As input, we receive a graph G and we have to decide whether G ∈ C. We denote
the corresponding algorithmic problem by Recognition(C). For example the problem of
recognizing unit segment graphs can be denoted by Recognition(C(u )). We will use the
term Unit Recognition for this problem. Furthermore, we define PolyLine Recognition
as the recognition problem of intersection graphs of polylines with k bends.

We can also say that Recognition(C(O)) asks about the existence of a representation
of a given graph. A representation or realization of a graph G using a family of objects O
is a function r : V 7→ O such that r(v) ∩ r(w) ̸= ∅ ⇐⇒ vw ∈ E. For simplicity, for a set
V ′ ⊆ V , we define r(V ′) =

⋃
v∈V ′ r(v).
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Results. We show ∃R-completeness of the recognition problems of two very natural
geometric graph classes.

▶ Theorem 1.1. Unit Recognition is ∃R-complete.

▶ Theorem 1.2. PolyLine Recognition is ∃R-complete, for any fixed k ≥ 1.

1.2 Discussion
To supply the appropriate context for our results, we give a comprehensive overview over
important geometric graph classes and the current knowledge about the complexity of their
recognition problems in Figure 2.

unit interval

intervalunit disk

disk circle chord

downward ray

orthogonal ray

ray

orthogonal unit segment

orthogonal segment

unit segmentouter segment

k-polyline

convex

segment

outer string

string graphs

translate fixed convex

Figure 2 Each box represents a different geometric intersection graph class. Those marked in
green can be recognized in polynomial time. Those in blue are known to be ∃R-complete. The ones
in gray are NP-complete, and the orange ones are the new results presented in this paper. Relevant
references: [12, 14, 21, 22, 23, 24, 25, 27, 28, 30, 32, 33, 36, 43]

Refining the Hierarchy. We see our main contribution in refining the hierarchy of
geometric graph classes for which recognition complexity is known. Both unit segments as
well as polylines with k bends are natural objects that are well studied in the literature.
However, the recognition of the corresponding graph classes was not studied previously.
Polylines with an unbounded number of bends are equivalent to strings1, while polylines

1 It is possible to show that polylines with an unbounded number of bends are as versatile as strings with
respect to the types of graphs that they can represent, since the number of intersections of any two
strings can always be bounded from above [36, 37].
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with 0 bends are just segments. Polylines with k bends thus naturally slot in between strings
and segments, and their corresponding graph class is thus also an intermediate class between
the class of segment intersection graphs and string graphs, as can be seen in Figure 2. By
showing that recognition for polylines with k bends is ∃R-complete for all constant k, we
see that the switch from ∃R-completeness (segment intersection graphs) to NP-membership
(string graphs) really only happens once k is infinite. Similarly, unit segment intersection
graphs slot in between segment and ray intersection graphs. Intuitively, recognition of a class
intermediate to two classes that are ∃R-hard to recognize should also be ∃R-hard, and our
Theorem 1.1 confirms this intuition in this case.

Large Coordinates. One of the consequences of ∃R-completeness is that there are
no short representations of solutions known. Some representable graphs may only be
representable by objects with irrational coordinates, or by rational coordinates with nominator
and denominator of size at least 22nc

, for some fixed c > 0. In other words, the numbers
to describe the position might need to be doubly exponentially large [27] for some graphs.
For “flexible” objects like polylines, rational solutions can always be obtained by slightly
perturbing the representation. For more “sturdy” objects like unit segments this may not be
possible, however it is known that for example unit disks admit rational solutions as well [28].

Unraveling the Broader Story. Given the picture of Figure 2, we wish to get a
better understanding of when geometric graph recognition problems are ∃R-complete and
when they are contained in NP. Figure 2 indicates that ∃R-hardness comes from objects
that are complicated enough to avoid a complete combinatorial characterization. Such
characterizations are known for example for unit interval graphs, interval graphs and circle
chord graphs. On the other hand, if the geometric objects are too flexible, the recognition
problem is in NP. The prime example is string graphs [36]. We want to summarize this as:
recognition problems are ∃R-complete if the underlying family of geometric objects is at a
sweet spot of neither being too simplistic nor too flexible.

Studying the figure further we observe two different types of ∃R-complete families. The
first type of family encapsulates all rotations O of a given object O (i.e., segments, rays,
unit segments etc.). The second type of family contains translates and possibly homothets of
geometric objects that have some curvature themselves (i.e., disks and unit disks). However
in case we fix a specific object without curvature, i.e., a polygon, and consider all translations
of it then the recognition problem also lies in NP [30]. Therefore, broadly speaking, curvature
or rotation seem to be properties needed for ∃R-completeness and the lack of it seems to
imply NP-membership. We wish to capture parts of this intuition in the following conjectures:

▶ Conjecture 1. Let O be a convex body in the plane with at least two distinct points. Then
Recognition(O ) is ∃R-complete.

▶ Conjecture 2. Let O be a convex body in the plane. Then Recognition(O ) is ∃R-
complete if and only if O has curvature.

1.3 Existential Theory of the Reals
The class of the existential theory of the reals ∃R (pronounced as ‘ER’) is a complexity class de-
fined through its canonical problem ETR, which also stands for Existential Theory of the Reals.
In this problem we are given a sentence of the form ∃x1, . . . , xn ∈ R : Φ(x1, . . . , xn), where Φ
is a well-formed quantifier-free formula consisting of the symbols {0, 1, x1, . . . , xn, +, ·, ≥, >

, ∧, ∨, ¬}, and the goal is to check whether this sentence is true.
The class ∃R is the family of all problems that admit a polynomial-time many-one

reduction to ETR. It is known that NP ⊆ ∃R ⊆ PSPACE [13]. The reason that ∃R is an
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important complexity class is that a number of common problems, mainly in computational
geometry, have been shown to be complete for this class. Schaefer established the current
name and pointed out first that several known NP-hardness reductions actually imply
∃R-completeness [33]. Early examples are related to recognition of geometric structures:
points in the plane [29, 42], geometric linkages [34, 1], segment graphs [25, 27], unit disk
graphs [28, 21], ray intersection graphs [14], and point visibility graphs [14]. In general,
the complexity class is more established in the graph drawing community [26, 16, 35, 18].
Yet, it is also relevant for studying polytopes [31, 17], Nash-Equilibria [6, 38, 20, 8, 9], and
matrix factorization problems [15, 40, 41, 39]. Other ∃R-complete problems are the Art
Gallery Problem [3, 44], covering polygons with convex polygons [2], geometric packing [5]
and training neural networks [4, 7].

2 Proof Techniques

Figure 3 The pseudoline arrangement on the left is combinatorially equivalent to the (truncated)
line arrangement on the right; hence, it is stretchable.

The techniques used in this paper are similar to previous work. Due to space constraints
we only give some rough proof sketches, all the details can be found in the full version of
the paper. ∃R-membership can be established straightforwardly by constructing concrete
formulae or invoking a characterization of ∃R using real verification algorithms, similar
to the characterization of NP [19]. For ∃R-hardness, we are in essence reducing from
the SimpleStretchability problem. In this problem, we are given a simple pseudoline
arrangement as an input, and the question is whether this arrangement is stretchable. A
pseudoline arrangement A is a set of n curves that are x-monotone. Furthermore, any
two curves intersect exactly once and no three curves meet in a single point. We assume
that there exist two vertical lines on which each curve starts and ends. The problem is to
determine whether there exists a combinatorially equivalent (truncated) line arrangement.
See Figure 3 for an example.

Given the initial pseudoline arrangement A, we construct a graph that is representable
by unit segments iff A is stretchable. This graph is created by enhancing A with more curves
(see Figure 4) and taking their intersection graph. Figures 5 to 7 give some intuition on
the proof that if A is stretchable, this graph is representable by unit segments: The line
arrangement certifying stretchability is first squeezed into a canonical form, then all features
can be represented easily. On the other hand, if this graph is representable, the unit segments
representing the vertices corresponding to A witness stretchability of A. To prove this, we
show that cycles can be used to enforce a certain order of intersections of objects with the
cycle. For this, we can use the same proof for unit segments and polylines.

Knowing that the connectors (green in Figure 4) must intersect the cycle in the correct
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Figure 4 A (black), enhanced with probes (red), connectors (green) and a cycle (yellow).

order in any representation, the intersection pattern of the pseudolines and the probes (red)
guarantees that unit segments representing the pseudolines must have the same combinatorial
structure as A, finishing the proof. The ideas of order-enforcing cycles and probes have
already been used in different contexts [14].

a

x = 0

Figure 5 Stretching and then squeezing a pseudoline arrangement.

pseudoline

probes

other pseudolines

connectors

Figure 6 Representing connectors and probes by unit segments.

The ∃R-hardness proof for PolyLine Recognition follows this previous proof for
unit segments closely, and only adds some additional order-enforcing cycles. The enhanced
pseudoline arrangement for polylines is shown in Figure 8. For each pseudoline we create a
twin. Using the 2k additional order-enforcing cycles we enforce that in any realization of the
graph by polylines, each polyline representing a pseudoline must intersect its twin within
that cycle. We can then show that if two polylines intersect 2k times (with both polylines
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connector segments

Figure 7 Attaching the connectors to the cycle using unit segments in a sawtooth pattern.

visiting these intersection points in the same order), they must in total use at least 2k − 1
bends. This ensures that at least one of the k-polylines must spend all of its k bends to
realize these intersections. Thus, this polyline is actually a straight line in the region labelled
“canvas” in Figure 8. Using the same arguments as for unit segments we can then see that
the arrangement formed by these straight lines is combinatorially equivalent to A, and thus
A is stretchable.

Canvas

Figure 8 A twinned and enhanced with probes, connectors and 2k + 1 cycles (yellow). Weaving
the twinned pseudolines ensures that at least one of the two twins contains no bends in the canvas.
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Abstract
A geometric t-spanner on a set S of n point sites in a metric space P is a subgraph of the complete
graph on S such that for every pair of sites p, q the distance in G is a most t times the distance
d(p, q) in P . We call a connection between two sites in the spanner a link. In some settings, such as
when P is a simple polygon with m vertices and a link is a shortest path in P , links can consist of
Θ(m) segments and thus have non-constant complexity. The total spanner complexity is a recently-
introduced measure of how compact a spanner is. In this paper, we study what happens if we are
allowed to introduce k Steiner points to reduce the spanner complexity. We study such Steiner
spanners in simple polygons, polygonal domains, and on edge-weighted trees.

Surprisingly, we show that Steiner points have only limited utility. For a spanner that uses k

Steiner points, we provide an Ω(nm/k) lower bound on the worst-case complexity of any (3 − ε)-
spanner, and an Ω(mn1/(t+1)/k1/(t+1)) lower bound on the worst-case complexity of any (t − ε)-
spanner, for any constant ε ∈ (0, 1) and integer constant t ≥ 2. These lower bounds hold in all
settings.

On the positive side, for trees we show how to build a 2t-spanner that uses k Steiner points of
complexity O(mn1/t/k1/t + n log(n/k)), for any integer t ≥ 1. We generalize this result to forests,
and then apply it to obtain a 2

√
2t-spanner in a simple polygon or a 6t-spanner a in polygonal

domain with total complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n).

Related Version A full version of the paper is available at https://arxiv.org/abs/2402.12110.

1 Introduction

Consider a set S of n point sites in a metric space P . In applications such as (wireless)
network design [3], regression analysis [10], vehicle routing [7, 14], and constructing TSP
tours [5], it is desirable to have a compact network that accurately captures the distances
between the sites in S. Spanners provide such a representation. Formally, a geometric t-
spanner G is a subgraph of the complete graph on S, so that for every pair of sites p, q

the distance dG(p, q) in G is at most t times the distance d(p, q) in P [12]. The quality of
a spanner can be expressed in terms of the spanning ratio t and a term to measure how
“compact” it is. Typical examples are the size of the spanner, that is, the number of edges
of G, its weight (the sum of the edge lengths), or its diameter [13].

When the sites represent physical locations, there are often other objects (e.g. build-
ings, lakes, roads, mountains) that influence the shortest path between the sites. In such
settings, we need to explicitly incorporate the environment. We consider the case where
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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this environment is modeled by a polygon P with m vertices, and possibly containing holes.
The distance between a pair of points p, q ∈ P is then given by their geodesic distance: the
length of a shortest path between p and q that is fully contained in P . This setting has been
considered before. For example, Abam, Adeli, Homapou, and Asadollahpoor [1] present a
geodesic (

√
10 + ε)-spanner of size O(n log2 n) when P is a simple polygon, and a geodesic

(5 + ε)-spanner of size O(n
√

h log2 n) when the polygon has h > 1 holes. Abam, de Berg,
and Seraji [2] even obtained a (2+ε)-spanner of size O(n log n) when P is actually a terrain.
To avoid confusion between the edges of P and the edges of G, we will from hereon use the
term links to refer to the edges of G.

As argued by de Berg, van Kreveld, and Staals [8], each link in a geodesic spanner may
correspond to a shortest path containing Ω(m) polygon vertices. Therefore, the spanner
complexity, defined as the total number of line segments that make up all links in the
spanner, more appropriate measures how compact a geodesic spanner is. The above spanners
of [1, 2] all have worst-case complexity Ω(mn), hence they present an algorithm to construct
a 2

√
2t-spanner in a simple polygon or a 6t-spanner in a polygon with holes with complexity

O(mn1/t + n log2 n), for any integer t > 1.1 These complexity bounds are still relatively
high. De Berg, van Kreveld, and Staals [8] also show that these results are almost tight.
In particular, for sites in a simple polygon, any geodesic (3 − ε)-spanner has worst-case
complexity Ω(nm), and for any constant ε ∈ (0, 1) and integer constant t ≥ 2, a (t − ε)-
spanner has worst-case complexity Ω(mn1/(t−1) + n).

Problem statement. A very natural question is then if we can reduce the total complexity
of a geodesic spanner by allowing Steiner points. That is, by adding an additional set S
of k vertices in G, each one corresponding to a (Steiner) point in P . For the original sites
p, q ∈ S we still require that their distance in G is at most t times their distance in P

(i.e. dG(p, q) ≤ td(p, q)), but the graph distance from a Steiner point p′ ∈ S to any other
site is unrestrained. Allowing for such Steiner points has proven to be useful in reducing
the weight [4, 9] and size [11] of spanners. In our setting, it allows us to create additional
“junction” vertices, thereby allowing us to share high-complexity subpaths. See Figure 1
for an illustration. Indeed, if we are allowed to turn every polygon vertex into a Steiner
point, Clarkson [6] shows that, for any ε > 0, we can obtain a (1 + ε)-spanner of complexity
O((n + m)/ε). However, the number of polygon vertices m may be much larger than the
number of Steiner points we can afford. Hence, we focus on the scenario in which the number
of Steiner points k is (much) smaller than m.

Our contributions. Surprisingly, we show that in this setting Steiner points have only
limited utility. In the full version, we show that there is a set of n sites in a simple polygon
with m = Ω(n) vertices for which any (2 − ε)-spanner (with k < n/2 Steiner points) has
complexity Ω(mn2/k2). Similarly, we give an Ω(mn/k) and Ω(mn1/(1+t)/k1/(1+t)) lower
bound on the complexity of a (3 − ε)- and a (t − ε)-spanner, respectively. These results
dash our hopes for a near linear complexity spanner with “few” Steiner points and constant
spanning ratio.

These lower bounds actually hold in a more restricted setting. Namely, when the metric
space is simply an edge-weighted tree that has m vertices, and the n sites are all placed in

1 De Berg, van Kreveld, and Staals [8] claim that the refinement by Abam, de Berg, and Seraji [2] can be
applied to obtain a (2t + ε)-spanner of the same complexity (increased by a constant factor dependent
on ε). However, some details of how this refinement influences the complexity are missing.
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Figure 1 A spanner in a simple polygon that uses two Steiner points (red squares). By adding
the two Steiner points, we no longer need multiple links that pass through the middle section of P .

leaves of the tree. In Section 2, we show that in this setting we can efficiently construct
a spanner whose complexity is relatively close to optimal. In particular, our algorithm
constructs a 2t-spanner of complexity O(mn1/t/k1/t + n log(n/k)). A slight extension of
this algorithm allows us to deal with a forest as well.

This algorithm for constructing a spanner on an edge-weighted tree turns out to be the
crucial ingredient for constructing low-complexity spanners for point sites in simple polygons.
In particular, in Section 3, we combine some of the techniques developed by de Berg, van
Kreveld, and Staals [8] and the Steiner spanner for a forest to build a 2

√
2t-spanner of

complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n). The main challenge here is to argue that
the links used still have low complexity, even when they are now embedded in the polygon.
For k = O(1) our spanner thus matches the result of de Berg, van Kreveld, and Staals [8].
In the full version, we extend these results to polygonal domains, where we get a 6t-spanner
of similar complexity. Omitted proofs are contained in the full version.

2 Steiner spanners for trees

In this section, we consider spanners on an edge-weighted rooted tree T . We allow only
positive weights. We denote by n the number of leaves and by m the number of vertices
in T . The complexity of a link between two sites (or Steiner points) p, q ∈ T is the number
of edges in the shortest path π(p, q), and the distance d(p, q) is equal to the sum of the
weights on this (unique) path. In the full version, we prove several lower bounds on the
complexity of any spanner that uses k Steiner points. Among these is a general lower bound
of Ω(mn1/(t+1)/k1/(t+1)) for any (t − ε)-spanner. The goal in this section is to construct a
spanner of complexity close to this lower bound. We denote by T (v) the subtree of T rooted
at vertex v. For an edge e ∈ T with upper endpoint v1 and lower endpoint v2, we denote by
T (e) := T (v2) ∪ {e} the subtree of e rooted at v1. The following lemma states that we can
build a low complexity spanner for a tree (without using Steiner points).

▶ Lemma 2.1 (de Berg et al. [8]). For any integer t ≥ 1, we can build a 2t-spanner for T

of size O(n log n) and complexity O(mn1/t + n log n) in O(n log n + m) time.

Spanner construction. To construct a Steiner spanner G, we start by partitioning the sites
in k sets S1, . . . Sk by an in-order traversal of the tree. The first ⌈n/k⌉ sites encountered are
in S1, the second ⌈n/k⌉ in S2, etc. After this, the sites are reassigned into k new disjoint
sets S′

1, . . . S′
k. For each of these sets, we consider a subtree T ′

i ⊆ T whose leaves are the
set S′

i. There are four properties that we desire of these sets and their subtrees.
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1. The size of S′
i is O(n/k).

2. The trees T ′
i cover T , i.e.

⋃
i T ′

i = T .
3. The trees T ′

i are disjoint apart from Steiner points.
4. Each tree T ′

i contains only O(1) Steiner points.

As we prove later, these properties ensure that we can construct a spanner on each subtree
T ′

i to obtain a spanner for T . We obtain sets S′
i and the corresponding trees T ′

i as follows.
We color the vertices and edges of the tree T using k colors {1, . . . , k} in two steps. In

this coloring an edge or vertex is allowed to have more than one color. First, for each set
Si, we color the smallest subtree that contains all sites in Si by color i. Note that after this
step there are no uncolored vertices that have an incident descendant edge that is colored.
In the next step, we color the remaining uncolored edges and vertices. These edges and
their (possibly already colored) upper endpoints are colored using a bottom-up approach.
We assign each uncolored edge and its upper endpoint the color with the lowest index i that
is assigned also to its lower endpoint.

After coloring T , we place a Steiner point si at the root of tree Ti formed by all edges
and vertices of color i for i ∈ {1, . . . , k}. Observe that it may happen that more than one
Steiner point is assigned to some vertex. Slightly abusing our notation, we denote the vertex
that the Steiner point si is placed at by si as well.

For each Steiner point si, we define a subtree T ′
i ⊆ T . The sites in T ′

i will be the set S′
i.

The tree T ′
i is a subtree of T (si). When si is the only Steiner point at the vertex, then

T ′
i = T (si) \ ⋃

j(T (sj) \ {sj}) for sj a descendant of si. In other words, we look at the tree
rooted at si up to and including the next Steiner points, see Figure 2(a). When si is not
the only Steiner point at the vertex, we include only subtrees T (e) of si (up to the next
Steiner points) that start with an edge e that has color i and no color j > i. See Figure 2(b).
Whenever si has the lowest or highest index of the Steiner points at si, we also include all
T (e′) that start with an edge e′ of color j < i or j > i, respectively.

By creating T ′
i in this way, si is not a leaf of T ′

i . We therefore adapt T ′
i by adding an

edge of weight zero between the vertex at si and a new leaf corresponding to si. On each
subtree T ′

i , we construct a 2t-spanner using the algorithm of Lemma 2.1. These k spanners
connect at the Steiner points, which we formally prove in the spanner analysis.

Analysis. To prove that G is indeed a low complexity 2t-spanner for G, we first show that
the four properties stated before hold for S′

i and T ′
i . We often apply the following lemma,

that limits the number of colors an edge can be assigned by our coloring scheme.

▶ Lemma 2.2. An edge can have at most two colors.

Proof. First of all, observe that an edge can receive more than one color only in the first
step of the coloring. Suppose for contradiction that there is an edge e in T that has three
colors i < j < ℓ. Let v be the lower endpoint of e. Then there must be three sites pi ∈ Si,
pj ∈ Sj , pℓ ∈ Sℓ in T (v). Because these sets are defined by an in-order traversal, pi must
appear before pj in the traversal. Similarly, pj appears before pℓ. Additionally, there must
be a site p′

j ∈ Sj in T \ T (v), otherwise the color j would not be assigned to e. The site p′
j

must appear before pi or after pℓ in the traversal. In the first case, pi must be in Sj as it
appears between two sites in Sj . In the second case, we find the contradiction pℓ ∈ Sj . ◀

▶ Lemma 2.3. The sets S′
i and trees T ′

i adhere to the four stated properties.

We are now ready to prove that our algorithm computes a spanner with low complexity.
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(a) (b)
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Figure 2 The tree Ti is the subtree whose edges and vertices have color i. A Steiner point
(square) is placed at the root of Ti. The shaded areas show the trees T ′

i . The examples show the
case when the Steiner points are (a) at different vertices or (b) share a vertex.

▶ Theorem 2.4. Let T be a tree with n leaves and m vertices. For any integer t ≥ 1, we can
build a 2t-spanner G for T of size O(n log(n/k)) and complexity O(mn1/t/k1/t +n log(n/k))
in O(n log(n/k) + m + K) time, where K is the output size.

Proof sketch. Let ni and mi denote the number of leaves and vertices in a subproblem T ′
i .

Properties 1 and 4 imply that ni = O(n/k), and property 3 implies that
∑

i mi = O(m).
Lemma 2.1 then implies the size and complexity of G. To bound the spanning ratio, consider
the path π(p, q) between two sites p, q. Properties 2 and 3 imply that this path exits a
subtree T ′

i and enters another subtree only at Steiner points. As within each subtree there
is a 2t-spanner, this is also the spanning ratio of G. ◀

The output size K is either the size or complexity of G, depending on whether we report the
edges implicitly or explicitly. In the full version, we extend the result to a forest of trees.

3 Steiner spanners in simple polygons

We consider the problem of computing a t-spanner using k Steiner points for n point sites in
a simple polygon P with m vertices. To obtain a low-complexity spanner we combine ideas
from [2] and [8] with the forest spanner of Section 2.

We partition the polygon P recursively into two subpolygons Pℓ and Pr by a vertical
line segment λ such that roughly half of the sites lie in either subpolygon. For the line
segment λ, we then consider the shortest path tree SPTλ. This shortest path tree includes
all sites in S and vertices of P . The segment λ is split into multiple edges at the projections
of the sites. See Figure 3 for an example. The tree is rooted at the lower endpoint of λ.
Observe that there are O(m + n) vertices in SPTλ.

Let SPT i,j denote the shortest path tree of the j-th subproblem at the i-th level of the
recursion. We exclude all vertices from SPT i,j that have no site as a descendant. This
ensures that all leaves of the tree are sites. Let F = ∪i,jSPT i,j be the forest consisting of all
trees SPT i,j . A site in S or vertex of P can occur in multiple trees SPT i,j , but they are seen
as distinct sites and vertices in the forest F . For this forest we construct a 2t-spanner GF .
A Steiner point in GF corresponds to either a vertex of P or a point on λ. Let S denote

EuroCG’24
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λ

p

p

λ
SPT i,j

Figure 3 The shortest path tree of λ in P ′ and its SPT i,j . The grey nodes and edges are not
included in SPT i,j , but can be assigned to a T ′

i as indicated by the colored backgrounds. The
squares show the Steiner points in SPT i,j and P ′. The sites in P ′ are colored as the trees T ′

i .

the set of Steiner points. To obtain a spanner G in the simple polygon, we add a link (p, q),
p, q ∈ S ∪ S, to G whenever there is a link in GF between (a copy of) p and q.

To bound the complexity of the links in G, we show that any path in a subtree T ′
i as

defined in Section 2 uses vertices of P in that subtree only. This implies that the bound on
the complexity of the forest spanner also holds for the complexity of the links in the polygon.
As the number of sites and vertices in F is increased by a factor O(log n) compared to n

and m, we obtain the following theorem.

▶ Theorem 3.1. Let S be a set of n point sites in a simple polygon P with m vertices, and t ≥
1 be any integer constant. For any k ∈ {1, . . . , n}, we can build a geodesic 2

√
2t-spanner with

at most k Steiner points, size O(n log n log(n/k)), and complexity O(mn1/t(log k)1+1/t/k1/t+
n log2 n) in O(n log2 n + m log n + K) time, where K is the output size.
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Abstract
Let S be a set of n points in the Euclidean plane. A simple polygon of S is a simple polygon such
that every vertex is a point of S. A simple polygon P of S is an at most k-out polygon if at most k

points of S are outside P and the other points are either vertices of P or inside P . In this paper, we
consider the problem of enumerating all the at most k-out polygons of S. We propose an algorithm
that enumerates all the at most k-out polygons in O(n3 log n)-delay and O(n2) space.

1 Introduction

Let S be a set of n points in the Euclidean plane and general position, i.e., no three points
are collinear. A simple polygon of S is a simple polygon such that every vertex is a point in
S. In this paper, we focus on enumeration (or listing) problems of simple polygons of S.

For several classes of simple polygons of S, enumeration problems have been studied. A
simple polygon of S is a non-crossing spanning cycle of S if every point in S is a vertex
of the polygon. The non-crossing spanning cycles are appealing objects in the area of
computational geometry and have been studied in the contexts of counting [6, 8, 15], random
generation [1, 12, 13, 17], and enumeration [8, 15]. It was an open problem whether there
exists an output-polynomial1 time enumeration algorithm for non-crossing spanning cycles.
Yamanaka et al. [16] proposed a new class of simple polygons, which is a relaxed version of
the non-crossing spanning cycles. A surrounding polygon of S is a simple polygon such that
every point in S is either a vertex of the polygon or inside the polygon. They also proposed
an algorithm that enumerates all the surrounding polygons of S in O(n2 log n) time for each.
The running time was improved to O(n2) time for each [14]. Very recently, by using the
enumeration algorithm of the surrounding polygons, Eppstein [5] showed that non-crossing
spanning cycles of a point set can be enumerated in output-polynomial time.

Empty convex polygons are also an important class of simple polygons of S. A simple
polygon of S is an empty convex polygon if the polygon is convex and every point is either a
vertex of the polygon or outside the polygon. The empty convex polygons have been studied
in the contexts of counting [3, 7, 11, 10] and enumeration [4]. Terui et al. [14] proposed a new
class of simple polygons, which is a generalization of the empty convex polygons. A simple
polygon of S is an empty polygon if every point in S is either a vertex of the polygon or
outside the polygon. They proposed an algorithm that enumerates all the empty polygons
of S in O(n2) time for each.

In this paper, we propose a new class of simple polygons of S. A simple polygon P of
S is an at most k-out polygon if there are at most k points outside P and the other points
are either vertices of P or inside P . See Figure 1 for examples. The class of at most k-out

1 An enumeration algorithm is output-polynomial if the algorithm enumerates all the objects in
polynomial-time of the input and output size.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
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(a) (b) (c)

Figure 1 (a) A given point set S and (b), (c) two at most 3-out polygons of S.

polygons is a generalization of the class of surrounding polygons in the sense that the set of
at most k-out polygons of S coincides with (1) the set of surrounding polygons of S when
k = 0 and (2) the set of simple polygons of S when k = n − 3. We design an algorithm
that enumerates all the at most k-out polygons of S in polynomial delay2. Our enumeration
algorithm is based on the reverse-search technique by Avis and Fukuda [2].

Due to space limitations, all the proofs are omitted.

2 Preliminaries

Let S be a set of n points in the Euclidean plane. Throughout this paper, we assume that
S is in general position, i.e., no three points are collinear. The upper-left point of S′ ⊆ S is
the point with the minimum x-coordinate among S′. If ties exist, we choose the point with
the maximum y-coordinate among them.

A sequence P = ⟨p1, p2, . . . , pt⟩, (t ≤ n), of points in S is a simple polygon of S if
the alternating sequence ⟨p1, (p1, p2), p2, (p2, p3), . . . , pt, (pt, p1)⟩ of points and line segments
forms a simple polygon. Let P = ⟨p1, p2, . . . , pt⟩ be a simple polygon of S. We suppose
that the vertices of P appear in counterclockwise order starting from the upper-left vertex
p1 among {p1, p2, . . . , pt}. We denote by in(P ) ⊆ S and out(P ) ⊆ S the sets of the points
inside and outside P , respectively. Note that each of in(P ) and out(P ) does not include any
vertex on P . We denote by pi ≺ pj if i < j holds, and we say that pj is larger than pi on
P . pred(pi) and succ(pi) denote the predecessor and successor of pi of P , respectively. Note
that the successor of pt is p1. For two edges (pi, succ(pi)) and (pj , succ(pj)) of P , we say
that (pj , succ(pj)) is larger than (pi, succ(pi)) if i < j holds. Suppose that P has 4 or more
vertices. A vertex pi of P is embeddable if the triangle consisting of pred(pi), pi, and succ(pi)
does not intersect the interior of P and includes no point in out(P ). An embedment of an
embeddable vertex pi of P is to remove two edges (pred(pi), pi) and (pi, succ(pi)) and insert
the edge (pred(pi), succ(pi)). We denote by emb(P, pi) the simple polygon obtained from P

by applying the embedment of pi to P . See Figure 2 for examples. A point p ∈ out(P ) is
insertable to an edge (pi, succ(pi)) of P if the triangle consisting of p, pi, and succ(pi) does not
intersect the interior of P and includes no point in out(P ). For a point p ∈ out(P ) insertable
to an edge (pi, succ(pi)) of P , the insertion of p to (pi, succ(pi)) is to remove (pi, succ(pi))
and insert the two edges (pi, p) and (p, succ(pi)). We denote by ins(P, (pi, succ(pi)), p) the
simple polygon obtained from P by applying the insertion of p to (pi, succ(pi)) on P . See
Figure 3 for examples.

2 An enumeration algorithm is polynomial delay if the algorithm enumerates all the objects such that
the delay time of any two consecutive outputs is bounded by a polynomial of the input size.
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(a) (b) (c)

p1 p1 p1
p2 p2 p2p3 p3
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p9 p9 p9

p10 p10 p10
p11 p11 p11

Figure 2 (a) A simple polygon of a point set S = {p1, p2, . . . , p11}, where p4 and p8 are embed-
dable vertices. (b) The simple polygon of S obtained from the polygon of (a) by embedding p4. (c)
The simple polygon of S obtained from the polygon of (a) by embedding p8.

(a)
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Figure 3 (a) An at most 2-out polygon of a point set with no embeddable vertices and out(P ) =
{p9, p11}. (b) The polygon obtained from the polygon of (a) by inserting p11 to (p3, p4). (c) The
polygon obtained from the polygon of (a) by inserting p9 to (p6, p7).

The convex hull, denoted by CH(S), of S is the simple polygon with the smallest area
that contains all the points in S. A simple polygon P of S is an at most k-out polygon of S

if |out(P )| ≤ k holds. Figure 1 shows examples of at most k-out polygons. We denote the
set of the at most k-out polygons of S by S≤k(S).

3 Enumeration of at most k-out polygons

Let S be a set of n points in the Euclidean plane. In Section 3.1, we define a tree structure
on S≤k(S), called a family tree. By traversing the family tree, we enumerate all the polygons
in S≤k(S). In Section 3.2, we design an algorithm to traverse the family tree.

3.1 Family tree of at most k-out polygons
Let P = ⟨p1, p2, . . . , pt⟩ (t ≤ n) be a polygon in S≤k(S) \ {CH(S)}. Suppose that p1 is the
upper-left vertex of {p1, p2, . . . , pt} and the vertices of P are arranged in the counterclockwise
order. Let p ∈ out(P ) be a point insertable to an edge (pi, succ(pi)). Then, we define
the distance of (pi, succ(pi)) from p as the Euclidean distance between the midpoint of
(pi, succ(pi)) and p. The distance from p to (pi, succ(pi)) is denoted by dist((pi, succ(pi)), p).
Note that, if p is not insertable to an edge (pi, succ(pi)), the distance from p to (pi, succ(pi))
is not defined. We denote the closest edge of P among the edges insertable from p by
cloe(P, p). If ties exist, the largest edge is cloe(P, p).

We denote the set of the points insertable to at least one edge of P by iout(P ) ⊆ out(P ).
A point p ∈ iout(P ) is the closest outside point, denoted by clop(P ), of P if

dist(cloe(P, p), p) = min
q∈iout(P )

{dist(cloe(P, q), q)}

EuroCG’24
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P par(P) par(par(P))

par(par(par(P))) par(par(par(par(P))))

Figure 4 A parent sequence of at most 2-out polygon P .

holds. If ties exist, the point with the largest x-coordinate and y-coordinate values is chosen
as the closest outside point.

▶ Lemma 3.1. Let P be a polygon in S≤k(S) \ {CH(S)}. There exists either an embeddable
vertex of P or an insertable point in out(S).

We denote by larg(P ) the largest embeddable vertex of P . For convenience, we define
larg(P ) := ∅ if P has no embeddable vertex. Then, we define the parent of P as follows:

par(P ) :=
{

emb(P, larg(P )) if P has an embeddable vertex,
ins(P, cloe(P, clop(P )), clop(P )) otherwise.

▶ Lemma 3.2. Let P be an at most k-out polygon in S≤k(S) \ {CH(S)}. Then, the parent
par(P ) of P is an at most k-out polygon of S, always exists and is unique.

By repeatedly finding the parents from P , we obtain a sequence of at most k-out polygons
of S. The parent sequence PS(P ) = ⟨P1, P2, . . . , Pℓ⟩ of P is a sequence of at most k-out
polygons such that the first polygon is P itself and Pi is the parent of Pi−1 for each i =
2, 3, . . . , ℓ. See Figure 4 for an example. As we can see in the following lemma, the last
polygon in a parent sequence is always CH(S).

▶ Lemma 3.3. For a polygon P ∈ S≤k(S) \ {CH(S)}, the last polygon of PS(P ) is CH(S).

From Lemma 3.3, for any at most k-out polygon, the last polygon of its parent sequence
is the convex hull of S. By merging the parent sequences for all the at most k-out polygons
in S≤k(S), we have a tree structure rooted at CH(S). We call such a tree the family tree of
S≤k(S). An example of the family tree is shown in Figure 5.

3.2 Enumeration algorithm of at most k-out polygons
A pair (pi, p) of a vertex pi of P and a point p ∈ in(P ) is digable if the triangle consisting
of pi, p, and succ(pi) lies inside P and does not contain any point of S. A dig operation
to a digable pair (pi, p) removes the edge (pi, succ(pi)) and inserts the two edges (pi, p)
and (p, succ(pi)). dig(P, pi, p) denotes the resulting polygon. Note that dig(P, pi, p) is also
a polygon in S≤k(S). A vertex pi of P is removable if (1) |out(P )| < k holds, (2) the
triangle consisting of pred(pi), pi, and succ(pi) lies inside P , and (3) the triangle does not
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Input points

Figure 5 An example of a family tree

contain any point of S. A remove operation to a removable vertex pi removes the two edges
(pred(pi), pi) and (pi, succ(pi)), and inserts an edge (pred(pi), succ(pi)) to P . rmv(P, pi)
denotes the resulting polygon. Note that rmv(P, pi) is also a polygon in S≤k(S).

It can be observed that dig(P, pi, p) and rmv(P, pj) are children of P if P = par(dig(P, pi, p))
and P = par(rmv(P, pj)) holds, respectively. We say that a digable pair (pi, p) and a remov-
able vertex pj are active if dig(P, pi, p) and rmv(P, pj) are children of P , respectively. Now,
we have the following lemma.

▶ Lemma 3.4. Let P = ⟨p1, p2, . . . , pt⟩, (t ≤ n), be an at most k-out polygon of a set of n

points. Let (pi, p) be a digable pair, where pi is a vertex of P and p ∈ in(P ), and let pj be a
removable vertex of P . Then,

1. (pi, p) is active if p = larg(dig(P, pi, p)) holds and
2. pj is active if rmv(P, pj) has no embeddable vertex, pj = clop(rmv(P, pj)) holds, and

(pred(pj), succ(pj)) = cloe(rmv(P, pj), pj).

As stated in the following lemma, we can check whether a given pair (pi, p) and a given
vertex pj of P are active, respectively.

▶ Lemma 3.5. Let P be an at most k-out polygon of a set S of n points.

1. Given a pair (pi, p), where pi is a vertex of P and p ∈ in(P ), and given larg(P ), one can
check whether (pi, p) is active in O(log n) time and

2. given a vertex pi and the number of the embeddable vertices, denoted by #emb(P ), of P ,
we can check whether pi is active in O(n2 log n) time

with O(n2)-time preprocessing and O(n2)-additional space for triangular range queries on S

and O(n log n)-time preprocessing and O(n)-additional space for ray shooting queries on P .

EuroCG’24
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Algorithm 1: Enum(S, k)
Construct the convex hull CH(S) of the input point set S;
Preprocess S for triangular range queries;
Find-Children(CH(S), ∅, 0);

Algorithm 2: Find-Children(P = ⟨p1, p2, . . . , pt⟩, pj , #emb(P ))
Output P ;
Preprocess P for ray shooting queries;
if pj = ∅ then q = p0;
else q = pred(pj);
/* Note that pj = larg(P ) and p0 is a sentinel vertex satisfying p0 ≺ pi

for each i = 1, 2, . . . , t. */
foreach point pi with q ≺ pi do

foreach point p ∈ in(P ) do
if the pair (pi, p) is active then
Find-Children(dig(P, pi, p), p, #emb(dig(P, pi, p)));

foreach vertex pi of P do
if pi is active then Find-Children(rmv(P, pi), ∅, #emb(rmv(P, pi)));

Now, we are ready to describe the pseudo-codes of our enumeration algorithm. Algo-
rithm 1 is the main routine and Algorithm 2 is a subroutine to enumerate children.

Algorithm 1 first constructs the convex hull CH(S) of the input point set S. Then, it
executes a preprocess to S for efficiently answering triangular range queries. Note that the
preprocess for triangular range queries is executed only once in our algorithm. Algorithm 2
first outputs P and executes a preprocess to the given polygon P for efficiently answering
ray shooting queries. The preprocess is done once for a recursive call. Next, the algorithm
enumerates all the children of P by dig and remove operations. Note that the above two
preprocesses allow us to use Lemma 3.5. Hence, we can check whether or not candidate
pairs and vertices are active. We have our main theorem.

▶ Theorem 3.6. Let S be a set of n points in the Euclidean plane, and let k be an integer
with 0 ≤ k ≤ n − 3. One can enumerate all the at most k-out polygons in S≤k(S) in
O(n3 log n|S≤k(S)|) time and O(n2) space.

By applying the alternative output method [9], we can enumerate in polynomial-delay.

▶ Corollary 3.7. Let S be a set of n points in the Euclidean plane, and let k be an integer
with 0 ≤ k ≤ n − 3. One can enumerate all the at most k-out polygons in S≤k(S) in
O(n3 log n)-delay and O(n2) space.

4 Conclusions

We have designed an algorithm that enumerates all the polygons in S≤k(S) in O(n3 log n)-
delay and O(n2) space, where S is the set of n points in Euclidean plane and general position.
Our future work include improving the running time of the algorithm.
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Abstract
This paper introduces LITE (Lattice Integrated Topological Embedding), a novel approach

to converting persistence diagrams into finite-dimensional vectors using discrete measure-based
functionals. Our primary focus in this work is on identity and frequency-based transforms but we do
not restrict our framework to them. Our comparative studies reveal that LITE is competitive with,
and often superior to, topological data analysis methods from the literature in common benchmark
classification tasks. This work offers a new viewpoint for data scientists, challenges prevailing
diagram vectorization techniques, and lays groundwork for simpler, more effective use of persistence
diagrams in machine learning.

Related Version arXiv:2312.17093

1 Introduction

Topological Data Analysis (TDA) has emerged as a transformative approach in data science,
providing useful insights into the underlying structure of complex datasets through the
capture of their topological features. The effectiveness of machine learning algorithms,
particularly in pattern recognition and feature extraction, underscores the importance of
understanding data geometry. TDA offers a more sophisticated exploration of this geometric
landscape, leading to numerous successful applications across various fields. Notable examples
include neuroscience [2, 9], materials science [24], and environmental science [11].

Persistent homology, a core methodology in TDA, systematically keeps track of the ap-
pearing and disappearing of topological characteristics across a sequence of nested topological
spaces [12, 25]. These topological features are typically represented through persistence
diagrams (PDs). However, the space of these diagrams is unstructured: they vary in the
number of points they contain, and operations like addition and scalar multiplication are not
clearly defined. This lack of structure [4, 18], poses significant challenges in integrating PDs
into machine learning workflows, where such a space is often crucial for diverse techniques
including classification, neural networks, and feature selection.

Precise Problem Formulation. The unstructured nature of PDs, hinders their straight-
forward integration into traditional machine learning pipelines. This necessitates the de-
velopment of innovative embedding techniques to effectively transform these diagrams into
elements within a space suitable for machine learning workflows.

1.1 Related Work and Contribution
To address the unstructured nature of persistence diagram spaces, two main methods have
been highlighted in literature: vectorization and kernel-based methods. Vectorization includes
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Persistence Images [1] and Persistence Landscapes [3], with their multi-parameter extensions
for increased robustness [5, 23], and modern techniques like ATOL, which quantizes diagram
spaces, and PersLay, introducing a NN architecture for vectorization. The kernel-based
approach crafts specific kernels, such as the multi-scale [19], weighted Gaussian [16], and
sliced Wasserstein kernels [7], offering performance comparable to vectorization methods,
despite representational and scalability challenges.

This work contributes to the computational geometry literature by introducing LITE,
a new vectorization framework in TDA that conceives PDs as measures in R2

+, discretizes
these measures on a lattice, and transforms them into finite-dimensional vectors through
identity and frequency-based transforms. Our approach, distinguished by its simplicity and
effectiveness, challenges the prevailing trends in TDA literature on embedding diagrams into
vector spaces. We achieve results comparable to those in the TDA literature on classical
graph classification benchmark tasks, and with frequency-based transforms, we even often
surpass them.

1.2 Basic Definitions

In the realm of computational geometry, persistent homology is a key technique for analyzing
topological features across scales. It utilizes a filtration process, forming a sequence of nested
topological spaces X0 ⊆ X1 ⊆ · · · ⊆ Xn = X, to dissect the dataset’s topological structure at
various levels of granularity. This analysis is typically represented using PDs. These diagrams
are multisets of points in the extended half-plane Ω = {(x, y) ∈ R2|x ≤ y}, including the
diagonal ∂Ω = {(x, x) ∈ R2} with infinite multiplicity. Each point (x, y) in the diagram
corresponds to a topological feature, with x and y indicating the birth and death of the
feature, respectively. The persistence of a feature is quantified as y − x, representing its
lifespan within the filtration. For our analysis, we assume that all features in our PDs exhibit
finite persistence. To compare PDs, we use the p-Wasserstein distance. For diagrams D1
and D2, it is mathematically defined as:

Wp (D1, D2) =
(

inf
γ

∑

x∈D1

∥x − γ(x)∥p
p

) 1
p

Here, γ ranges over all bijections between D1 and D2, and ∥ · ∥p denotes the p-norm on R2.
In [8], an alternative interpretation of persistence diagrams is presented, defining them as

measure expressed by µ =
∑

x∈D m(x)δx, where δ is the Kronecker delta, D ⊂ Ω is locally
finite, and m(x) ∈ N is the multiplicity of each x, for all x ∈ D. This results in µ being a
locally finite measure supported on Ω with an integer mass on each point of its support.

Following [10], we define the p-persistence of a measure µ, for finite p ≥ 1, as Persp(µ) :=∫
Ω d(x, ∂Ω)p dµ(x). Here, the term d(x, ∂Ω) := infy∈∂Ω d(x, y) signifies the distance from a

point x ∈ Ω to its orthogonal projection onto the diagonal ∂Ω. We define Mp as the set
of all persistence measures with finite p-persistence. Similar to PDs, we use the p-Optimal
Partial Transport distance to compare persistence measures, which we omit defining here
due to space constraints. When the measures have the same mass over the space Ω, this
metric coincides with the p-Wasserstein distance. For detailed information, see our extended
arXiv version [15] and [13] for an introduction to the field.
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2 Methodology

This section presents the LITE vectorization process, outlined in Algorithm 1. All proofs are
provided in extended version on arXiv [15].

Algorithm 1 Lattice Integrated Topological Embedding (LITE)
Require: f : Transform Function with Hyperparameters, Grid {N, M}, Finesse ∆, PDs list

1: Discretize PDs on grid
2: Compute Functional on grid

Ensure: Embedding of PDs

2.1 Discretized Persistence Diagrams
The framework of our work is rooted in the computation of discretized persistence diagrams
(PDs), where measures are confined to allocating mass exclusively at points on a lattice
measure space Γp, as detailed in Lemma 2.1. The discretization process consists of two main
steps: a shifting step, where we transform the measure µ ∈ Mp induced by a persistence
diagram using τ(µ) = (x1, x2 − x1) for all (x1, x2) such that µ(x1, x2) ̸= 0, to convert birth-
death coordinates to birth-persistence coordinates; and a mapping step, utilizing Proposition
2.2 to obtain a persistence measure ν⋆ on Γp.

▶ Definition 2.1. Let GN,M be a regular grid on R2
+ consisting of points {(xi, yj) | xi =

i∆, yj = j∆, i = 0, . . . , N − 1, j = 0, . . . , M − 1} where ∆ is the grid finesse. Define S as the
σ-algebra containing all subsets of GN,M , and µ : S → [0, ∞] as a measure such that for
any A ∈ S, µ(A) =

∑
(xi,yj)∈A mij ∈ Mp where mij is an integer mass assigned to the point

(xi, yj). The triple Γp = (GN,M , S, µ) constitutes a discrete measure space.

▶ Proposition 2.2. Let Γp ⊂ Mp be a discrete measure space as outlined in Definition
2.1. For a persistence diagram D and a measure µ =

∑
x∈τ(D) m(x)δx ∈ Mp, consider the

1-Wasserstein distance W1 between µ any ν ∈ Γp. Consider the optimization problem

ν⋆ = arg min
ν′∈Γp

W1(µ, ν′), s.t. ν′(GN,M ) = µ(D) .

If we choose ν =
∑

x∈τ(D) m(Θ(x))δΘ(x), where Θ : R2
+ → GN,M is a mapping that assigns

each point x ∈ τ(D) to the closest point in GN,M minimizing ∥x − x′∥1, then it holds that
ν = ν⋆ is the solution to the optimization problem.

2.2 Functionals on Persistence Measures
In this study, we define a functional Ψµ(f) for µ ∈ Γp as Ψµ(f) :=

∫
Ω f(x, ·)dµ(x) =∑

x∈D m(x)f(x, ·), utilizing the discrete nature of µ. This functional maps from lattice
measure space Γp to a function space F(Γp). Here we focus on three functions for frequency
and time-frequency distribution, f(x, ·): the Gabor Transform and the Wavelet Transform
for time-frequency distributions, along with the Fourier Transform for frequency analysis.
These transforms map to the frequency domain, situating F(Γp) as a vector space. We
additionally employ the identity transform f(x, ·) = x. The rationale for these transforms
is detailed in our extended work on arXiv [15]. All these transforms output coefficients or
magnitude-phase numbers on a lattice. We convert these into vectors by flattening the lattice
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into a one dimensional array.

While it is possible to establish the stability of our vectorization method for a fixed
∆ > 0, assuming that for all x ∈ D and x′ ∈ D′, the condition ∥x − x′∥ > ∆ holds, proving
stability with a universal constant for general PDs is not feasible. This limitation arises due
to the existence of scenarios where points from PDs can be made arbitrarily close but still
are mapped to different bins in the grid.

3 Results

In this section, we concisely demonstrate how LITE preserves topological information, rivaling
state-of-the-art methods in TDA. Our experiments focus on two classification tasks: graph-
based and point cloud classification from dynamical systems. Experimental setups and
implementation details of our methods for the Graph Classification tasks are reported in our
arXiv version, [15].

3.1 Graph Classification
We evaluated our methods using established graph classification benchmarks. This included
social graph datasets IMDB-B and IMDB-M, as well as chemoinformatics and bioinformatics
datasets COX2, DHFR, MUTAG, and PROTEINS, all sourced from [22].

The highest accuracies achieved with our frequency transforms (LITE) as well as the
accuracy for the identity transform (LITE-IdT) are presented in Table 1.

Dataset SV† P† MP† Perslay⋆ ATOL⋆ BBA† LITE (Our) LITE-IdT (Our)
Mean⋆ Max† Mean⋆ Max†

MUTAG 88.3 79.2 86.1 89.8 88.3 90.4 89.8 91.7 89.2 90.7
COX2 78.4 76.0 79.9 80.9 79.4 81.2 80.6 82.4 79.4 80.4
PROTEINS 72.6 65.4 67.5 74.8 71.4 74.7 72.8 73.6 72.2 73.2
DHFR 78.4 70.9 81.7 80.3 82.7 80.5 81.8 83.1 81.2 82.7
IMDB-B 72.9 54.0 68.7 71.2 74.8 69.4 68.4 69.8 67.2 68.3
IMDB-M 50.3 36.3 46.9 48.8 47.8 46.7 43.7 44.4 43.1 44.3
Table 1 Comparative Analysis of Classification Accuracy with topological methods on Benchmark

Graph Datasets. Note: Symbol † compare with Max metric, while ⋆ with Mean due to different
experimental setup.

Aligning with [6], [21], and [14], we benchmark our frequency transforms against leading
TDA methods (SV [22], P[1, 3], MP [5, 7, 16, 19], Perslay [6], ATOL [21] and BBA [14],
see arXiv version [15] for more details on these methods). In Table 1, our results with the
frequency transforms are at the state-of-the-art for the Biomedical benchmark datasets, con-
sistently outperforming traditional methods like P and MP, and rivaling advanced techniques
like ATOL, PersLay1, SV, and BBA. Remarkably, the identity transform often surpasses
P, MP, SV and ATOL in biomedical tasks, challenging current embedding approaches in
TDA literature. Our method’s effectiveness, using simple grid discretization, critiques the
trend towards complex vectorizations, suggesting straightforward techniques might be more

1 Direct comparison with Perslay for IMDB, PROTEINS is limited due to Perslay’s unique preprocessing [21].
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efficient. Although our methods demonstrate very good performance overall, it should be
acknowledged that for the Social datasets, they are slightly below the current best methods.2

3.2 Dynamical systems (Orbit5K Dataset)
The Orbit5K dataset, used in TDA for classifying DNA microarray flows, features chaotic
trajectories in the unit cube [0, 1]2 with topologies varying by a parameter ρ > 0 (see Figure
1). For each ρ class in the Orbit5K dataset, we form point clouds by iterating the following
recursive equations for a sequence of 1000 points, beginning from a random initial point
(x0, y0) in [0, 1]2:

xn+1 = xn + ρyn(1 − yn) mod 1,

yn+1 = yn + ρxn+1(1 − xn+1) mod 1.

We generated 700 training and 300 testing datasets for each ρ ∈ {2.5, 3.5, 4, 4.1, 4.3} class,
conducting a one-versus-one classification and using persistence diagrams for both H1 and
H0 homologies, following the approach described in [17]. We employ vanilla random forest
classifier as in the graph classification tasks and the same transforms with hyperparameter
settings (see extended version on arXiv). We additionally adopt a regular square grid of
64×64 and 128×128 for all transforms in this learning task. Our highest accuracy results are
in Table 2, with the timings of the various algorithms to vectorize the persistence diagrams
of the dataset presented in Table 3.

Figure 1 Representative Point Cloud Samples from the Orbit5K Dataset.

Aligning with [6] and [14], our comparison includes four kernel methods (PSS-K [20],
PWG-K [16], SW-K [7], PF-K [17]), one neural network (Perslay from [6]), Persistence Images
(PI from [1]), and a rectangle-based classification (BBA from [14]). Our frequency-based
methods surpass most of the kernel methods, PI, BBA and Perslay in performance, though
they fall slightly behind the NN. The identity transform outperforms certain kernel methods
and is comparable to PI, but generally shows suboptimal performance. Regarding the timings
of some of the vectorization methods, from Table 3, it is clear that our method is the
most efficient among all the others in the table, providing a significant improvement in the
computational time.

PSS-K PWG-K SW-K PF-K PI Perslay BBA LITE (Our) LITE-IdT (Our)
72.38 76.63 83.6 85.9 82.5 87.7 83.3 84.6 82.0
Table 2 Comparative Classification Accuracy on the Orbit5K Dataset.

2 Our work replicates the biomedical dataset results from [21], but applying their code to social networks
yielded a 4% lower performance, in comparison to what we reported directly from thier work in Table 1.
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PSS-K PWG-K SW-K PF-K PI LITE-FOUR LITE-GABOR
126.8 14.07 10.08 68.56 73.90 9.15 10.12

LITE-coif1 LITE-coif2 LITE-coif3 LITE-db1 LITE-sb2 LITE-db3 LITE-IdT
9.53 10.25 10.33 9.21 9.33 9.50 8.84

Table 3 Comparative timings in seconds averaged over 5 runs required by various methods to
vectorize the Orbit5K Dataset. For LITE and PI, a grid of 1 × 32 for the diagram of H0 and 32 × 32
for the H1 diagram has been used. For the PSS-K, PF-K, and PWG-K methods, an RBF kernel
approximation has been used to speed up computations.

4 Conclusions and further work

Our study introduces a novel vectorization framework for persistence diagrams using
functional-based, particularly frequency, transforms. This method is effective and often
outperforms existing TDA vectorization techniques in various graph and synthetic dynamical
particle classifications. Its simplicity and potential for enhancement, including the use of
neural networks for the function transform f(x, ·) to improve performance and applicability,
are promising directions for future research.
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Abstract
We consider the Set Cover Problem for geometric neighborhoods: Given a family R = {R1, . . . , Rn}
of n connected regions in the plane, find as few lines as possible, such that each region is intersected
by some line. Even special cases of this problem are known to be NP-complete, and a spectrum of
work has focused on theoretical results such as approximation algorithms; previous practical work
has been limited, and included the case in which each Ri is a single point, and the task is to decide
whether a small number of lines suffice. We present exact methods for a variety of more general
scenarios, including provably optimal solutions for sets with up to 2000 points, and near-optimal
solutions for sets of polygons with up to 650 polygonal regions and a total of about 4000 vertices.

1 Introduction

The Set Cover Problem (SCP) is an NP-complete problem of fundamental importance,
both in theory and practice. For general instances, the greedy algorithm [7] provides an
O(log n)-approximation algorithm, which is best possible in the worst case, unless P=NP.
Many variants of the SCP are geometric, e.g., using line segments, rays, convex polygons or
star-shaped polygons for covering point sets, lines or other geometric objects. The geometry
of an SCP may be helpful: For covering discrete point sets by lines with a limited number
of directions we can get constant-factor approximation algorithms [13]. The underlying
geometry can also give rise to additional difficulties: As shown by Abrahamsen et al. [1], the
Art Gallery Problem (which amounts to covering a simple polygon by a minimum number
of star-shaped subpolygons) is ∃R-complete, making it unlikely that it even belongs to NP.

Our Contributions

We study practically useful methods for covering a set R of n geometric regions by a smallest
number of lines, see Figure 1 for examples. In particular, we provide the following results.

Different methods for efficiently computing a discrete set of candidate lines that limit
the size of the ensuing set cover instance.
Exact approaches for near-optimal solutions for covering points or polygons with lines.
An experimental evaluation for a wide spectrum of benchmark instances.

Related Work

There is a large body of work on geometric Set Cover and Hitting Set problems, so we only
point to a very limited selection of most closely related work; for a more extensive overview,
see the relatively recent paper by Fekete et al. [13], who considered covering a finite set of
points in the plane by a minimum number of lines with a limited number of different slopes.

∗ This work was supported by DFG project “Computational Geometry: Solving Hard Optimization
Problems” (CG:SHOP), FE407/21-1.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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PLC: n=400, OPT=76 GLC: n=50, OPT=9 GLC: n=100, OPT=16

GLC: n=225, OPT=28

Figure 1 Small example instances that were solved optimally. From left to right: A PLC instance
with 400 points and an optimal solution with 76 lines. Three GLC instances (randomly generated
squares on a grid, randomly generated polygons in a circle, and the TSPLIB tsp225 [5] instance)
and their optimal solutions.

The Point Line Cover (PLC) problem [22] asks for a smallest set of lines to cover a given
set of points. It was shown to be NP-hard [25], APX-hard [6] and Max-SNP Hard [23].
Grantson and Levcopoulos [18] developed an O(log OPT ) algorithm for the PLC. Hassin
and Megiddo [19] studied hitting geometric objects with the fewest lines having a small
number of distinct slopes. Gaur and Bhattacharya [15] considered covering points with
axis-parallel lines in d dimensions. Many other problems related to finding a small set of
lines that hit a given set of objects have also been studied; see, e.g., [8, 9, 12, 16, 17, 21, 24].

When considering the coverage of geometric regions (i.e., neighborhoods) instead of dis-
crete points, Aronov et al. [3] provide an O(log log OPT )-approximation for hitting set for
axis-aligned rectangles and axis-aligned boxes in 3D, based on ϵ-nets. Hitting a set of unit
disks has been considered for finding a minimum number of relays for connecting a given set
of relays [10]. While the simple greedy approximation algorithm is efficient and worst-case
optimal, a logarithmic approximation factor is not good enough in practice. Estivill-Castro
et al. [11] evaluated implementations for the PLC, but only considered cases in which the
optimal solution is known to be small, i.e., OPT ≤ 7.

2 Preliminaries

Given a point set P ⊂ R2 of size n, the Point Line Cover Problem (PLC) asks for a
smallest set of lines that covers all points in P. We denote the set of all possible lines as L.
In the General Line Cover Problem (GLC), we are given a set of disjunct regions R
and ask for a smallest set of lines that intersect all regions in at least one point. It is easy to
see that a line intersects a region iff it intersects its convex hull, so we can restrict ourselves
to convex regions; moreover, we focus on compact, disjoint regions with O(1) complexity.

3 Computing a Candidate Set L
Computing optimal solutions can be subdivided into two steps, as follows.

1. Compute a discrete set L of candidate lines that contains an optimal line cover.
2. Solve the resulting Set Cover instance.

In theory, the first step is comparatively easy, while the second is NP-hard. However,
the focus on practical computation implies that merely polynomial-time computation of a
candidate set is insufficient, especially when aiming for small input for the ensuing SCP. A
variety of possible approaches for solving those SCP instances is considered in Section 4.
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3.1 Point Line Cover
For the PLC, Gajentaan and Overmars [14] showed that determining whether a set of n

points in the plane has three collinear points is 3SUM-hard. Even though subquadratic
algorithms for 3SUM exist [2, 4], the improvements over O(n2) are often times marginal.
We propose an O(n2) algorithm for determining L for a given set of points P. The algorithm
iterates over all combinations of two points pi, pj ∈ P and calculates a tuple tij = (m, b)
with m being the gradient of the line ℓ between pi, pj and b being the y value of ℓ at x = 0.
While iterating, we calculate a hash h(tij) to identify every line in L. This allows us to add
all collinear points to a set within a single pass over all point pairs.

3.2 General Line Cover

t2

t4 t1

t11

t9

t8

t12

t10

t7

t6

t5

t3

Figure 2 (Left) Four tangents from Lemma 3.1. The red tangents are interior, the blue ones
exterior. In this example each polygon has four tangential points. (Right) Rotating tangent algo-
rithm to compute L.

Tangent Lines. For two disjoint compact, convex regions in the GLC, we can reduce
the set of candidate lines to two exterior tangents using Lemma 3.1. Even neglecting the
required time for computing a pair of tangents for regions with a significant number of
vertices, the runtime for computing L remains O(n3). This makes this precomputation
prohibitively expensive, even before computing the SCP solution. See Section 5 for an
experimental evaluation.

▶ Lemma 3.1. Let ri and rj be two disjoint compact, convex regions in the plane.
1. There are four extremal lines that intersect both ri and rj.
2. It suffices to consider exterior tangents as potential lines.

Proof. The first claim is relatively straightforward by considering degrees of freedom and
events during continuous modification of a stabbing line.

For the second claim, consider a set of intersected regions r1, . . . , rs (in this order) and
an interior tangent between ri1 and ri2 with i1 < i2; w.l.o.g., let t have positive slope. For
any tangential position, we distinguish between regions on the left and right; w.l.o.g., let ri1

be to the left and ri2 to the right of t.
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Now rotate t continuously in clockwise direction while maintaining tangential position
relative to ri1 . Then all intersections remain intact, until a tangential event with a region
ri3 ̸= ri1 happens.

We distinguish:
1) If i3 > i1, then ri3 is to the left, and we have an exterior tangent for ri1 and ri3 that

stabs r1, . . . , rs.
2) If i3 < i1, then ri3 is to the right. Then we continue analogously, rotating t counter-

clockwise around ri3 until we get an event at a region ri4 , with further case distinction.
2.1) If i4 > i3, then ri3 is to the right, and we have an exterior tangent for ri3 and ri4

that stabs r1, . . . , rs.
2.2) If i4 < i3, then ri4 is to the right. This brings us back to the same situation we

had with ri1 and ri2 , but with i4 < i1, so we can continue in this manner, leading
to a sequence i1, i2, i3, i4, . . . of event regions. If the current tangential index ij ever
increases, we have identified an exterior tangent; however, the available index set is
finite, so a decrease below ij = 1 guarantees an exterior tangent.

◀

Rotating Tangents. A more efficient method for computing a candidate set of tangent
lines L is illustrated in Figure 2 (right). This Rotating Tangent (RT) algorithm considers
a tangent line that rotates continuously around a compact convex region Ri, and exploits
the fact that it intersects another disjoint compact in a contiguous circular arc of directions.
This induces a circular arc graph for each of the regions; any maximal clique in this graph
corresponds to a maximal subset of intersected regions [20].

Therefore, we can compute all maximal subsets containing a given region in linear time
after presorting the events. Computing the tangents and initializing the sweep lines for all
polygons takes O(n2); presorting and computing all sets during the sweep takes O(n2 log n).

Eliminating Subsets. With either method, the resulting L may produce a family that
contains proper subsets. In principle, these could be eliminated post-construction in worst
case O(n5); more efficient practical methods (e.g., using k-d trees or other decompositions)
could be employed. This turned out to have limited benefit, as some of the methods for the
SCP already deal with subsets in a relatively effective manner during their solution process.

4 Solving Set Cover Instances

Now we consider different approaches for finding a subset of L that covers all regions.
Throughout this section, we adopt a standardized notation for the underlying Set Cover
problems, where the objective is to cover elements in E by selecting sets from S.

Integer Programming

An Integer Programming formulation is shown in Figure 3; in the worst case, this can result
in n2 sets with 2 elements. Alternatively, we remove all 2-sets from S, i.e., S ′ = {Si | Si ∈
S, |Si| > 2} and introduce new binary variables yj for j ∈ E, see the right side of Figure 3.
Constraints are satisfied by choosing a set or its newly introduced variable for covering; the
latter option incurs a penalty term of 1

2 for covering remaining point pairs by lines.
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min
∑

Si∈S
xi

s.t.
∑

Si∈S
j∈Si

xi ≥ 1 ∀j ∈ E

xi ∈ {0, 1} ∀Si ∈ S

min
∑

Si∈S′

xi + 1
2

∑

j∈E

yj

s.t.
∑

Si∈S′

j∈Si

xi + yj ≥ 1 ∀j ∈ E

xi ∈ {0, 1} ∀Si ∈ S ′

yj ∈ {0, 1} ∀j ∈ E

Figure 3 Two possible Integer Programming formulations for PLC and GLC. (Left) Basic set
cover IP. (Right) Formulation without sets of size 2.

min
∑

Si∈S
xi

s.t.
∨

Si∈S
j∈Si

xi ∀j ∈ E

xi ∈ B ∀Si ∈ S

min 2 ·
∑

Si∈S′

xi +
∑

j∈E

yj

s.t.
∨

Si∈S′

j∈Si

xi ∨ yj ∀j ∈ E

xi ∈ B ∀Si ∈ S ′

yj ∈ B ∀j ∈ E

Figure 4 Two possible Constraint Programming formulations for PLC and GLC. (Left) Con-
straint programming formulation. (Right) Formulation without sets of size 2.

Constraint Programming Formulation

The IP can be directly converted into a Constraint Programming formulation, see Figure 4.
For a formulation without sets of size 2, we multiply the objective function by a factor of 2
to ensure that the values remain integer.

Large Neighborhood Search

We also tested a Large Neighborhood Search (LNS): Iteratively remove a subset from the
current solution until a certain number of elements are uncovered, then solve the restricted
set cover problem with an exact solver for the improved IP formulation. In this process, the
neighborhood size is adapted to ensure optimal solvability.

5 Experimental Results

Our implementation uses exact number types and predicates and was tested on a work-
station with an AMD Ryzen 9 7900 (12 × 3.7 GHz) CPU and 98GB of RAM1. IP solvers
are denoted by IP (Figure 3 left) and IP-2SET (Figure 3 right), CP-SAT solvers as CP-
SAT (Figure 4 left) and CP-SAT-2SET (Figure 4 right). We used IP-2SET as the exact
solver within the LNS algorithm, denoted by LNS (IP-2SET). To account for the lack of

1 Source code and data: https://gitlab.ibr.cs.tu-bs.de/alg/geometric-covering
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Figure 5 Solvers executed on the plc_points instance set with a 600s time limit. (Left) Quality
of the lower bounds produced by the different solvers in comparison with the best lower bound.
(Right) Upper bound quality (gaps to best lower bound) of all implemented solvers.
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Figure 6 Solvers and line construction algorithms executed on the glc_polygons_sm instance
set without any time limit (until OPT was found). (Left) Runtime of the RT and TL approach for
computing all lines for the set cover problem. (Right) Proportion of time in the full solving process
spent during line construction.

publicly available benchmarks, we generated instance sets plc_points, glc_polygons_sm,
glc_polygons, glc_squares within a fixed-size canvas as follows: For the PLC, we randomly
computed lines and chose points on these lines. For the GLC, we placed random point clouds
(at locations randomly chosen or according to point locations in TSPLIB [5] instances) and
used their convex hull while ensuring no intersections occurred. This yielded several hundred
instances; see Figure 1 for examples.

5.1 Point Line Cover
Figure 5 compares the lower bounds from all approaches to the best lower bound found by
any method. As the LNS solver can only produce lower bounds for small neighborhoods
and CP-SAT exceeded the memory limits, they were excluded from this evaluation. Fig-
ure 5 shows that the IP-2SET can reliably find the best lower bounds of all implemented
approaches, even though set cover seems to be suited for SAT-based solvers. The right side
of Figure 5 shows that the initial greedy solution already provides reasonably good solutions
for all tested instances. CP-SAT-2SET performed worse than the IP-based approaches.
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Depending on the instance, either IP-2SET or the LNS-based approach yielded the best
upper bounds, with LNS performing poorly on instances with more than 5000 points.

5.2 General Line Cover
Covering Set Computation

See Figure 6 for a comparison between the two methods for subset computation: RT is
considerably faster than the TL approach, despite producing a slightly larger set of candidate
lines. Moreover, subset elimination can drastically reduce the number of lines for the SCP
solver. However, this has almost no effect on the ensuing SCP computation times.
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Figure 7 Solvers executed with a 600s time limit. (Left) Upper bound quality (gaps to best
lower bound) for convex polygons (glc_polygons). (Right) Upper bound quality (gaps to best lower
bound) for square instances (glc_squares).

Upper bounds

Figure 7 compares the performance of the best solvers from the previous section on two
benchmark sets (i) convex polygons of various sizes and (ii) squares, see Figure 1 for examples
and solutions. In Figure 7, we can see that IP-2SET again beats the other approaches, while
LNS produces similarly good and sometimes better upper bounds than the integer program.
Overall, the gap between the upper and lower bounds is slightly smaller for the unit square
instances, and the performance of all approaches is worse than for the PLC.

6 Conclusion

We have shown that geometric covering problems can be practically solved to near optimality
for a wide range of instances. A spectrum of further refinements remains to be studied. This
includes specialized methods for congruent regions (such as squares or disks, which arise from
error bounds for imprecise data), but also higher-dimensional scenarios. As Estivill-Castro
et al. [11] showed, there are FPT-type practical approaches for finding PLC solutions with
only few lines; it is conceivable that similar ideas can be extended to GLC instances.
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Abstract
We are given a set of line segments (e.g., tubes in a solar plant) to be inspected by drones. The
limited capacity of the batteries imposes periodical visits (tours) to a fixed base station. The
objective is to assign a set of tours for each drone so that the segments are covered as quickly as
possible, i.e. to minimize the maximum time spent by the drones. In this paper, we prove that this
problem is NP-hard even when the segments are positioned on a line and the scenario involves two
drones. An approximation algorithm is proposed with constant factor ranging form 1 to 2.

1 Introduction

As technology advances, unmanned aerial vehicles (UAVs), commonly referred to as drones,
are assuming an ever-expanding role in the inspection of industrial structures. For example,
the manual inspection of high-voltage power transmission lines or solar plants are both
time-consuming and expensive [6]. Hence, the use of drones equipped with cameras enables
efficient fault detection.

In the case of Concentrated Solar Power plants (CSP), which represent a growing
technology for electricity production through renewable energies, the plant comprises an
array of receiver tubes subjected to high thermal stress. Therefore, the identification of
broken glass envelopes is crucial to maintain the proper functioning of the CSP plant [5]. In
this context, promptly detecting a fault enables the company to take immediate action in
the repair process. In this paper, we tackle the problem of minimizing the time required for
a team of drones to effectively traverse a set of tubes, represented as line segments. This
problem falls within the domain of arc routing problems (ARPs), which involve determining a
set of tours with the minimum total cost while traversing a set of links (arcs or edges) known
as required links in a graph [4]. However, in contrast to vehicles in classical ARPs, a drone
has the flexibility to enter a line through any of its points, traverse a portion of that line,
exit through another of its points, and subsequently travel directly to any point on another
line, and so forth. Hence, employing drones for service in ARPs introduces substantial
modifications to the conventional methods of modeling and solving these problems [2].

In a recent paper [1], the authors study a problem focused on minimizing the total time
required for one drone to cover a set of line segments positioned along a given line. Here, the
total time is defined as the sum of the lengths of the necessary tours. The drone has limited
battery endurance, maintains a constant flying speed, and returns to a base station when
its battery is running low. They show that this one-dimensional variant can be solved in
polynomial time. They also address the problem of minimizing the number of tours needed

∗ This work is partially supported by grants PID2020-114154RB-I00 and TED2021-129182B-I00 funded
by MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR.
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to cover all the segments. In this paper, we consider the same one-dimensional covering
problem, with a focus on minimizing the maximum distance (time) traveled by the drones of
the team—essentially, reducing the time required for the team to cover the segments. This
objective is meaningful when the company aims to expedite the task and promptly repair
the broken tubes.

1.1 Problem Statement
Let α = {a1, a2, · · · , an} be a set of disjoint line segments on a line. For i = 1, 2, · · · , n,
ai = [xi, yi], with x1 < y1 < x2 < y2 < · · · < xn < yn. We are given a team of k identical
drones that must traverse all the segments. The drones are constrained by finite battery
endurance, maintain uniform velocity during flight, and execute takeoff and battery recharging
protocols at a fixed point B, the designated base station, situated exterior to the line. We
assume that the recharging time is negligible as the batteries are replaced instantly. Let
L > 0 denote the maximum distance achievable by a drone when initiating and concluding
its trajectory (tour) at the fixed point B. For a tour labeled as t, we refer to its length as ℓ(t).
The length of a collection of tours, denoted as T = {t1, · · · , tm}, is represented as ℓ(T ). It is
calculated as the sum of the lengths of individual tours, that is,

∑m
i=1 ℓ(ti). Our objective is

to determine a set of tours for each drone in such a way that we minimize the maximum
length traveled by any drone (the makespan) while ensuring that all segments are covered.
Formally, the Minmax problem for k drones can be stated as follows:
▶ Problem 1.1. Minmax-k: compute a set of tours for each drone, T1, T2, · · · , Tk, such
that:

α ⊂ T1 ∪ T2 ∪ · · · ∪ Tk and, (1)
max

j=1,··· ,k
ℓ(Tj) is minimized. (2)

See Figure 1 for an example of a set of tours covering line segments with k = 2 drones.

B

Figure 1 Covering tours for two drones. Blue and red tours correspond to different drones.

The problem of minimizing the maximal number of tours (instead of total length)
performed by the k drones can be easily addressed using the approach of [1]. Indeed, let m

be the minimum number of tours required by just a drone to cover all segments in the set S.
Thus, ⌈ m

k ⌉ is the solution, and the problem can be solved in O(n + m) time with a greedy
approach proposed in [1]. In the same paper, it has been demonstrated that the Minsum
problem, that is, minimizing the total length of a set of tours performed by a single drone
can also be solved in polynomial time. This can be easily extended to solve the Minsum
problem for k drones by allowing one drone to perform all the tours while the others remain
inactive. In this paper, we prove that transitioning from the Minsum problem to the Minmax
criterion for two drones results in an NP-hard problem. Then, an approximation algorithm
with factor ranging from 1 to 2 is proposed.
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2 NP-Hardness

It is known that the two way-balanced partition problem is NP-complete [3]: Given a finite
set of positive integers S = {si}n

i=1, determine if there is a subset A ⊂ S of cardinality ⌊n/2⌋,
with

∑
si∈A si =

∑
sj∈S\A sj .

We can prove that the following variant is NP-hard:

▶ Problem 2.1. Minmax partition problem: Given a finite set of positive integers S =
{si}2n

i=1, determine a subset A ⊂ S of cardinality n, with M2 =
∑

si∈A si ≥ M1 =
∑

sj∈S\A sj ,
such that M2 is minimum for all possible subsets of S of cardinality n.

In this section, we outline the key ideas for proving the NP-hardness of the Minmax-2
problem through a reduction from Problem 2.1. The following result will be one crucial tool
in our construction:

▶ Proposition 2.2. For a set of positive numbers S = {si}2n
i=1 and two positive constants

K, C > 0, define the set S′ = {s′
i}2n

i=1 with s′
i = Ksi + C. Then a subset A ⊂ S is a solution

to Problem 2.1 for S if and only if the subset A′, defined by s′
i ∈ A′ if si ∈ A, is a solution

to Problem 2.1 for the set S′.

2.1 Construction
The following construction can be done in polynomial time. Given a line, an exterior point
B, and a positive constant L > 0, let O be the projection point of the base B on the
line located as in Figure 2. Let {si}2n

i=1 be a set of positive integers and assume w.l.o.g.
R = maxi{si} = s2n. Take ϵ a small number less than 1/3, for example ϵ = 10−8.

Step 1: For i = 0, · · · , 2n, determine a sequence of right hand points yi, with ci = d(yi, B),
that satisfies:

c0 > max
(

L

2 − ϵL

4n
, L − y0 − L

3 ,

√
5L

6

)
,

yi+1 − yi + ci + ci+1 = L,

c2
i+1 = y2

i+1 +
(

L

3

)2
.

B

O

L/3 L/2

y0

c0 c1 c2 ci ci+1

y1 yi yi+1 · · ·y2

Figure 2 Diagram for Step 1. Right hand points yi.

Step 2: Determine the number sequence:

{s′
i = Ksi + 2c2n}2n

i=1 with K = L − 2c2n

R
.
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Step 3: For i = 1, · · · , 2n, determine the sequence of right hand points xi, with bi =
d(xi, B) that satisfies:

ci + (yi − xi) + bi = s′
i,

b2
i = x2

i +
(

L

3

)2
.

Step 4: For i = 1, · · · , 2n, draw the subsequence of right hand segments [xi, yi] for i even,
and left hand segments [−yi, −xi] for i odd (Figure 3).

B

L/2

O

L/3

x2 y2 x2n y2n−y2n−1 − x2n−1 −y3 − x3 x4 y4−y1 − x1

b2 b4 b2nb1b3b2n−1

c2nc4c2c3 c1c2n−1

Figure 3 Diagram for step 4. Final construction.

▶ Theorem 2.3. The Minmax-2 problem is NP-hard.

Proof. We will provide a brief outline of the proof. The problem Minmax-2 is clearly in NP.
Given a set of positive integers S = {si}2n

i=1, perform the above construction in polynomial
time. Set K = L−2c2n

R and C = 2c2n. We can prove that the following facts are true for our
construction:

Statement 1: The solution of the Minsum problem for one drone in our construction is
determined by a the set of tours T = {ti}2n

i=1 with each tour ti covering exactly the i-th
segment. Notice that the length of each tour ti is s′

i = Ksi + C by Step 3.
Statement 2: The tours of any solution {T1, T2} for the Minmax-2 problem in the
construction correspond to tours ti derived from a solution to the Minsum problem for a
single drone.

Now, given a solution A for Problem 2.1 for S, K and C, define the set S′ and A′ as in
Proposition 2.2 and take a solution of the Minsum problem for one drone (by applying the
polynomial time algorithm of [1] to our construction). By Statement 1, each tour ti of this
solution covers exactly the i-th segment and has length s′

i. Thus, assigning each tour ti to
T2 if and only if s′

i ∈ A′, we will have a solution of the Minmax-2 problem by Statement 2,
the minimality of A′ and the fact that s′

i is the length of the tour ti.
In the other direction, given a solution for the Minmax-2 problem in our construction,

{T1, T2}, assign s′
i ∈ A′ if and only if ti ∈ T2 (assume w.o.l.g that ℓ(T2) ≥ ℓ(T1)). By

Statement 2, the length of each ti is s′
i; therefore we obtain a solution of Problem 2.1 for S′

and, by Proposition 2.2, we can consequently derive a solution for S. ◀
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3 An approximation algorithm

Greedy tour distribution for two drones, G2D-algorithm: In [1], an algorithm based on
dynamic programming to compute a set of tours T = {t1, · · · , tm} solving the minsum
problem for one drone was proposed. Getting T as the initial step, the G2D-algorithm just
distribute the tours of T into two sets, T1 and T2, so that, in each step, the difference between
the sum of the lengths of the tours in each set is |ℓ(T2) − ℓ(T1)| = aL with 0 ≤ a ≤ 1. To do
it, given T = {t1, · · · , tm}, add for i = 1 the tour t1 to T1 and in each subsequent step i > 1
add the tour ti ∈ T to the set T1 or T2 with minimum total length.
▶ Observation 3.1. Assume w.l.o.g. that ℓ(T2) ≥ ℓ(T1) in G2D-algorithm; then, for some
a ∈ [0, 1], ℓ(T2) = ℓ(T1) + aL.
▶ Theorem 3.2. Let {T ∗

1 , T ∗
2 } be any solution of the Minmax-2 problem and let {T1, T2} be

the final distribution of the G2D-algorithm. Assume ℓ(T1) ≤ ℓ(T2) and ℓ(T ∗
1 ) ≤ ℓ(T ∗

2 ). Then:
a) ℓ(T1) + aL

2 ≤ ℓ(T ∗
2 ) ≤ ℓ(T1) + aL

b) If a = 0, then {T1, T2} is optimal for the Minmax-2 problem.

c) If a ∈ (0, 1], then ℓ(T2) ≤ ∆ · ℓ(T ∗
2 ), with ∆ = Γ + 2

Γ + 1 and Γ = 2ℓ(T1)
ℓ(T2) − ℓ(T1) .

▶ Observation 3.3. By the results of [1], G2D-algorithm computes T1 and T2 in O(n2) +
O(nm) time, where n is the number of segments and m the total number of tours.
▶ Observation 3.4. As ℓ(T1) increases (for example, if ℓ(T ) is large) then ∆ tends to 1.
▶ Observation 3.5. G2D-algorithm can be generalized for k > 2 drones with the same
time complexity; we just have to properly distribute the m tours of T into k sets T1, · · · , Tk.
The approximation factor is ∆ = Γ + k

Γ + 1 with Γ = k · ℓ(T1)
ℓ(Tk) − ℓ(T1) , where T1 is the set with

minimum total length and Tk the set with maximum total length.

4 Conclusions and future research

We have proved that covering a set of line segments on a line with drones using the minmax
criterion is NP-hard, even when considering only two drones. We found a reduction from a
variant of the finite partition problem. It is highly likely that we can extend this result to
the Minmax-k problem for k > 2 drones by drawing connections to the multiway number
partition problem and employing similar ideas as presented in Section 2.

Another avenue for future research is the enhancement of the G2D-algorithm. After
getting {T1, T2} (assume ℓ(T2) ≥ ℓ(T1)), two tools can be employed for further improvement.
With the Cutting technique, the idea is to break one tour of T2 into two sub-tours and
reducing the cost by allocating one sub-tour to the other drone as illustrated in Figure 4 (a).

On the other hand, the Enlarging technique can be applied when a tour ti ∈ T1 with
a length strictly less than L is found to be in contact with a tour tj ∈ T2. Then we can
simultaneously enlarge the tour ti and reduce the length of the tour tj (Figure 4 (b)). We
plan to conduct a series of experiments to test how much the approximation factor improves
with these tools.
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Abstract
A dichotomous ordinal graph consists of an undirected graph G = (V, Es ∪ Eℓ) with an ordered
partition of the set of edges into a set Es of short edges and a set Eℓ of long edges. A geometric
representation of a dichotomous ordinal graph is a straight-line drawing Γ of G such that the short
edges of G are exactly those edges that have length at most one in Γ.

We characterize for which bipartite graphs all ordered partitions of the edge set admit a geometric
representation as a dichotomous ordinal graph. On the one hand, such a representation always exists
if the graph is a subgraph of K3,m, for an arbitrary m, or a subgraph of K4,6. On the other hand, there
exist dichotomous ordinal K4,7 and K5,5 that do not admit a geometric representation. Moreover,
any bipartite dichotomous ordinal graph admits a geometric representation if the short edges induce
an outerplanar graph and any dichotomous ordinal graph admits a geometric representation if the
short edges induce a subgraph of the rectangular grid.

1 Introduction

A dichotomous ordinal graph consists of an undirected graph G = (V, Es ∪ Eℓ) with a
partition of the edges into a set Es of short edges and a set Eℓ of long edges. A geometric
representation of a dichotomous ordinal graph is a straight-line drawing Γ of G such that the
short edges of G are exactly those edges that have length at most one in Γ. Fig. 1 shows
two straight-line drawings of the same dichotomous ordinal graph. The drawing in (a) is a
geometric representation of it, whereas the drawing in (b) is not.

∗ This work was initiated at the Annual Workshop on Graph and Network Visualization (GNV2023),
Chania, Greece, June 2023.

† Research of FM partially supported by MUR of Italy, under PRIN Project n. 2022ME9Z78 -
NextGRAAL— Next-generation algorithms for constrained GRAph visuALization.
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u

v

w

1

(a) valid drawing of △uvw

u

v

w

(b) invalid drawing of △uvw

Figure 1 valid (a) and invalid (b) drawing of a dichotomous ordinal triangle △uvw; short edge
uv (blue) and long edges uw and vw (red/dashed)

Related Results. It is NP-hard to decide whether a dichotomous ordinal graph admits a
geometric representation, even if the underlying graph is a complete graph and the short
edges induce a planar graph [1, Lemma 1] or the underlying graph is a complete bipartite
graph [10, Theorem 4]. In the latter case, the problem is even known to be ∃R-complete [10].

Angelini et al. [2] investigated for which graphs G any ordered partition of the edges
admits a geometric representation as a dichotomous ordinal graph. This is the case if G is
a double-wheel (a simple cycle and two additional vertices connected to all vertices of the
cycle), 2-degenerate (can be reduced to the empty graph by repeatedly removing vertices of
degree at most two), subcubic (each vertex has degree at most three), or 4-colorable and the
short edges induce a caterpillar (tree such that the removal of degree one vertices yields a
path). On the negative side, they [2] proved that if G is the double-wheel plus one edge, then
there exists a partition of the edge set of G into short and long edges that doesn’t admit a
geometric representation as a dichotomous ordinal graph.

Closely related is the notion of ordinal embeddings. Given a set of objects x1, . . . , xn in an
abstract space together with a set of ordinal constraints of the form dist(xi, xj) < dist(xk, xl),
we are asked to compute a set of points p1, . . . , pn in the d-dimensional Euclidean space
Rd such that, by preserving as many ordinal constraints as possible, it returns a good
approximation of the displacement of x1, . . . , xn. Ordinal embeddings were first studied in
the 60’s by Shepard [11, 12] and Kruskal [8, 9] in the context of psychometric data analysis.
Recently, there have been applications in the field of Machine Learning [14]. The computation
of ordinal embeddings is also known in the literature as non-metric multi-dimensional scaling.
For an extensive literature review on ordinal embeddings refer to [15].

Of particular interest in relation to our work is the application of ordinal embeddings in
the problem of recognizing Euclidean Multidimensional preferences [3, 5, 10] in the field of
Computational Social Science. The objects are either voters or alternatives, which, together
with the ordinal constraints (i.e., the voters’ preferences), naturally define a bipartite graph.
However, the goal is to find an embedding in Rd where all constraints are satisfied rather
than to seek for an approximation. Efficient algorithms exist when d = 1 [4, 5], while for any
d ≥ 2 the problem is as hard as the existential theory of the reals [10]. The case where a voter
either likes or dislikes a preference has also been studied [6, 10]. Note that, in this setting,
an embedding that employs short and long edges can fully represent the likeness/dislikeness
of voters to alternatives. This is precisely the problem this paper is devoted to.

Our Results. A dichotomous ordinal graph G = (U ∪ W, Es ∪ Eℓ) is bipartite if Es ∪ Eℓ ⊆
U × W . We study in particular complete bipartite dichotomous ordinal Kn,m, i.e., bipartite
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graphs G = (U ∪ W, Es ∪ Eℓ) with |U | = n, |W | = m, and Es ∪ Eℓ = U × W . We show
that subgraphs of dichotomous ordinal K3,m, m ∈ N or K4,6 always admit a geometric
representation (Theorem 2.1) while there are dichotomous ordinal K4,7 (Theorem 2.2) and
K5,5 (Theorem 2.3) that do not admit a geometric representation. Further, a bipartite
dichotomous ordinal graph always admits a geometric representation if the short edges induce
an outerplanar graph (Theorem 3.1) or a subgraph of the grid (Theorem 3.2). In both cases,
the subgraph of short edges can even be drawn without edge crossings. However, there are
bipartite dichotomous ordinal graphs that do not admit a geometric representation even
though the subgraph of short edges is planar (Theorems 2.2 and 2.3).

Preliminaries. Let G = (V, ES ∪ Eℓ) be a dichotomous ordinal graph and assume that there
exists a set of long edges whose removal creates different connected components. We can draw
these connected components far apart. Now the long edges of G between different connected
components will be drawn with a length greater than one. This yields the following.

▶ Observation 1. A dichotomous ordinal graph admits a geometric representation if and only
if each subgraph induced by a connected component of the short edges does.

2 Complete Bipartite Graphs — A Characterization

A convenient way to reason about geometric representations for bipartite graphs is in terms of
arrangements of unit circles. Consider a bipartite dichotomous ordinal graph G = (U ∪ W, E)
and suppose that the vertices of U are already drawn as points in the plane. Then, to obtain
a geometric representation for G the task is to place each w ∈ W such that for each u ∈ U

the point w lies in the unit disk centered at u if and only if the edge uw is short; see Fig. 2a.
A related question is the existence of a representation of a graph as a unit disk graph,

where vertices are represented by unit disks, and they are connected by an edge if and only
if the corresponding disks intersect. The main difference compared to dichotomous ordinal
graphs lies in the different types of edges. In a unit disk representation, there are only two
types: edge and non-edge, and all of them have to be faithfully represented. In a geometric
realization of dichotomous ordinal graphs, there are three types of edges: long, short, and
non-edges, and we have no constraints concerning the last type.

Let U = {u1, . . . , un}, let Ci denote the unit circle centered at ui, and let Di denote
the corresponding unit disk. Let C denote the arrangement of C1, . . . , Cn. With every
vertex w ∈ W we associate a subset V (w) ⊆ U such that u ∈ V (w) if and only if the edge uw

is short. We refer to V (w) as a singleton, a pair, or a triple if V (w) contains one, two, or
three vertices, respectively. A subset X ⊆ U is realized by a drawing of U if there is a cell r

in C such that r ⊆ Di if and only if ui ∈ X. Then there exists a geometric realization for G if
and only if there exists a drawing/placement of U such that V (w) is realized for all w ∈ W .

▶ Theorem 2.1. Every dichotomous ordinal K3,m, for m ∈ N, and every dichotomous
ordinal K4,m, for m ≤ 6, admits a geometric representation.

Proof. For K3,m we can draw U = {u1, u2, u3} so that all eight subsets of U are realized;
see Fig. 2a. For |U | ≥ 4 such a universal placement is not possible because an arrangement
of n circles has at most n(n − 1) + 2 cells [13]. So an arrangement of four circles has at
most 14 cells, whereas a four-element set has 16 subsets. However, for |U | = 4 and |W | ≤ 6
we can always obtain a geometric representation as follows. Let V (W ) ⊂ 2U denote the set
of subsets of U that are associated to some vertex of W .

EuroCG’24
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u1

u3

u2
w

(a) K3,m

u

(b) K4,m all pairs (c) K4,m all triples

Figure 2 Regions for the other side.

If there are at least three pairs in V (W ), then, given that |V (W )| ≤ |W | ≤ 6, the number
of triples plus the number of singletons in V (W ) together is at most three. Thus, as |U | = 4,
there exists a vertex u ∈ U such that {u} /∈ V (W ) and U \ {u} /∈ V (W ). So we can use the
drawing depicted in Fig. 2b, where we assign u to the central circle. As all subsets of U

other than {u} and U \ {u} are realized, this is a valid geometric representation of G.
Otherwise, there are at most two pairs in V (W ). We use the drawing depicted in Fig. 2c,

where we assign the vertices of U to the circles so that both pairs in V (W ) appear consecutively
in the circular order of circles. (This works regardless of whether or not these pairs share a
vertex.) As all subsets of U other than the two pairs that correspond to opposite circles in
the drawing are realized, this is a valid geometric representation of G. ◀

▶ Theorem 2.2. There is a dichotomous ordinal K4,7 that does not admit a geometric
representation.

Proof Sketch. Let U = {u1, u2, u3, u4} and W = {w1, . . . , w7} denote the vertex partition.
For each wi, we can specify an associated set Ui ⊆ U (such that exactly the edges between wi

and Ui are short; see Fig. 3a). We choose all four subsets of size three and the three subsets
of size two that contain u4, and distribute them among the vertices of W arbitrarily. In any
geometric representation, each set Ui corresponds to a cell in the induced arrangement C
of unit circles. Two more cells are required implicitly: The outer cell, which corresponds
to ∅ ⊂ U , and a cell that corresponds to the whole set U and is required by Helly’s Theorem [7]
because disks are convex and we specified all triples to be among the sets Ui. Using these
properties of C we can show that it cannot be realized using unit circles. ◀

▶ Theorem 2.3. There is a dichotomous ordinal K5,5 that does not admit a geometric
representation.

Proof Sketch. Let U = {u1, . . . , u5} and W = {w1, . . . , w5} denote the vertex partition. To
each wi ∈ W , we associate a set Ui ⊆ U of “short neighbors” (see Fig. 3b):

Ui = {ui, ui⊕1, u5}, for 1 ≤ i ≤ 4, and U5 = U \ {u5},

where i ⊕ 1 = (i mod 4) + 1. In any geometric representation, each set Ui corresponds to a
cell in the induced arrangement C of unit circles. Using the existence of these cells we can
analyze C geometrically and show that it cannot be realized using unit circles. ◀

3 Short Outerplanar Graphs and Short Subgraphs of the Grid

We show that every bipartite dichotomous ordinal graph admits a geometric representation
if the subgraph Gs induced by the short edges is outerplanar or a subgraph of the grid. In
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u3 u1 u2

u4

w1

w2 w3

w4

w5 w7 w6

(a) short edges of K4,7

w1

w2

w3

w4

u5

u1

u2

u3

u4

w5

(b) short edges of K5,5

Figure 3 A dichotomous ordinal K4,7 and K5,5, respectively, that does not admit a geometric
representation. The drawn edges are the short edges. Edges between vertices labeled u on one hand
and w on the other hand, that are not drawn, are long.

the first case, we construct a planar drawing of Gs in which the BFS-layers are drawn on
horizontal lines. See Fig. 4b. In the second case, we suitably perturb the grid. See Fig. 5.

▶ Theorem 3.1. A bipartite dichotomous ordinal graph admits a geometric representation if
the subgraph induced by the short edges is outerplanar.

Proof Sketch. Let G = (V, Es ∪ Eℓ) be a bipartite dichotomous ordinal graph such that
Gs = (V, Es) is outerplanar. By Observation 1, we may assume that Gs is connected. We
root Gs at an arbitrary vertex r. Let Vk, k = 0, . . . be the BFS layers of Gs rooted at r,
i.e., V0 = {r}, V1 is the set of neighbors of r, and Vk+1, k ≥ 1 is the set of neighbors of the
vertices in Vk that are not already in Vk−1. We say that w is a child of v and v is a parent of
w if vw is an edge of Gs, v ∈ Vk and w ∈ Vk+1 for some k. By outerplanarity, each vertex
has at most two parents. We construct a planar drawing of Gs with the following properties.

The root r is drawn with y-coordinate y0 = 0. All vertices in layer Vk, k > 0 are on a
horizontal line ℓk with y-coordinate yk strictly between k − 1 and k.
The distance between a vertex and its children is at most 1 while the distance between
two vertices on consecutive layers is greater than 1 if they are not adjacent in Gs.
For each vertex v there is a vertical strip Sv such that (a) v is in Sv, (b) Sw is contained
in the union of the strips of w’s parents, (c) Su and Sv are internally disjoint if u and v

are on the same layer.
Special care has to be taken if a vertex w ∈ Vk+1 has two parents u and v, i.e., if w closes an
internal face. In that case, we want to draw w on line ℓk+1, on the common boundary of Su

and Sv, and with distance exactly one to both u and v. ◀

▶ Theorem 3.2. A dichotomous ordinal graph G = (V, Es ∪ Eℓ) admits a geometric repre-
sentation if the set of short edges induces a subgraph of the grid.

Proof Sketch. Extend Gs = (V, Es) by the remaining grid edges and require the new edges
to be long. Use the construction in Fig. 5 to place the vertices. Then the short edges are
shorter than n2 +1/2, while the long edges have length at least n2 +1. Scale the drawing. ◀
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(a) construction for a tree
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(b) geometric realization when Gs is the graph in (c)

(c) bipartite outerplanar graph

Figure 4 How to construct a geometric realization of a bipartite dichotomous ordinal graph if
the short edges induce an outerplanar graph.



Angelini, Cornelsen, Haase, Hoffmann, Katsanou, Montecchiani, and Symvonis 17:7

longest possible short edge

shortest possible long edge
n2 2n2 3n2

n2

2n2

3n2

Figure 5 For each grid point (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ n there are four possible points. If i > 1,
the x-coordinate is in2 if the edge between (i − 1, j) and (i, j) is short and in2 + i otherwise. If
j > 1, the y-coordinate is jn2 if the edge between (i, j − 1) and (i, j) is short and jn2 + j otherwise.

4 Conclusion

We leave open the questions whether bipartite dichotomous ordinal graphs always admit a
geometric realization in any of the following cases: (i) the underlying graph is planar; (ii) the
underlying graph is 3-degenerate; or (iii) the graph induced by the short edges is a 2-tree.
Questions (i) and (ii) are open even for non-bipartite dichotomous ordinal graphs.
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Abstract
The edge-length ratio of a planar straight-line drawing Γ of a graph G is the largest ratio between
the lengths of every pair of edges of Γ. If the ratio is measured by considering only pairs of edges
that are incident to a common vertex, we talk about local edge-length ratio. The (local) edge-length
ratio of a planar graph is the infimum over all (local) edge-length ratios of its planar straight-line
drawings. It is known that the edge length ratio of outerplanar graphs is upper bounded by a
constant, while there exist graph families with non-constant outerplanarity that have non-constant
lower bounds to their edge-length ratios. In this paper we prove an Ω(

√
n) lower bound on the local

edge-length ratio (and hence on the edge-length ratio) of the n-vertex 2-outerplanar graphs. We
also prove a constant upper bound to the edge length ratio of Halin graphs.

1 Introduction

Let Γ be a planar straight-line drawing of a planar graph G = (V, E). For any edge e ∈ E, let
|e|Γ be the length of the segment representing e in Γ. The edge-length ratio of Γ, denoted as
ρ(Γ), is the maximum ratio between the lengths of every two edges in Γ; the local edge-length
ratio ρℓ(Γ) of Γ is the maximum ratio between the lengths of two adjacent edges. Formally,

ρ(Γ) = max
(u,v),(z,w)∈E

|(u, v)|Γ
|(z, w)|Γ

, ρℓ(Γ) = max
(u,v),(v,w)∈E

|(u, v)|Γ
|(v, w)|Γ

.

The edge-length ratio ρ(G) of G is the infimum of ρ(Γ) over the set D(G) of all planar
straight-line drawings Γ of G, i.e., ρ(G) = infΓ∈D(G) ρ(Γ). Analogously, the local edge-length
ratio ρℓ(G) of G is defined as ρℓ(G) = infΓ∈D(G) ρℓ(Γ).

We remark that since the publication of the first book on graph drawing [7], minimizing
the maximum edge length provided that the shortest edge has length one (i.e. minimizing
the edge-length ratio) is among the most relevant optimization goals, because of its impact
on the readability of the computed visualization. Eades and Wormald [9] prove that deciding
whether a biconnected planar graph has edge-length ratio one is NP-hard, and Cabello et
al. [5] extend this result to triconnected instances. Borrazzo and Frati [4] prove that the
edge-length ratio of n-vertex planar 3-trees is Ω(n). As for n-vertex planar 2-trees, Blažej
et al. [3] prove an Ω(log n) lower bound. Notably, both the lower bound by Borrazzo and
Frati and the lower bound by Blažej et al. use graph families whose outerplanarity grows
as a function of n. In contrast, Lazard et al. [10] show that graphs with outerplanarity one
(i.e. outerplanar graphs) have a constant upper bound to their edge-length ratio.
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
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A natural question that stems from the previous literature is whether outerplanarity
one is a hard cutoff for achieving constant edge-length ratio. We answer this question in
the affirmative, proving that graphs with outerplanarity two, i.e. the 2-outerplanar graphs,
have unbounded edge-length ratio. Nonetheless we prove a constant upper bound on the
edge-length ratio of a well-studied family of 2-outerplanar graphs. Our results are as follows.

We describe a family of n-vertex 2-outerplanar graphs whose local edge-length ratio is in
Ω(

√
n) which implies a lower bound also for the edge-length ratio of these graphs. It is

worth noticing that while graph families with O(1) local edge-length ratios are known [3],
no family with ω(1) local edge-length ratio was previously known.
We show that Halin graphs have edge-length ratio at most 3. We remark that Halin
graphs are well-known subjects of study in the graph drawing literature; see e.g. [2, 6, 8].

Our approach for the lower bound builds upon ideas of Borrazzo and Frati [4]. Our
upper bound is proved by translating the problem of computing drawings with bounded
edge-length ratio to a topological question about (a variant of) level planarity with limited
edge span. As a byproduct, the proof regarding the edge-length ratio upper bound of Halin
graphs fixes an imprecision in the literature about the span of their weakly leveled planar
drawings. For reasons of space some proofs are omitted or sketched.

2 Lower Bound

a

bk−1
ck−1

Gk−1

ck bk

(a)

a

c4 b4
c3

c2

c1 b1

b2
b3

(b)

a′≡a′′

c′4 b′′4b′4≡c′′4

G′
4 G′′

4

(c)

Figure 1 (a) Definition of the graph Gk. (b) Graph G4 (c) Example of a graph G of Theorem 2.3.

We define a family of 2-outerplanar graphs Gk, for every k ≥ 1, such that Gk has
n = 2k + 1 vertices. The graph G1 is a 3-cycle C1. Assume that Gk−1 has been defined
and that its outer face is a 3-cycle Ck−1 whose vertices are denoted as a, bk−1, and ck−1;
then Gk is obtained by adding two vertices bk and ck, and the edges (a, bk), (a, ck), (bk, ck),
(bk, bk−1), (ck, ck−1), and (ck, bk−1), embedded as shown in Fig. 1a. Note that Gk is 2-
outerplanar and has 2k + 1 vertices (see Fig. 1b for an example with k = 4). Let Γ be an
embedding-preserving planar straight-line drawing of Gk. For i = 1, 2, . . . , k, we denote by
∆i the triangle that represents Ci in Γ and by p(∆i) its perimeter. We assume that the
shortest edge over all triangles ∆i has length 1; if not, we scale the drawing so to achieve this
condition. The next lemma is a consequence of results by Borrazzo and Frati [4, pp.140-142].

▶ Lemma 2.1. Let Γ be an embedding-preserving planar straight-line drawing of Gk, for
k ≥ 2; then p(∆i) > p(∆i−1) + γ, with γ = 0.3.

We first prove a lower bound on ρℓ(Gk) that holds if we consider only drawings that
preserve the planar embedding of Gk. We then remove this restriction.
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▶ Lemma 2.2 (⋆). Let Γ be an embedding-preserving planar straight-line drawing of Gk, for
k ≥ 2; then ρℓ(Γ) ≥

√
3k
40 .

Sketch. If k ≤ 40
3 the the statement is trivially true, since ρℓ(Γ) ≥ 1. Thus, we can assume

that k > 40
3 . By using induction, Lemma 2.1, and the fact that p(∆1) > γ, we can prove

that p(∆i) > γ · i, for every i = 1, 2, . . . k. Let L denote the length of the longest edge e1 of
the triangle ∆k incident to a. We have that L ≥ p(∆k)

4 > γ·k
4 = 3k

40 . Let e2 be the shortest
edge of Γ. Edge e2 is incident to vertex a or to a neighbor v of a. If e2 is incident to a, then
ρℓ(Γ) ≥ |e1|Γ

|e2|Γ
≥ 3k

40 . Otherwise, edge e3 = (v, a) has vertex a in common with e1 and vertex
v in common with e2. By definition we have |e1|Γ ≤ ρℓ(Γ)|e3|Γ ≤ ρℓ(Γ)2|e2|Γ = ρℓ(Γ)2 and
ρℓ(Γ) ≥

√
|e1|Γ ≥

√
3k
40 . ◀

To prove the next theorem we construct a 2-outerplanar graph with n = 4k vertices such
that, in every embedding, it contains a copy of Gk embedded as in Lemma 2.2 (see Fig. 1c).

▶ Theorem 2.3 (⋆). For every integer k ≥ 2, there exists a 2-outerplanar graph G with
n = 4k vertices such that ρℓ(G) ≥

√
3n
160 .

3 Edge-length Ratio of Halin Graphs

A k-span weakly level planar drawing (k-SWLP drawing) Γ is a straight-line planar drawing
whose vertices lie on a set of horizontal equispaced lines, called levels, and whose edges
intersect at most k + 1 levels. Notice that, in a k-SWLP drawing edges between vertices
that are consecutive in the same level are allowed. We assume that the levels are numbered
from top to bottom and that the distance between consecutive levels is 1. An edge that
intersects k + 1 levels has span k. A graph is k-SWPL if it has a k-SWLP drawing.
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Figure 2 (a) A 2-SWLP drawing Γ; (b) The 5-SWLP drawing Γ′ obtained from Γ.

▶ Lemma 3.1 (⋆). If G is a k-SWLP graph for some k ≥ 1, then ρ(G) ≤ 2k + 1.

Proof. Let Γ be a k-SWLP drawing of G. We first transform Γ into a (2k + 1)-SWLP
drawing such that every edge has span at least one, i.e., no edge has both end-vertices on
the same level. To this aim we split each level i into two levels, numbered 2i and 2i + 1,
and assign the vertices of level i alternating between 2i and 2i + 1. Let Γ′ be the resulting
drawing (see Fig. 2 for an example). For an arbitrarily chosen value ε > 0, we squeeze
horizontally the drawing Γ′ so that its width is ε. After this squeezing, for every edge e we
have 1 ≤ |e|Γ′ ≤ 2k + 1 + ε. It follows that ρ(Γ) ≤ 2k + 1 + ε and ρ(G) ≤ 2k + 1. ◀
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In the remainder we exploit Lemma 3.1 to prove a constant upper bound on the edge-
length ratio of Halin graphs. A Halin graph (see Figs. 3a and 4b) is a 3-connected embedded
planar graph G such that, by removing the edges along the boundary C of its outerface, one
gets a tree T whose internal vertices have degree at least 3 and whose leaves are incident to
the outerface of G. We call T the characteristic tree of G and we call C the adjoint cycle of
G. A Halin graph G is trivial if it is a wheel graph, i.e., if T has only one non-leaf vertex.

Bannister et al. [1, Thm. 17] state that all Halin graphs are 1-SWLP which, together with
Lemma 3.1, would imply an upper bound of 3 to their edge-length ratio. Unfortunately, K4
is a Halin graph that is not 1-SWLP and the proof technique of [1] fails even for instances
of Halin graphs different from K4. Namely, let T be the characteristic tree of the Halin
graph of Fig. 3a. According to the proof of Theorem 17 of [1] a leveling of T is computed as
follows: Choose a leaf of T as the root and assign it to level 0; at Step i, assign to level i + 1
the previously-unassigned nodes that are either children of nodes at level i or that belong to
a path from one such children to its leftmost or rightmost leaf descendant in T . However,
for any possible choice of the root of T , one obtains the leveling of Fig. 3b that has an edge
between two non-consecutive vertices on a same level.

r

(a)

r

(b)

Figure 3 (a) A Halin graph; the vertices are grouped according to a leveling obtained with the
technique in [1] choosing r as the root; (b) the corresponding level drawing.

pl pr

(a)

G

vl vr

r

C

T

(b)

T ∗

(c)

Figure 4 (a) The external path of a tree T ; (b) A Halin graph G; the thick edges form the
characteristic tree T , while the thin edges from the adjoint cycle C; the tufts of T are highlighted
with gray areas. (c) The pruned tree T ∗ of T .
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We now prove that all Halin graphs except K4 are 1-SWLP (Lemmas 3.3 and 3.4), which
by Lemma 3.1 implies an upper bound of 3 to the edge-length ratio of these graphs. Let
T be an ordered rooted tree. The external path of T is defined as follows. If T is a single
vertex r, then the external path of T coincides with r; otherwise it is the path connecting the
parent pl of the leftmost leaf of T and the parent pr of the rightmost leaf of T (see Fig. 4a).

Let G be a non-trivial Halin graph. A tuft of the characteristic tree T of G is a maximal
set of at least two leaves having the same parent, and such that this parent is adjacent to
exactly one other internal vertex of T (in Fig. 4b the tufts are highlighted with gray areas).
The pruned tree T ∗ of T is obtained by removing all leaves from T (see Fig. 4c).

▶ Lemma 3.2 (⋆). Let G be a Halin graph distinct from K4 and let T be the characteristic
tree of G. The number of tufts of T is equal to the number of leaves of the pruned tree of T .

T

r

vl vr

(a)

Taux

vl vr

(b)

Figure 5 (a) A decomposition in characteristic paths of the characteristic tree of the Halin graph
of Fig. 4b; (b) The corresponding auxiliary tree Taux.

▶ Lemma 3.3 (⋆). Let G be a non-trivial Halin graph and let T be the characteristic tree
of G rooted at any non-leaf vertex. Let vl be the leftmost leaf and vr be the rightmost leaf of
T . If both vl and vr belong to a tuft, then G \ (vl, vr) has a 1-SWLP drawing Γ such that vl

is the first vertex of the topmost level and vr is the last vertex of the same level.

Sketch. We simplify the characteristic tree T of G by collapsing into single vertices a set
of suitably defined paths called characteristic paths and illustrated in Fig. 5. The external
path of T is a characteristic path. For each vertex v of a characteristic path π and for each
child w of v that is not in π, let T ′ be the tree rooted at w. The external path of T ′ is a
characteristic path of T . Denote by Taux the tree obtained by collapsing the characteristic
paths into vertices; for a vertex v of Taux that corresponds to a path π of T , we say that π

is the pertinent path of v. We compute first a 1-SWLP drawing Γaux of Taux (see Fig. 6a).
The level of each vertex is equal to its depth in Taux and the order of the vertices in each
level is given by the left-to-right order of Taux. We now replace each vertex of Taux by its
pertinent path, thus obtaining a 1-SWLP drawing ΓT of T (see Figs. 6b and 6c). It is easy
to see that all the edges of the adjoint cycle that are distinct from (vl, vr) can be added
to the drawing without crossings and with no span increase. We finally move vl and vr to
the topmost level. Let vl = v1, v2 . . . , vk = vr be the leaves of T in the order they appear
counterclockwise along the adjoint cycle C of G. Since vl belongs to a tuft, v2 is a sibling
of vl and they are both drawn on level 1. Also, their parent is the first vertex on level 0.
Thus, vl can be moved to the left of the leftmost vertex of level 0 without crossings and with
no span increase. By a symmetric argument, vr can be moved to the right of the righmost
vertex of level 0 (see Fig. 6c). ◀

Lemma 3.3 allows us to compute a drawing of a Halin graph except for one edge. In the
next lemma we explain how to cope with this issue.
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vl vr

Taux

(a)

r

vl vr

(b)
rvl vr

(c)

. . .

(d)

Figure 6 (a) A 1-SWLP drawing Γaux of Taux; (b) A 1-SWLP drawing of T obtained from Γaux

by replacing each vertex with its pertinent path; (c) A 1-SWLP drawing of G \ (vl, vr) with the
properties of Lemma 3.3; (d) A 1-SWLP drawing of a trivial Halin graph.

vl vr

τ1
τ2

V1

V2

(a)

vl vr

(b)

Figure 7 Illustration of Lemma 3.4, Case 1: (a) A Halin graph G; (b) A 1-SWLP drawing of G.

▶ Lemma 3.4 (⋆). Every Halin graph G distinct from K4 has a 1-SWLP drawing.

Proof. Let T be the characteristic tree of G and C be its adjoint cycle. If G is trivial, a
1-SWLP drawing of G is computed as in Fig. 6d. Otherwise, T has at least one edge and,
by Lemma 3.2, at least two tufts. A leaf not belonging to any tuft is a single leaf.

Case 1: T has at least one single leaf. We remove a maximal set V1 of consecutive single
leaves along C (see Fig. 7a). By Lemma 3.3 we compute a drawing of the resulting graph
such that the leaf vl preceding V1 walking clockwise along C and the leaf vr following V1
walking clockwise along C, are the first and the last vertex, respectively, on the topmost
level. To construct a 1-SWLP drawing of G, we put the single leaves of V1 on a new level
above the topmost in the order they appear along C. See Fig. 7b.

Case 2: T has no single leaves. If T ∗ has at most 1 internal vertex, then T ∗ is a single
edge or it is a star with at least three edges; a 1-SWLP drawing of G can be constructed as
in Figs. 8a and 8b. Otherwise, T ∗ has one edge e∗ whose end-vertices are both non-leaves.
Further, e∗ is shared by two faces each having an edge belonging to C. Removing these two
edges and e∗ (possibly smoothing the end-vertices of e∗ if they have degree two after the
removal) we get two subgraphs Ga and Gb of G (Fig. 8c) for which we compute two 1-SWLP
drawings according to Lemma 3.3 (Figs. 8d and 8e). We then combine the two drawings by



E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, F. Montecchiani, S. Wismath 18:7

mirroring vertically and horizontally one of them. This allows us to add the three removed
edges without crossings and without span increase (Fig. 8f). ◀

. . .

. . .

(a)

. . .

. . .

. . . . . .

. . .

(b)

ra rbe∗

Ta Tb

vr,a

vl,a

vl,b

vr,b

(c)

vr,avl,a

Γa

(d)

rbvl,b vr,b

Γb

(e)

ra

rb
e∗

vl,avr,a

vr,bvl,b

(f)

Figure 8 Illustration of Lemma 3.4, (a)-(b) Case 2a; (c)-(f) Case 2b.

▶ Theorem 3.5. If G is a Halin graph, then ρ(G) ≤ 3.

4 Open Problems

(i) Is the bound of Theorem 2.3 asymptotically tight? (ii) Study other sub-families of 2-
outerplanar graphs that have constant (local) edge-length ratio.
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Abstract
We study the Vapnik–Chervonenkis dimension (VC-dimension) of range spaces, where the ground
set consists of either polygonal curves in Rd or polygonal regions in the plane that may contain holes
and the ranges are balls defined by an elastic distance measure, such as the Hausdorff distance, the
Fréchet distance and the dynamic time warping distance (DTW). We show for the Fréchet distance
of polygonal curves and the Hausdorff distance of polygonal curves and planar polygonal regions
that the VC-dimension is upper-bounded by O(dk log(km)), where k is the complexity of the center
of a ball, m is the complexity of the polygonal curve or region in the ground set, and d is the ambient
dimension. For d ≥ 4 this bound is tight in each of the parameters d, k and m separately. For DTW
of polygonal curves, our analysis directly yields an upper-bound of O(min(dk2 log(m), dkm log(k))).

Related Version arXiv:2308.05998

1 Introduction

The Vapnik–Chervonenkis dimension (VC-dimension) [15] is a measure of complexity for
range spaces. Knowing the VC-dimension of a range space can be used to determine sample
bounds for various computational tasks. These include sample bounds on the test error of
a classification model in statistical learning theory [14] or sample bounds for an ε-net [11]
or an (η, ε)-approximation [10] in computational geometry. Sample bounds based on the
VC-dimension have been successfully applied in the context of kernel density estimation [12],
neural networks [2, 13], coresets [5, 8, 9], clustering [1, 3] and other data analysis tasks.

We study range spaces, where the ground set consists of polygonal curves or polygonal
regions and the ranges consist of balls defined by the Hausdorff distance. Previous to our work,
Driemel, Nusser, Phillips and Psarros [7] derived almost tight bounds on the VC-dimension
in the setting of polygonal curves. At the heart of their approach lies the definition of a set of
boolean functions (predicates) which can be used to determine if a query curve is contained
in a ball of given radius around a center curve. Their proof of the VC-dimension bound uses
the worst-case number of operations needed to determine the truth values of each predicate.

In this paper, we extend the known set of predicates to be able to decide the Hausdorff
distance between polygonal regions with holes in the plane. We give an improved analysis
for the VC-dimension that considers each predicate as a combination of sign values of
polynomials. This approach does not use the computational complexity of the distance
evaluation, but instead uses the underlying structure of the range space defined by a system
of polynomials directly. Our techniques extend to other elastic distance measures, such as
the Fréchet distance and the dynamic time warping distance (DTW).
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1.1 Preliminaries
Let X be a set. We call a set R where any r ∈ R is of the form r ⊆ X a range space with
ground set X. We say a subset A ⊆ X is shattered by R if for any A′ ⊆ A there exists
an r ∈ R such that A′ = r ∩ A. The VC-dimension of R (denoted by V Cdim(R)) is the
maximal size of a set A ⊆ X that is shattered by R. We define the ball with radius ∆ and
center c under the distance measure dρ on a set X as bρ(c, ∆) = {x ∈ X | dρ(x, c) ≤ ∆}. We
study range spaces with ground set (Rd)m of the form

Rρ,k = {bρ(c, ∆) | ∆ ∈ R+, c ∈ (Rd)k}.

Let R be a range space with ground set X, and F be a class of real-valued functions defined
on Rd × X. For a ∈ R let sgn(a) = 1 if a ≥ 0 and sgn(a) = 0 if a < 0. We say that
R is a t-combination of sgn(F ) if there is a boolean function g : {0, 1}t → {0, 1} and
functions f1, . . . , ft ∈ F such that for all r ∈ R there is a parameter vector y ∈ Rd such that
r = {x ∈ X | g(sgn(f1(y, x)), . . . , sgn(ft(y, x))) = 1}.

Central to our approach is the following well-known theorem for bounding the VC-
dimension of such range spaces. The theorem can be proven by investigating the complexity
of arrangements of zero sets of polynomials (see full version [4]).

▶ Theorem 1.1 ([2], Theorem 8.3). Let F be a class of functions mapping from Rd × X to
R so that, for all x ∈ X and f ∈ F the function y → f(y, x) is a polynomial on Rd of degree
no more than l. Suppose that R is a t-combination of sgn(F ). Then we have

V Cdim(R) ≤ 2d log2(12tl).

Let ∥·∥ denote the standard Euclidean norm. Let X, Y ⊆ Rd for some d ∈ N. The directed
Hausdorff distance from X to Y is defined as d−→

H
(X, Y ) = supx∈X infy∈Y ∥x − y∥ and the

Hausdorff distance between X and Y is defined as dH(X, Y ) = max{d−→
H

(X, Y ), d−→
H

(Y, X)}.

If a set X consists of a single point p ∈ Rd, we may write p instead of {p} to simplify the
notation, e.g. dH(p, Y ) instead of dH({p}, Y ). Let d, m ∈ N. A sequence of vertices
p1, . . . , pm ∈ Rd defines a polygonal curve P by connecting consecutive vertices to create
the edges p1, p2, . . . , pm−1, pm. We may think of P as an element of Xd

m := (Rd)m and write
P ∈ Xd

m. We may also think of P as a continuous function P : [0, 1] → Rd by fixing m

values 0 = t1 < . . . < tm = 1, and defining P (t) = λpi+1 + (1 − λ)pi where λ = t−ti

ti+1−ti
for

ti ≤ t ≤ ti+1. We call P a closed curve if p1 = pm and we call P self-intersecting if there
exist s ∈ [0, 1], t ∈ (0, 1) with s ≠ t such that P (s) = P (t). In the case that P is a closed
curve in R2 which is not self-intersecting, we call the union of P with its interior a simple
polygonal region S (without holes). We denote with ∂S the boundary of S, which is P .
Given a simple polygonal region S0 and a set of pairwise disjoint simple polygonal regions
S1, . . . , Sh in the interior of S0, we also consider the set S = S0 − (S1 ∪ · · · ∪ Sh) a polygonal
region and we call S1, . . . , Sh the holes of S.

Let s, t ∈ Rd. We denote with ℓ(st) the line supporting st. We define the stadium
centered at st with radius ∆ ∈ R+ as D∆(st) = {x ∈ Rd | ∃p ∈ st, ∥p − x∥ ≤ ∆}. Let
e1, e2 ∈ Xd

2 be two edges. We define the double stadium of the edges e1 and e2 with radius
∆ as D∆,2(e1, e2) = D∆(e1) ∩ D∆(e2).

Let X be a set of subsets (called sites) of R2. The Voronoi region reg(A) consists
of all points p ∈ R2 for which A is the closest among all sites in X, i.e. reg(A) = {p ∈
R2 | d−→

H
(p, A) < d−→

H
(p, U) for all U ∈ X \ {A}}. The Voronoi diagram is vd(X) =

R2\∪A∈Xreg(A). We call the set bisec(A, B) = {p ∈ R2 | d−→
H

(p, A) = d−→
H

(p, B)} the bisector
of A and B. The Voronoi edge of A, B is defined as ve(A, B) = vd(X)∩bisec(A, B) and the
Voronoi vertices of A, B, C are defined as vv(A, B, C) = vd(X)∩ bisec(A, B)∩ bisec(B, C).



F. Brüning and A. Driemel 19:3

new ref. old

discrete
polygonal

curves

DTW
O(dk2 log(m)) Thm. 4, [4]

-
O(dkm log(k)) Thm. 4, [4]

Hausdorff O(dk log(km)) Thm. 2, [4]
O(dk log(dkm)) [7]

Fréchet O(dk log(km))(∗) Thm. 3, [4]

continuous
polygonal

curves

Hausdorff O(dk log(km)) Thm. 3.5
O(d2k2 log(dkm)) [7]

Fréchet O(dk log(km))(∗) Thm. 27, [4]

weak Fréchet O(dk log(km))(∗) Thm. 27, [4] O(d2k log(dkm)) [7]

polygons R2 Hausdorff O(k log(km)) Thm. 3.6 -
Table 1 Overview of VC-dimension bounds. Results marked with (∗) were independently obtained

by Cheng and Huang [6].

2 Results

For the Hausdorff distance of polygonal regions (with holes) in the plane, we show that
the VC-dimension of RdH ,k is bounded by O(k log(km)). For the Fréchet distance and the
Hausdorff distance of polygonal curves, in the discrete and the continuous case, we show
that for the VC-dimension of Rρ,k our techniques imply the same bound of O(dk log(km)).
Parallel and independent to our work, Cheng and Huang [6] obtained the same result for the
Fréchet distance using very similar techniques. The bounds improve upon the upper bounds
of [7] in all of the considered cases. An overview of our results with references to theorems
and comparison to [7] and the independent results from [6] is given in Table 1. By the lower
bound Ω(max(dk log(k), log(dm))) for d ≥ 4 in [7], the new bounds for polygonal curves are
tight in each of the parameters k, m and d separately. For the Dynamic time warping
distance, we show a new bound of O(min(dk2 log(m), dkm log(k))). The proofs for Fréchet
and DTW are very similar to the ones used for the Hausdorff distance and we discuss them
in the full version [4].

3 Analysis for the Hausdorff distance

To bound the VC-dimension of range spaces of the form RdH ,k, we define geometric predicates.
The truth values of these predicates have to uniquely determine distance queries with dH . We
give predicates such that the directed Hausdorff distance query d−→

H
(P, Q) ≤ ∆ is determined

by them. The other direction d−→
H

(Q, P ) ≤ ∆ is analogous. We will show that our predicates
can be viewed as combinations of simple predicates.

▶ Definition 3.1. Let F be a class of functions mapping from Rdm × Rdk+1 to R so that,
for all f ∈ F the function (x, y) → f(x, y) is a polynomial of constant degree. Let P be
a function from Rdm × Rdk+1 to {0, 1}. We say that the predicate P is simple if P is a
t-combination of sgn(F ) with t ∈ O(1).

In our proof of the VC-dimension bounds we will use the following corollary to Theorem 1.1.

▶ Corollary 3.2. Suppose that for a given dρ there exists a polynomial p(k, m) such that for
any k, m ∈ N the space Rρ,k with ground set Rdm is a t-combination of simple predicates
with t = p(k, m). Then V Cdim(Rρ,k) is in O(dk log(km)).
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A

p

C

B

vv(A,B,C)

ve(B,C)ve(A,C)

ve(A,B)

Figure 1 Degenerate case: vv(A, B, C) consist of a whole arc and ve(A, B) contains a region.

Let P ∈ Xd
m with vertices p1, . . . , pm and Q ∈ Xd

k with vertices q1, . . . , qk be two polygonal
curves. Let further ∆ ∈ R+. By [7] the directed Hausdorff distance query d−→

H
(P, Q) ≤ ∆ is

uniquely determined by the following predicates.
(P1): Given an edge e1 of Q and a vertex p of P , this predicate returns true iff there
exists a point q on e1, such that ∥q − p∥ ≤ ∆.
(P2): Given an edge of P , pjpj+1, and two edges e1, e2 of Q, this predicate is equal to
ℓ(pjpj+1) ∩ D∆,2(e1, e2) ̸= ∅.

Examples for the predicates P1 and P2 are depicted in Figure 3 (they are also used for
polygonal regions).

▶ Lemma 3.3 (Lemma 7.1, [7]). For any two polygonal curves P, Q, given the truth values
of all predicates of the type P1, P2 one can determine whether d−→

H
(P, Q) ≤ ∆.

In the case of polygonal regions that may contain holes, we define some of the predicates
based on the Voronoi vertices of the edges of the boundary of the polygonal region. Since
degenerate situations can occur if Voronoi sites intersect in a point p (see Figure 1), we
restrict the predicates to the subset of the Voronoi vertices that are relevant to our analysis.

▶ Definition 3.4. Let a = a1a2, b = b1b2 and c = c1c2 be edges of a polygonal region that
may contain holes. Consider their vertices and supporting lines A = {{a1}, {a2}, ℓ(a)},
B = {{b1}, {b2}, ℓ(b)} and C = {{c1}, {c2}, ℓ(c)}. Let X ∈ A, Y ∈ B and Z ∈ C. If either
X, Y or Z is a subset of one of the others, we set V0(X, Y, Z) = ∅ otherwise let

V0(X, Y, Z) = {v ∈ R2 | d−→
H

(v, X) = d−→
H

(v, Y ) = d−→
H

(v, Z)}

be the set of points with the same distance to all sets X, Y and Z. The set of Voronoi-
vertex-candidates V (a, b, c) of the line segments a, b and c is defined as

V (a, b, c) =
⋃

X∈A,Y ∈B,Z∈C

V0(X, Y, Z).

By only considering Voronoi-vertex-candidates, we restrict ourselves to a finite set of vertices
that includes all relevant Voronoi vertices and does not include the degenerate cases. Let P

and Q be two polygonal regions that may contain holes. Let further ∆ ∈ R+. The distance
d−→

H
(p, Q) for points p ∈ P can be maximized at points in the interior of P or at points at

the boundary of P (see Figure 2 for the two cases). Since these cases are different to analyze,
we split the query into two general predicates.
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p

Q

P

q

Figure 2 Illustration of the two cases: The point p on the boundary of P maximizes d−→
H

(p, Q).
The point q in the interior of Q that is a Voronoi vertex of the edges of P maximizes d−→

H
(q, P ).

(B) (Boundary): This predicate returns true if and only if d−→
H

(∂P, Q) ≤ ∆.
(I) (Interior): This predicate returns true if d−→

H
(P, Q) ≤ ∆. This predicate returns false

if d−→
H

(P, Q) > d−→
H

(∂P, Q) and d−→
H

(P, Q) > ∆.

Note that it is not defined what (I) returns if d−→
H

(P, Q) = d−→
H

(∂P, Q) and d−→
H

(P, Q) > ∆.
This does not matter, since the correctness of d−→

H
(P, Q) ≤ ∆ is still equivalent to both (B)

and (I) being true.
Since (B) and (I) are very general, we define more detailed predicates that can be used

to determine feasible truth values of (B) and (I). To determine (B), we need the following
predicates in combination with P1 and P2 (defined earlier for curves):

(P3): Given a vertex p of P , this predicate returns true if and only if p ∈ Q.
(P4): Given an edge e1 of P and an edge e2 of Q, this predicate is equal to e1 ∩ e2 ̸= ∅.
(P5): Given a directed edge e1 of P and two edges e2 and e3 of Q, this predicate is true
if and only if e1 ∩ e2 ≠ ∅, e1 ∩ e3 ≠ ∅ and e1 intersects e2 before or at the same point
that it intersects e3.
(P6): Given a directed edge e1 of P and two edges e2 and e3 of Q, this predicate is true
if and only if e1 ∩ e2 ̸= ∅ and if there exists a point b on e3 such that ∥a − b∥ ≤ ∆ where
a is the first intersection point of e1 ∩ e2.
(P7): Given a directed edge e1 of P and two edges e2 and e3 of Q, this predicate is true
if and only if e1 ∩ e2 ̸= ∅ and if there exists a point b on e3 such that ∥a − b∥ ≤ ∆ where
a is the last intersection point of e1 ∩ e2.

Using Voronoi-vertex-candidates, we define the detailed predicates for determining (I):
(P8): Given 4 edges e1, e2, e3, e4 of Q and a point v from the set of Voronoi-vertex-
candidates V (e1, e2, e3), this predicate returns true if and only if there exists a point
p ∈ e4, such that ∥v − p∥ ≤ ∆.
(P9): Given 3 edges e1, e2, e3 of Q and a point v from the set of Voronoi-vertex-candidates
V (e1, e2, e3), this predicate returns true if and only if v ∈ Q.
(P10): Given 3 edges e1, e2, e3 of Q and a point v from the set of Voronoi-vertex-
candidates V (e1, e2, e3), this predicate returns true if and only if v ∈ P .

Examples for the predicates P3, . . . P10 are depicted in Figure 3.
In the full version [4], we show that given the truth values of all these predicates one can

determine a feasible truth value for predicates of the type (B) and (I). The proof for (B) is
very similiar to the proof of Lemma 7.1 in [7] for polygonal curves. In the proof for (I), we
show by contradiction that if the distance is realized only in the interior and at no Voronoi
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p
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Figure 3 Illustration of the predicates P1, . . . , P10 : In all depicted cases the predicates are true.

vertex, then you can always increase the distance of Q to a point p in the interior of P by
moving p to a Voronoi vertex or to the boundary.

Furthermore, we give a detailed proof in the full version [4], that all predicates P1, . . . , P10
can be determined by a polynomial number of simple predicates. In that technical proof, we
explicitly determine for each predicate, how it can be divided into sign values of polynomials.
Corollary 3.2 then implies the following bounds on the VC-dimension.

▶ Theorem 3.5. Let RdH ,k be the range space of balls centered at polygonal curves in Xd
k

with ground set Xd
m. V Cdim(RdH ,k) is in O(dk log(km)).

▶ Theorem 3.6. Let RdH ,k be the range space of balls centered at polygonal regions that may
contain holes in (R2+1)k with ground set (R2+1)m. The third dimension encodes a label that
associates each vertex with its boundary component. V Cdim(RdH ,k) is in O(k log(km)).
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Abstract
The sliding cubes model is a well-established theoretical framework that supports the analysis of
reconfiguration algorithms for modular robots consisting of face-connected cubes. As is common
in the literature, we focus on reconfiguration via an intermediate canonical shape. Specifically, we
present an in-place algorithm that reconfigures any n-cube configuration into a compact canonical
shape using a number of moves proportional to the sum of coordinates of the input cubes. This
result is asymptotically optimal and strictly improves on all prior work. Furthermore, our algorithm
directly extends to two dimensions and any dimension higher than three.

Related Version A full version of the paper is available at arxiv.org/abs/2312.15096.

1 Introduction

Modular robots consist of a large number of comparatively simple robotic units. These units
can attach and detach to and from each other, move relative to each other, and in this way
form different shapes or configurations. This shape-shifting ability allows modular robots
to robustly adapt to previously unknown environments and tasks. In this paper, we study
the sliding cube model, a well-established theoretical framework that supports the analysis
of reconfiguration algorithms for modular robots consisting of face-connected cubes.

Almost 20 years ago, Dumitrescu and Pach [5] showed that the sliding cube model in
2D (or sliding square model) is universally reconfigurable. More precisely, they presented
an algorithm that transforms any two given configurations with n squares into each other
in O(n2) moves. This algorithm transforms any given configuration into a canonical shape
(a horizontal line) and then reverts the procedure to reach the final configuration. Recently,
Akitaya et al. [3] presented Gather&Compact: an input-sensitive in-place algorithm which
uses O(Pn) moves, where P is the maximum among the perimeters of the bounding boxes
of the initial and final configurations. The authors also show that minimizing the number
of moves required to reconfigure is NP-hard.

Until recently, the most efficient algorithm for the reconfiguration problem in 3D was
the algorithm by Abel and Kominers [1], which uses O(n3) moves to transform any n-
cube configuration into any other n-cube configuration. As is common in the literature,
this algorithm reconfigures the input into an intermediate canonical shape. Stock et al. [7]

∗ T. Ophelders is partially supported by the Dutch Research Council (NWO) under project no.
VI.Veni.212.260.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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(a) (b)

Figure 1 Moves in the sliding cube model: (a) slide and (b) convex transition.

recently announced a worst-case bound of O(n2) moves for the Abel and Kominers algorithm.
Furthermore, their paper presents an in-place reconfiguration algorithm, which runs in time
proportional to a measure of the size of the bounding box times the number of cubes.
Specifically, their algorithm requires O(n(wd + h)) moves in the worst-case, where w, d, and
h are the width, depth, and height of the bounding box, respectively.

In this paper we present an in-place algorithm that reconfigures any n-cube configura-
tion into a compact canonical shape using a number of moves proportional to the sum of
coordinates of the input cubes. This result is asymptotically optimal. Furthermore, our
algorithm directly extends to squares in two dimensions and to hypercube reconfiguration
in dimensions higher than three.

2 Preliminaries

A configuration C is a subset of coordinates in the three-dimensional grid. The elements of C
are called cubes. We call two cubes adjacent if they lie at unit distance. For a configuration C,
denote by GC the graph with vertex set C, whose edges connect all adjacent cubes. We say a
cell is a vertex of GZ3 which is not occupied by a cube in C. We always require a configuration
to remain connected, that is, GC must be connected. For ease of exposition we assume C
consists of at least two cubes. We call a configuration C nonnegative if C ⊆ N3. Cubes can
perform moves. A move is an operation that replaces a single cube c ∈ C by another cube
c′ /∈ C. Moves come in two types: slides and convex transitions (see Figure 1). In both
cases, we consider a 4-cycle γ in GZ3 . For slides, exactly three cubes of γ are in C; c′ is the
cell of γ not in C, and c is adjacent to c′. For convex transitions, γ has exactly two adjacent
cubes in C; c is one of these two cubes, and c′ is the vertex of γ not adjacent to c. The slide
or convex transition is a move if and only if C \ {c} is connected.

Let C be a nonnegative configuration. Call a cube c = (x, y, z) finished if the cuboid
spanned by the origin and c is completely in C, that is, if {0, . . . , x}×{0, . . . , y}×{0, . . . , z} ⊆
C. We call C finished if all cubes in C are finished. The compaction problem starts with an
arbitrary connected configuration C and is solved when all cubes are finished.

Most of the algorithm works on vertical contiguous strips of cubes in C called subpillars.
More precisely, a subpillar is a subset of C of the form {x} × {y} × {zb, . . . , zt}. In the
remainder of this paper, we denote this subpillar by ⟨x, y, zb .. zt⟩. The cube (x, y, zt) is
called the head, and the remainder ⟨x, y, zb .. zt − 1⟩ is called the support. A pillar is a
maximal subpillar, that is, a subpillar that is not contained in any other subpillar. Note
that there can be multiple pillars with the same x- and y- coordinate above each other, as
long as there is a gap between them. Two sets S and S′ of cubes are adjacent if S contains
a cube adjacent to a cube in S′. All omitted proofs can be found in the full version.
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Figure 2 Examples of operations (a–d); hatched cubes are non-cut and dashed outlines indicate
cells that must be empty. Each case admits a move sequence that reduces ZC .

3 Algorithm

For a set of cubes S ⊆ C, let (XS , YS , ZS) denote its coordinate vector sum
∑

(x,y,z)∈S(x, y, z).
Let C>0 be the subset of cubes (x, y, z) ∈ C for which z > 0, and C0 be the subset of cubes
for which z = 0. Let the potential of a cube c = (cx, cy, cz) be Πc = wc(cx +2cy +4cz), where
the weight wc depends on the coordinates of c in the following way. If cz > 1, then wc = 5;
if cz = 1, then wc = 4. If cz = 0, then wc depends on cy. If cy > 1, then wc = 3; if cy = 1,
then wc = 2; lastly, if cz = cy = 0, then wc = 1. We aim to minimize the potential function
ΠC =

∑
c∈C Πc. From now on, let C be an unfinished nonnegative configuration. We call

a sequence of m moves safe if the result is a nonnegative instance C′, such that ΠC′ < ΠC
and m = O(ΠC − ΠC′). This means that the sequence of moves reduces the potential by at
least some constant fraction of m by going from C to C′. We show that if C is unfinished, it
always admits a safe move sequence.

The main idea is as follows. For a configuration C, whenever possible, we try to reduce
ZC . If that is not possible, the configuration must admit a pillar shove where a complete
pillar is moved to a different x- and y-coordinate. By reducing either the z-coordinate of
cubes, or the x- or y-coordinate, we guarantee that eventually every cube becomes finished.

Local Z reduction. Let P = ⟨x, y, zb .. zt⟩ be a subpillar of C. We refer to the four coor-
dinates {(x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)} as the sides of P . On each side, P may
have one or more adjacent pillars. We order these by their z-coordinates; as such, we may
refer to the top- or bottommost adjacent pillar on a side of P . We say that a set of cubes
S ⊆ C is non-cut if GC\S is connected or empty.

Let P = ⟨x, y, zb .. zt⟩ be a non-cut subpillar, and let P ′ = ⟨x′, y′, z′
b .. z′

t⟩ be a pillar
adjacent to P . We define a set of operations of at most three moves within P which locally
reduce ZC (see Figure 2). Because P is non-cut, C \ P is connected. Therefore, if cubes of P

move in such a way that each component (of cubes originating from P ) remains adjacent to
a cube of C \ P , then the result of that operation is a valid configuration. These different
operations (a–d) can be seen in Figure 2. For a complete definition of these operations
(a–d), see the full version of this paper.

Pillar shoves. Next, we consider a longer move sequence (e) that still involves a single
subpillar. We call this operation a pillar shove, which takes as parameters a subpillar
P = ⟨x, y, zb .. zt⟩ and a side (x′, y′) of P . The result of the pillar shove is the set of cubes

shove(C, P, (x′, y′)) := (C \ P ) ∪ ⟨x′, y′, zb .. zt − 1⟩ ∪ {(x, y, zb)},

EuroCG’24



20:4 Optimal In-Place Compaction of Sliding Cubes
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Figure 3 Examples of pillar shoves for a long pillar (e) and a short pillar (e′).

in which the support is effectively shifted to the side (x′, y′), and the head is effectively
moved from (x, y, zt) to (x, y, zb). Although shove(C, ⟨x, y, zb .. zt⟩, (x′, y′)) is well-defined, it
is not necessarily a connected configuration, let alone safely reachable from C.

Let P = ⟨x, y, zb .. zt⟩ be a non-cut subpillar, and assume that on at least two sides
(x′, y′) and (x′′, y′′) of P , no cube except possibly the head (x, y, zt) has an adjacent cube.
Moreover, assume that (x′, y′, zt) ∈ C. Then the pillar shove can be done without collisions
and while keeping connectivity (see Figure 3). There are two cases: one where P has at least
9 cubes, in which case we take O(|P |) moves (left side of Figure 3), and the case where P has
fewer than 9 cubes takes O(1) moves and does not require the existence of the second side
(x′′, y′′) (right side of Figure 3). A pillar shove reduces ZC by zt − zb and takes O(zt − zb)
moves, so it is safe. For a complete definition of (e), see the full version.

Lastly, we define an operation (f) that performs any move of C that moves a cube of
C>0, reduces the potential, and results in a nonnegative instance. In summary, the moves
(a–f) are designed to reduce the z-coordinate of a cube. If this is not directly possible, the
pillar shove moves a complete pillar such that the head of that pillar can still reduce its
z-coordinate.

Low and high components. Suppose that (a–f) do not apply. Let LHC be the bipartite
graph obtained from GC by contracting the components of GC0 and GC>0 to a single vertex
(see Figure 4). We call LHC the low-high graph of C, and we call the vertices of LHC that
correspond to components of GC0 and GC>0 low and high components, respectively. The full
version of this paper proves the following lemma.

▶ Lemma 3.1. Assume C does not admit any operation of type (a–f). If H is a high
component such that C \ H is connected, then every pillar of H is part of a pillar of C
starting at z = 0, H consists entirely of finished cubes, and H contains (0, 0, 1).

We pick a vertex R of LHC that we call the root of LHC . If (0, 0, 0) ∈ C, pick R to be the
low component that contains (0, 0, 0). Otherwise, pick R to be an arbitrary low component.
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L3
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H2

Figure 4 An example configuration C and its low-high graph LHC . This configuration does
admit moves of type (a–f)

We call a low component L clear if C \ L is connected, L ̸= R, and L is connected to a non-
cut pillar P in C \ L. We call such a pillar P a clearing pillar. The full version proves that
such a clear low component always exists, unless LHC contains only the root and possibly
a single high component.

We now define operation (g): pick a clear low component L, and perform any move of C
that moves a cube of L, reduces the potential, and results in a nonnegative instance. This
does the same as operation (f), but now on C0 instead of C>0. When operations of type (g)
are executed, one of three special events could occur:

(1) The component connects to a different low component, merging them.
(2) The component connects to the root, and becomes part of the root.
(3) The component reaches the origin (at which point it becomes the root).
If none of the operations (a–g) are available then L is too small to reach the origin. We
would like to move the clearing pillar P and do a pillar shove. However, it could be that
there are cubes around P , or that moving P would disconnect the low component. For this
specific case we define two last operations. Operation (h) applies when the bottom of P

is completely surrounded. It moves the cube at the bottom of P via z = −1 to a positive
cell that is closer to the origin. The second operation (i) applies when the bottom of P is
not sufficiently connected to L and moving it would disconnect L. In this case, we gather
cubes from the low component towards P to connect it to the low component, and perform
a pillar shove on it, see Figure 5.

(a) (b)

(x′, y′)
(x′, y′)

Figure 5 The start configuration for a pillar shove for a clearing pillar. The white pillar is the
clearing pillar. The red cube is part of L. The blue cubes are required and need to be gathered.
(a): clearing pillar of height at least 5. (b): The configuration for a pillar shove of height at most 4.
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This last operation moves cubes that are not part of the clearing pillar P = ⟨x, y, zb .. zt⟩.
However, the move is still safe. Recall that the potential of a cube c = (cx, cy, cz) is Πc =
wc(cx + 2cy + 4cz), where wc is the weight of c. The potential of the complete configuration
is the sum of potential of the individual cubes. Because the low component cannot reach the
origin, its size is at most O(x + y). Therefore, moving a constant number of cubes towards
this pillar also only takes O(x + y) moves. This is charged to the head of P : since it goes
from z > 1 to z = 1, or from z = 1 to z = 0, its weight decreases by 1, paying for the
gathering of these cubes.

This algorithm terminates when no clear low component (and hence only the root low
component) remains. We are left with two cases. Either no high component remains, or
there is at most one high component, which consists of entirely finished cubes.

All of the moves (a–i) not only work in 3D, they also work in 2D when instead of
prioritizing reducing the z-coordinate, we prioritize reducing the y-coordinate. Moreover,
these moves never move the origin. Therefore, we can now run the exact same moves on the
bottom layer in 2D, until the root component is finished. If there is still a high component,
it stays connected via the origin. We end up with a finished configuration.

Recall that a sequence of m moves on an instance C is safe if the result is a nonnegative
instance C′, such that ΠC′ < ΠC and m = O(ΠC − ΠC′). Since each of our operations is safe,
the total number of moves our algorithm performs is O(ΠC) = O(XC + YC + ZC).

4 Conclusion

We presented an in-place algorithm that reconfigures any configuration of cubes into a com-
pact canonical shape using a number of moves proportional to the sum of coordinates of the
input cubes. This result is asymptotically optimal. However, just as many other algorithms
in the literature, our bounds are amortized in the sense that we make use of a number of
dedicated cubes which help other cubes move by establishing the necessary connectivity in
their neighborhood. This is in particular the case with our pillar shoves, that need some
additional cubes to gather at the pillar, to then move up and down the pillar to facilitate
moves. These extra moves are charged to one cube in the pillar reducing its coordinates.
In the literature such cubes are referred to as helpers, seeds, or even musketeers [2, 4, 6, 7].
Hence, an interesting question is whether it is possible to arrive at sum-of-coordinates bounds
without amortization?
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Abstract
Let S be a set of n points in general position in Rd. The order-k Voronoi diagram of S, Vk(S), is a
subdivision of Rd into cells whose points have the same k nearest points of S. Sibson, in his seminal
paper from 1980 (A vector identity for the Dirichlet tessellation), gives a formula to express a point
Q of S as a convex combination of other points of S by using ratios of volumes of the intersection of
cells of V2(S) and the cell of Q in V1(S). The natural neighbour interpolation method is based on
Sibson’s formula. We generalize his result to express Q as a convex combination of other points of S

by using ratios of volumes from Voronoi diagrams of any given order.

1 Introduction

Let S be a set of n points in general position in Rd, meaning no m of them lie in a (m − 2)-
dimensional flat for m = 2, 3, ..., d + 1 and no d + 2 of them lie in the same d-sphere, and let
k be a natural number with 1 ≤ k ≤ n − 1. Let σd denote the Lebesgue measure on Rd, to
simplify we just write σ.

The order-k Voronoi diagram of S, Vk(S), is a subdivision of Rd into cells such that points
in the same cell have the same k nearest points of S. Thus, each cell f(Pk) of Vk(S) is defined
by a subset Pk of S of k elements, where each point of f(Pk) has Pk as its k closest points
from S. Similarly, the ordered Voronoi diagram of order k of S, OVk(S), can be defined as a
subdivision of Rd into cells such that points in the same cell have the same ordered k nearest
points of S. Thus, each cell f(⟨Pk⟩) of OVk(S) is defined by an ordered subset ⟨Pk⟩ of size k

of S, where the points are arranged in order of proximity starting from the closest to the
farthest. Note that, by definition, the union of all the cells of OVk(S) corresponding to the
different permutations of a fixed subset of length k of S is the cell, f(Pk), associated to such
subset in the (ordinary) order-k Voronoi diagram, Vk(S). See Figure 1.

For the order-k Voronoi diagram of S, the region Rk(ℓ) of Qℓ ∈ S is defined as the set
of cells of Vk(S) that have the point Qℓ as one of their k nearest neighbours. See Figure 2.
For OVk(S) we can define these regions in the same way. These regions are not necessarily
convex but star-shaped, see [2, 4, 10, 16], and it is known that R1(ℓ) is contained in the
kernel of Rk(ℓ); see [3]. Also, these regions are related to Brillouin zones. For a given k, the
region Rk(ℓ) \ Rk−1(ℓ) is known as a Brillouin zone of Qℓ. Brillouin zones have been studied
mainly for lattices but also for arbitrary discrete sets, see e.g. [6, 17].

Local coordinates based on Voronoi diagrams were introduced by Sibson [13]. He states
that, given a set S of n points of Rd in general position, a point Qℓ ∈ S can be expressed as
a convex combination of its nearest points of S. This is described next. Cells of V2(S) that
intersect f({Qℓ}) in V1(S) are of the form f({Qℓ, Qj}), i.e., cells defined by Qℓ and another
point Qj , that we call its natural neighbour. These intersections give ratios of volumes
which are the coefficients multiplying the corresponding natural neighbours in the convex
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 For a set S = {Q1, · · · , Q5} of five points in R2. Each cell of OVk(S) is labeled by the
indices of its k nearest points of S. V1(S) is shown in black, V2(S) in green, and V3(S) in orange
colour. Left: The cells of OV2(S) with the same nearest neighbour Qi from S form the cell f({Qi})
in V1(S). The cells of OV2(S) with the same subset P2 of two points of S (in any order) form the
cell f(P2) of V2(S). Right: OV3(S) is shown together with V1(S), V2(S), and V3(S).

Q2

Q3
Q4

Q5 Q6

Q8
Q9

Q0

V2(S)

Q7

Q1

V1(S)

R1(1)

R2(1)

Figure 2 R1(1) is the cell f({Q1}) in V1(S). R2(1) is the union of cells of V2(S) that have Q1 as
one of its two nearest neighbours. R1(1) ⊂ R2(1).

combination that expresses Qℓ. Volumes σ(f({Qℓ, Qj}) ∩ f({Qℓ})) are equal to the volumes
given by the intersection of the cells of V1(S \ {Qℓ}) and f(Qℓ) in V1(S), see Figure 3.
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▶ Theorem 1.1. (Local coordinates property [13]). For a bounded cell f({Qℓ}) of V1(S),

Qℓ =
∑

j ̸=ℓ

σ(f({Qℓ, Qj}) ∩ f({Qℓ}))
σ(f({Qℓ})) Qj (1)

Sibson’s formula has been used to define the natural neighbour interpolation method [14].
Given a set of points and a function, this interpolation method provides a smooth approxima-
tion of new points to the function. Sibson’s algorithm uses the closest subset of the input set
S \ {Qℓ} to interpolate a query point, Qℓ, and applies weights based on the ratios of volumes
provided by Theorem 1.1. Local coordinates and the natural neighbour interpolation method
have been studied e.g. in [5, 11, 15], and they have many applications such as reconstruction
of a surface from unstructured data or interpolation of rainfall data, see [9, 15].

Q3

Q2
Q`

Q1

Q6

Q5

Q4

Figure 3 In R2. Left: The initial Voronoi diagram V1(S \ {Qℓ}) without query point Qℓ. Right:
Colored areas given by the intersections of f({Qℓ}) and the cells of V1(S \ {Qℓ}), are the same as
the ones given by the intersections of the cells of V2(S) (shown in dashed) with the cell f({Qℓ}).

Aurenhammer gave a generalization of Sibson’s result to Voronoi diagrams of higher order,
and more generally to power diagrams, see [1]. Aurenhammer’s formula allows to write a
point Qℓ of S as a linear combination of other points of S. We state this in Theorem 2.1
and Corollary 2.2 below. The formula in Theorem 2.1 is defined in terms of OVk+1(S). It is
restated in Corollary 2.2 in terms of intersections of cells of Vk−1(S) and Vk+1(S) with a cell
of Vk(S). This formula works for a bounded cell of Vk(S).

Our main contribution is another generalization of Sibson’s result, stated in Theorem 2.3.
In this theorem, we express a point Qℓ ∈ S as a convex combination of its neighbours of S

using ratios of volumes in the region Rk(ℓ). Similar to Sibson’s formula that required the
cell of the point Qℓ to be bounded, our formula requires its region Rk(ℓ) to be bounded. For
the case k = 1, Theorem 2.3 coincides with Theorem 1.1.

This paper is organized as follows. Section 2 details the generalization of Sibson’s formula.
In Section 3 we give a geometric interpretation of the formulas presented in Section 2 for
point sets in the plane. Finally, Section 4 is on how the generalization of Sibson’s formula
could be used for interpolation. Proofs are omitted in this abstract.
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2 Coordinates based on Voronoi diagrams

In this section we present a generalization of Sibson’s formula that expresses a point using
its neighbours of the Voronoi diagram of any given order. For this, we recall results from
Aurenhammer [1] in Theorem 2.1 and Corollary 2.2, using a different notation.

Let Fk+1(Pk), to simplify F (Pk), be the set of cells of OVk+1(S), 1 ≤ k ≤ n − 2, whose
k nearest neighbours are the points of Pk ⊂ S in any order, and the (k + 1)-th nearest
neighbour is another point of S not in Pk. Let fi,j denote the union of cells of OVk+1(S)
whose k-th nearest neighbour is Qi and whose (k + 1)-th nearest neighbour is Qj .

▶ Theorem 2.1. ([1]) If all cells in F (Pk) are bounded in OVk+1(S), then
∑

j
fi,j∈F (Pk)

σ(fi,j)Qi =
∑

i
fi,j∈F (Pk)

σ(fi,j)Qj

Q1

Q6

Q3

Q4

f5,1 ∪ f5,3

f2,1 ∪ f2,3 ∪ f2,6

Q5
Q2

Q1

Q6

Q3

Q4
Q5

f2,1 ∪ f5,1

f2,3 ∪ f5,3

f2,6 Q2

Figure 4 Illustrating Theorem 2.1 for F ({Q2, Q5}) in OV3(S), where S is a set of six points in
R2. In this case the equation reduces to σ(f5,1 ∪ f5,3)Q5 + σ(f2,1 ∪ f2,3 ∪ f2,6)Q2 = σ(f2,1 ∪ f5,1)Q1 +
σ(f2,3 ∪ f5,3)Q3 + σ(f2,6)Q6. Left: cells grouped according to its k-nearest neighbour. Right: cells
grouped according to its (k + 1)-nearest neighbour.

Note that, the subdivisions induced by Vk−1(S) at the interior of f(Pk) correspond to
grouping the cells of F (Pk) in OVk+1(S) that have the same k-nearest neighbour. Also, the
subdivisions induced by Vk+1(S) at the interior of f(Pk) correspond to grouping the cells of
F (Pk) in OVk+1(S) that have the same (k + 1)-nearest neighbour. See Figure 4.

By these observations, Theorem 2.1 can be stated as follows.

▶ Corollary 2.2. ([1]) Let 2 ≤ k ≤ n − 2 and let f(Pk) be a bounded cell of Vk(S). Then,
∑

f(Pk−1)∈Vk−1(S)
Qi∈Pk\Pk−1

σ(f(Pk−1) ∩ f(Pk))Qi =
∑

f(Pk+1)∈Vk+1(S)
Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))Qj

Note that, by the relation between the Voronoi diagrams and the ordered Voronoi diagrams,
Rk(ℓ) is the set of cells of OVk+1(S) that have Qℓ as one of their k nearest neighbours from
S, i.e., Rk(ℓ) = ∪Qℓ∈Pk

F (Pk). Based on this observation and Theorem 2.1 we can prove the
following result.

▶ Theorem 2.3. If Rk(ℓ) is a bounded region, then

Qℓ =
∑

i
fi,j∈Rk(ℓ)

σ(fi,j)
σ(Rk(ℓ))Qj .



M. Claverol, A. de las Heras-Parrilla, C. Huemer and D. Lara 21:5

▶ Corollary 2.4. Let 1 ≤ k ≤ n − 2 and let Rk(ℓ) be a bounded region. Then,

Qℓ =
∑

f(Pk)∈Rk(ℓ)

∑

f(Pk+1)∈Vk+1(S)
Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))
σ(Rk(ℓ)) Qj

3 A geometric interpretation

In the following we examine the generalization of Sibson’s theorem to higher order Voronoi
diagrams from Corollary 2.2 in more detail for cells f(Pk) of Vk(S), when S is a point set in
R2. Divide both sides of the equation given in Corollary 2.2 by σ(f(Pk)); then, each side of
the equation describes a point H that is a convex combination of points from S. We have

H =
∑

f(Pk−1)∈Vk−1(S)
Qi∈Pk\Pk−1

σ(f(Pk−1) ∩ f(Pk))
σ(f(Pk)) Qi =

∑

f(Pk+1)∈Vk+1(S)
Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))
σ(f(Pk)) Qj (2)

What can we say about this point H?

Let f(Pk) be an r-gon. Then S contains r points Q1, . . . , Qr, such that each edge of the
r-gon lies on a perpendicular bisector between two of these r points, and each vertex, Cijℓ,
of f(Pk) is the center of a circle passing through three of them, Qi, Qj , and Qℓ; see e.g. [3].

We denote with ∆(ABC) the triangle with vertices A, B, and C, and with □(ABCD)
the quadrilateral with vertices A, B, C and D, in cyclic order.

Let us consider the case when f(Pk) is a quadrilateral cell of Vk(S) with vertices C123,
C124, C134, and C234, in cyclic order along the boundary of the quadrilateral cell f(Pk) =
□(C123C124C134C234). One of the diagonals C123C134 and C124C234 is an edge of Vk−1(S)
and the other one of Vk+1(S). Figure 5 shows an example. We refer to [3, 7] for a more
detailed discussion on the structure of cells of Vk(S). Corollary 2.2 states in this case that

H = Q1 · σ(∆(C123C134C234))
σ(□(C123C124C134C234)) + Q3 · σ(∆(C123C124C134))

σ(□(C123C124C134C234))

= Q2 · σ(∆(C124C134C234))
σ(□(C123C124C134C234)) + Q4 · σ(∆(C124C234C123))

σ(□(C123C124C134C234)) (3)

It follows that H is the intersection point of diagonals Q1Q3 and Q2Q4 of □(Q1Q2Q3Q4).
This implies that given a quadrilateral cell □(C123C124C134C234) of Vk(S), the four corre-
sponding points of S also form a convex quadrilateral, □(Q1Q2Q3Q4). Moreover, we can
show that areas of triangles with vertices in □(C123C124C134C234) are proportional to areas
of triangles with vertices in □(Q1Q2Q3Q4), also see [8, 12].

Let us then consider the case when f(Pk) is a cell of Vk(S) with more than four sides.
Equation (2) gives a point H that can be expressed in two ways as convex combination of
points of S. Let us look at a pentagonal cell f(Pk) = (C123C134C145C245C125) of Vk(S);
See Figure 6. For r > 5 the situation is similar. Corollary 2.2 here gives

H = Q1 · σ(□(C123C125C145C134))
σ( (C123C134C145C245C125)) + Q5 · σ(∆(C125C245C145))

σ( (C123C134C145C245C125))

= Q2 · σ(□(C245C125C123C234))
σ( (C123C134C145C245C125)) + Q4 · σ(∆(C245C234C1345C145))

σ( (C123C134C145C245C125))

+ Q3 · σ(∆(C123C234C134))
σ( (C123C134C145C245C125))

EuroCG’24
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Q1

Q3

Q2

Q4

b23

b12
b34

b14

H

C124

C123

C234

C134

Figure 5 The quadrilateral cell f(Pk) = □(C123C124C134C234) of Vk(S) is obtained by perpen-
dicular bisector construction from {Q1, Q2, Q3, Q4} ⊂ S. Point H given by Equation (2) is the
intersection point of diagonals Q1Q3 and Q2Q4. Triangles with same color have proportional area.

We get that H lies on the segment Q1Q5 and inside the triangle ∆(Q2Q3Q4). Further-
more, H divides the segment Q1Q5 in the same proportion as the edge C125C145 divides the
pentagon (C123C134C145C245C125) into the the quadrilateral □(C125C145C134C123) and the
triangle ∆(C125C145C245). And H divides triangle ∆(Q1Q2Q3) in the same proportion into
triangles ∆(Q3HQ4), ∆(Q2HQ3), and ∆(Q2HQ4) as C234 divides (C123C134C145C245C125)
into □(C245C125C123C234), □(C245C234C134C145) and ∆(C134C234C123).

4 Towards higher order natural neighbour interpolation

Sibson’s theorem (Theorem 1.1) gave rise to the natural neighbour interpolation method.
Given a set of points S and known function values G(Qj) for Qj ∈ S \ {Qℓ}, the function
value G(Qℓ) of a point Qℓ is interpolated by G(Qℓ) =

∑
j cjG(Qj), where the sum is over

the natural neighbours Qj of Qℓ in V1(S). The local coordinates cj are given by Theorem 1.1.
Note that they satisfy

∑
j cj = 1 and cj ≥ 0 for all j. Then, Sibson’s natural neighour

interpolation is given by

G(Qℓ) =
∑

j ̸=ℓ

σ(f({Qℓ, Qj}) ∩ f({Qℓ}))
σ(f({Qℓ})) G(Qj). (4)

The generalization of Sibson’s formula given in Theorem 2.3 suggests to approximate the
function value G(Qi) by using the natural neighbours of higher order Voronoi diagrams. By
using the region Rk(ℓ) for k > 1, we can estimate the function value of a point Qℓ as

G(Qℓ) =
∑

i
fi,j∈Rk(ℓ)

σ(fi,j)
σ(Rk(ℓ))G(Qj). (5)

Note that R1(ℓ) = f({Qℓ}) in V1(S), and for k = 1 Equations (4) and (5) coincide.

A better estimation can be obtained by using Theorem 2.3 in a combination of different
values of k. We explore this for the 1-dimensional case.
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OV3(S)

F(P2) P2 = {Q1,Q5}

Q1

C245

H

C234

Q1

C245

C125

C123

C134C145

Q2

Q3

Q5

Q4

Figure 6 (Left) OV3(S) for a set of five points S = {Q1, Q2, Q3, Q4, Q5}. For P2 = {Q1, Q5}, the
grey region F (P2) of OV3(S) is the pentagonal cell f(P2) of V2(S). f(P2) is divided by an edge of
V1(S) and is also divided by three edges of V3(S). (Right) The point H lies on the segment Q1Q5
and inside the triangle ∆(Q2, Q3, Q4). Triangle areas of ∆(Q2HQ3), ∆(Q3HQ4) and ∆(Q2HQ4)
are proportional to the areas of the three colored regions inside f(P2), green, yellow, and pink,
respectively. The lengths of segments HQ1 and HQ5 are proportional to the areas σ(f(P2)∩f({Q1}))
and σ(f(P2) ∩ f({Q5})), respectively.

Theorem 2.3, respectively Corollary 2.4, for dimension 1 reduces to the following statement.

▶ Property 4.1. Let S = {x0, x1, . . . x2ℓ} with x0 < x1 < . . . < x2ℓ be real numbers. Then,

xℓ = 1
x2ℓ − x0

((
ℓ−1∑

i=0
xi(xℓ+1+i − xℓ+i)

)
+
( 2ℓ∑

i=ℓ+1
xi(xi−ℓ − xi−ℓ−1)

))
. (6)

▶ Remark. Property 4.1 has actually a more general statement. The assumption x0 < x1 <

. . . < x2ℓ is not needed.

We denote points Qi of S as xi and their function values G(Qi) as yi. When k = 1 we
have Sibson’s classical nearest neighbour interpolation, which for dimension d = 1 is piecewise
linear interpolation. Let x0, x1, . . . , x5 be six points on the real line in that order. And let
x2 < x < x3 be a query point whose function value G(x) we want to interpolate. To avoid
degenerate cases where bisectors between points coincide, we also assume that all midpoints
(xi + xj)/2 with xi, xj ∈ {S ∪ {x}} are different. Sibson’s classical formula, Equation (4),
uses the two neighbours x2 and x3 of x, and gives the interpolation

G1(x) = 1
x3 − x2

(y2(x3 − x) + y3(x − x2)) , (7)

i.e. point (x, G1(x)) lies on the line segment connecting points (x2, y2) and (x3, y3). This can
also be deduced from Property 4.1. Combining Equation (5) for k = 1 and k = 2, we obtain

EuroCG’24
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G2(x) = 1
x4 − x1 + x3 − x2

(y1(x3 − x) + y2(x4 − x) + y3(x − x1) + y4(x − x2)). (8)

In the same way, combining Equation (5) for k = 1, k = 2, and k = 3, we obtain

G3(x) = 1
x5 − x0 + x4 − x1 + x3 − x2

(y0(x3 − x) + y1(x4 − x) + y2(x5 − x)

+ y3(x − x0) + y4(x − x1) + y5(x − x2)). (9)

Figure 7 shows an example of the interpolation formulas given in Equations (7), (8), and (9).
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11

22

33

44

55

66
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yy00

yy11

yy22

yy33
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Figure 7 The generalized Sibson interpolation in R1. In green: Sibson’s original interpolation,
Equation (7), used only R1(x). The blue segment shows the interpolation using R1(x) and R2(x),
given by Equation (8). Four points are used. The red segment shows the interpolation using R1(x),
R2(x), and R3(x), given by Equation (9). Six points are used.

We conclude with some comments on the proposed interpolation formulas. First, they
appear in a natural way from the generalization of Sibson’s formula. This already makes
it worth to study such generalized interpolation formulas. In Equations (8) and (9), the
coefficients cj in Gi(x) =

∑
j cjyj , i = 2, 3, satisfy

∑
j cj = 1 and cj ≥ 0 for every cj . We

also mention that it can not be guaranteed that Gi(x) coincides with Gi(x2) or with Gi(x3),
when x coincides with one of the endpoints of the interval, x2 or x3, respectively. Though,
we observe that in this case, the point farthest away from x on one side, drops from being
used in the interpolation formula. This also holds for the classical case k = 1.

Finally, we expect that the generalized interpolation formulas can have applications. For
instance, when the used values for the interpolation are obtained by measurements and
measurement inaccuracy can not be ruled out. Then reliability might be improved by using
nearest neighbours from Vk(S) or by using Rk(x), instead of only V1(S).
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Abstract
An ε-net of a metric space X is a set of points P of X such that the balls of radius ε centered at
points of P cover X, and two distinct points of P are at least ε apart. We present an algorithm to
compute an ε-net of a closed hyperbolic surface and analyze its complexity.
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1 Introduction

This paper focuses on hyperbolic surfaces, i.e., surfaces with a metric of constant negative
curvature. These surfaces have been extensively examined from a mathematical perspective,
due to their generic nature: any Riemannian surface of genus at least two can be conformally
mapped to a unique hyperbolic surface [16, Section IV.8].

Hyperbolic geometry also plays a key role in computer science. One of the most famous
examples is found in the analysis of rotation distance in binary trees [19]. Hyperbolic geometry
naturally emerges as a valuable tool for graph representation [14, 15]. The hyperbolic plane
also serves as the preferred model for illustrating the universal cover of surfaces with genus
at least 2, which has proven to be crucial in the proof of purely topological results [11, 6].

Delaunay triangulations of hyperbolic spaces and surfaces have been studied in the
computational geometry community [2, 17, 12, 13]. In this line, we adapt Shewchuk’s
Delaunay refinement algorithm [18] to construct ε-nets of hyperbolic surfaces, opening the
door to the design of efficient approximation algorithms. To the best of our knowledge, this
is the first result of this kind.

Let us recall definitions [5]. Let (X, d) be a metric space and ε > 0. A set P ⊂ X is an
ε-covering if ∀x ∈ X, d(x, P ) ⩽ ε, i.e., if the closed balls of radius ε centered at each p ∈ P

cover X. It is an ε-packing if ∀p ̸= q ∈ P, d(p, q) ⩾ ε, i.e., if the open balls of radius ε/2
centered at each p ∈ P are pairwise disjoint. An ε-net is both an ε-covering and an ε-packing.
In this paper, we prove:

▶ Proposition 1. Any ε-packing of a closed hyperbolic surface S of genus g and systole σ

contains N ⩽ 16(g − 1)
(
1/ε2 + 1/σ2)

points. If ε < σ, then N ⩽ 16(g − 1)/ε2.

The case when ε < σ corresponds to the situation when the surface has no ε-thin part (see
Section 2.2).

▶ Proposition 2. The Delaunay refinement algorithm computes an ε-net using at most(
10 + C ′

h Diam(S)6g−4)
N2 + (N − 1)(144g2 − 104g + 35) − 10 elementary operations, where

C ′
h is a constant depending on the metric h of S, and Diam(S) is the diameter of S.

For a fixed surface, the complexity is then O(1/ε4).

The first result can be regarded as folklore. We prove it in Section 3 for completeness.
The second proposition rises interesting obstacles to deal with. In particular, Shewchuk’s
refinement adds circumcenters of some triangles, which is not straightforward in our context,
as locating a new point requires to construct a portion of the universal cover of the surface.
We manage to bound the size of this portion.
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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2 Background on hyperbolic surfaces and notation

We refer the reader to textbooks for more details, e.g. [4, 1].
A closed hyperbolic surface can be seen as the quotient H2/Γ of the hyperbolic plane

H2 under the action of a group Γ of orientation-preserving isometries. Throughout the
paper, objects in H2 are denoted with a tilde ·̃, while objects on S are denoted without. In
particular, for an object o on S, õ denotes any of its lifts in H2. To simplify the language,
we often use the term copy to refer to an image of an object in H2 by an element of Γ.

We work with the Poincaré disk model in which the hyperbolic plane H2 is represented
as the unit disk of the complex plane C. The unit circle consists of points at infinity. The
geodesics are either diameters of the unit disk, or circular arcs that meet the boundary circle
orthogonally. The hyperbolic circles are Euclidean circles (but their hyperbolic and Euclidean
centers differ). Orientation-preserving isometries are represented as matrices in C2×2.

2.1 Delaunay triangulation and Dirichlet domain

A triangulation T of S is a partition of S into triangles; note that edges may be loops. A
triangulation of S is a Delaunay triangulation if for each triangle t of T and any of its lifts t̃

in H2, the open disk circumscribing t̃ contains no vertex of the (infinite) lift of T in H2 [12].
The Voronoi diagram is the dual of the Delaunay triangulation. The Dirichlet domain D

x̃
of a

point x̃ ∈ H2 is the (closed) cell of x̃ in the Voronoi diagram of its (infinite) orbit Γx̃. Unlike
the Euclidean case, Γ is non-commutative, and the combinatorics of a Dirichlet domain
depends on the point x (Figure 1). The number k of sides of D

x̃
satisfies 4g ⩽ k ⩽ 12g − 6

(see, e.g., [8]).

Figure 1 Dirichlet domains for the Bolza surface (g = 2). The domain on the left has 4g = 8
sides and the one on the right has 12g − 6 = 18 sides. Figure from [3].

In this paper, we assume that the input surface S is given by a Delaunay triangulation
having a single vertex b, i.e., all Delaunay edges are loops based in b. The point b is arbitrary.
This introduces no restriction, as such a representation can be computed for any closed
hyperbolic surface, starting from a standard representation by a fundamental domain and
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side pairings [8].1 The Dirichlet domain D
b̃

of some lift b̃ of b can be computed together
with the corresponding side pairings, which are generating the group Γ. The sides of D

b̃
are denoted as si, i = 0, . . . , k − 1 and the corresponding side pairings as γi, i = 0, . . . , k − 1
(here, side pairings are pairwise inverses).

2.2 Thin and thick parts
The injectivity radius rx(S) of S at a point x is the supremum of all r > 0 such that the open
ball of radius r centered at x, B(x, r) = {y ∈ S | δS(x, y) < r}, where δS is the distance on S,
is isometric to a disk in H2. In particular, B(x, r) is a topologically embedded disk on S for all
r ⩽ rx(S). The systole σ of a surface is the length of its shortest non-contractible curve, which
we also denote by σ. The systole is related to the injectivity radius: σ = 2 · inf {rx(S) | x ∈ S}.

For any ε > 0, the ε-thin part of S is St
ε = {x ∈ S | rx(S) ⩽ ε/2}, and its ε-thick part is

ST
ε = S \ St

ε. Observe that if ε < σ, then there is no ε-thin part.

σ ⩽ ε

Figure 2 Thick and thin (red) parts of a hyperbolic surface. Disks of radius ε are shown in blue.

3 Proof of proposition 1

Let P be an ε-packing of S. The open balls of radius ε/2 centered at the points of P on the
ε-thick part ST

ε are isometric to disks in H2 and are pairwise disjoint. The area of such a disk
centered at a point p is A

(
B

(
p, ε

2
))

= 4π sinh2 (
ε
4
)

[1, Theorem 7.2.2]. Since sinh(x) ⩾ x

for all x ⩾ 0, we have A
(
B

(
p, ε

2
))

⩾ πε2/4.
Let NT be the number of points of P on the ε-thick part ST

ε . By the Gauss-Bonnet
theorem, the area of the surface S is A(S) = 4π(g − 1). Summing the above inequality over
all the points in P ∩ ST

ε , we obtain NT πε2/4 ⩽
∑

p∈P ∩ST
ε

A
(
B

(
p, ε

2
))

⩽ 4π(g − 1), thus

NT ⩽ 16(g − 1)
ε2 . (1)

The open balls of radius ε/2 in the ε-thin part St
ε, if it exists, that is if σ ⩽ ε, are also

pairwise disjoint, but they are not isometric to disks in H2. However, by definition, the open
balls of radius σ/2 are isometric to disks in H2. We can apply the reasoning that led to

1 The common basepoint is denoted as b′′ in [8].

EuroCG’24
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inequality (1) for σ instead of ε, and obtain a bound on the number of points of P on the
thin part St

ε: N t ⩽ 16(g − 1)/σ2. The bound on the total number of points of P follows.

4 Construction of the ε-net

The input of the algorithm consists of the Delaunay triangulation of S with a single vertex b,
together with the Dirichlet domain D

b̃
of a lift b̃ and the group Γ generated by side-pairings.

As mentioned in Section 2.1, this does not induce any loss of generality.
Our algorithm is inspired by Shewchuk’s Delaunay refinement [18]. The general idea is to

break each Delaunay triangle whose circumcircle has a radius greater than ε by inserting its
circumscribing center in the triangulation.

We reuse the data structure proposed by Despré et al. for computing the Delaunay
triangulation of a surface by edge flips [12]. A triangulation of S is represented by

its vertices: a vertex p has constant-time access to its lift p̃b in D
b̃

and one of its incident
triangles;
and its triangles: a triangle ∆ has constant-time access to its three vertices p∆

0 , p∆
1 , p∆

2 ,
its three adjacent triangles, and three isometries γ∆

0 = 1Γ, γ∆
1 , γ∆

2 in Γ defined as follows.
A triangle ∆ = (p∆

0 ; p∆
1 ; p∆

2 ) does not always have a lift entirely included in D
b̃
. However, it

always has at least one lift with at least one vertex in D
b̃

(see Figure 3). Let us choose such
a lift and denote it as ∆̃0; up to a re-indexing of its vertices, p̃∆

0 ∈ D
b̃
. Then γ∆

1 and γ∆
2 are

the isometries such that the other two vertices of ∆̃0 are γ∆
1 p̃∆

1 and γ∆
2 p̃∆

2 . Note that the
other lifts of ∆ having at least one vertex in D

b̃
can be retrieved by applying the inverses of

these isometries to ∆̃0. The union, on all triangles of the triangulation of S, of their lifts
with at least one vertex in D

b̃
covers the fundamental domain D

b̃
.

D̃b

∆̃0

p̃∆0

p̃∆2

p̃∆1

γ∆
1

γ∆
2

γ∆
0 = 1Γ

Figure 3 Example of a triangle ∆ having three lifts with one vertex in D̃
b

(the hyperbolic triangles
are schematically represented with straight edges).

We denote as DT (·) the Delaunay triangulation of a set of points on S.
Let us fix ε > 0. In a first step, the set of points is initialized as P1 = {b}.
At each step i ⩾ 2, the algorithm inserts the circumscribing center c of a triangle ∆ε

whose radius is greater than ε. The set of points is updated as Pi = Pi−1 ∪ {c} as well as
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the Delaunay triangulation DT (Pi). To do so, several operations are needed.
We first compute the radius of ∆̃0 for every triangle ∆ of DT (Pi−1), until a triangle ∆ε

whose radius is at least ε is found.2 The circumcenter c̃ of the lift ∆̃ε
0 is a lift of c, but it

does not necessarily lie in D
b̃
. This can be checked by testing whether b̃ and c̃ lie on the

same side of the supporting line of each side of D
b̃
.

To actually insert c into DT (Pi−1), we need to find the lift c̃b of c that lies in D
b̃
. If c̃ lies

in D
b̃
, then c̃b = c̃. Otherwise, the algorithm walks in the tiling {γD

b̃
}γ∈Γ of H2 along the

geodesic segment p̃∆ε

0 c̃. The first copy of D
b̃

traversed by p̃∆ε

0 c̃ is found by looking for the
side sj1 , j1 ∈ {0, . . . , k − 1} of D

b̃
intersecting it.3 The walk along p̃∆ε

0 c̃ continues in γj1D
b̃
,

and so on, until the copy γjn . . . γj1D
b̃

containing c̃ is found. Then c̃b = γ−1
j1

. . . γ−1
jn

c̃. Note
that the walk still works when p̃∆ε

0 c̃ goes through a vertex of a copy of D
b̃
.

The Delaunay triangulation DT (Pi) of Pi = Pi−1 ∪ {c} can then be computed. First, the
triangle ∆c of DT (Pi−1) containing c is found by naively checking if c̃b lies in one of the (at
most three) lifts of each triangle ∆ in DT (Pi−1) having a vertex in D

b̃
. This can be done by

testing, for each edge, whether c̃b and the third vertex of the triangle lie on the same side of
its supporting line. Then ∆c is split into three by creating an edge between c and its three
vertices. In the data structure, the three isometries stored in each new triangle are 1Γ for c,
and the corresponding isometries in ∆c for the other two vertices. Then DT (Pi) is computed
with a sequence of flips and the data structure is updated [12].

The termination of the algorithm is quite obvious. At step i = 1, the ε-packing P1 consists
of one point. At each step i ⩾ 2, the point added to Pi is the circumcenter of a Delaunay
triangle whose radius is at least ε. Because no vertex lies in the interior of a Delaunay
disk, the center added is at distance at least ε from any point of Pi. By induction, Pi is an
ε-packing containing i points. By Proposition 1, the algorithm must terminate after a finite
number N − 1 of insertions. It returns an ε-packing PN of cardinality N .

It remains to show that PN is an ε-covering of S. Let x be a point on S. It lies in a
triangle ∆ of DT (PN ). Let ∆̃ be a lift of ∆ and x̃ the lift of x lying in ∆̃. The circumdisk of
∆̃ has a radius r ⩽ ε. There is a vertex of ∆̃ whose distance to x̃ is at most r (see [10, Lemma
2]). That vertex is a lift of a point of PN by definition of ∆. It follows that δS(x, PN ) ⩽ ε,
therefore PN is an ε-net. This establishes the first claim of Proposition 2.

5 Algorithm analysis

This section is devoted to proving the complexity announced in Proposition 2.
The following operations take O(1) time in the real RAM model and we consider them

as elementary operations:
Computing ∆̃0 from a triangle ∆ of the data structure (see Section 4 for notation);
Computing the radius or the center of the circumcircle of a triangle in H2;
Deciding if a point lies on the right or the left side of an oriented geodesic segment in H2;
Flipping an edge of a triangulation [12, Section 4.1].

At the beginning of a step i ⩾ 2, Pi−1 contains i − 1 points, the Euler characteristic
shows that DT (Pi−1) has 2i + 4g − 2 triangles, which gives the cost of finding ∆ε.

2 Of course a priority queue could be used to improve the complexity of this search. We accept a linear
complexity for simplicity, as this is not the dominant operation in the algorithm.

3 To check whether two geodesic segments x̃1x̃2 and ỹ1ỹ2 intersect, we check whether x̃1 and x̃2 lie on
opposite sides of the supporting line of ỹ1ỹ2, and we run the same test, swapping the roles of x and y.

EuroCG’24
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Recall that the number k of sides of D
b̃

is at most 12g − 6 (see Section 2). Determining
whether c̃ lies in (a given copy of) D

b̃
thus requires at most 12g − 6 elementary operations.

The algorithm tests the copies of D
b̃

that intersect the geodesic segment p̃∆ε

0 c̃. Since ∆̃ε
0 is

a triangle of DT
(

P̃i−1

)
, its circumcircle does not contain any other lift of p∆ε

0 , so p̃∆ε

0 is

the closest lift of p∆ε

0 to c̃. The geodesic segment p̃∆ε

0 c̃ is thus a lift of a distance path4 on
S, what is called a distance path in H2. By [9, Proposition 14], every side of D

b̃
is either a

distance path, or the concatenation of two distance paths. As two distance paths that do not
have a subarc in common, which is the case here, can intersect at most once [9, Lemma 8],
p̃∆ε

0 c̃ traverses at most 2k sides of copies of D
b̃
. If an intersection occurs at a vertex of degree

d of a copy of D
b̃
, then this counts for d intersections. Searching the copy of D

b̃
containing c̃

hence requires k2 ⩽ (12g − 6)2 elementary operations. Computing c̃b costs 1 operation.
Finding ∆c in DT (Pi−1) when c̃b is known requires at most 9(2i + 4g − 2) elementary

operations since it amounts to checking the three edges of at most three lifts of each triangle.
The update of the data structure when splitting the triangle containing c into three is done in
8 elementary operations (deleting the triangle that contains c, adding c to the list of vertices,
creating 3 triangles and 3 isometries).

Adding the above costs for step i, locating c in DT (Pi−1) and splitting the triangle
containing it costs at most 10(2i + 4g − 2) + (12g − 6)2 + 9 elementary operations.

The flips are counted globally for all steps, which concludes the proof of Proposition 2.

▶ Lemma 5.1. The total number of flipped edges during the execution of the algorithm is
at most C ′

h Diam(S)6g−4N2, where C ′
h is a constant depending on the metric h of S, and

Diam(S) is the diameter of S.

The proof of this lemma mimicks the proofs in [12]. The situation is quite different here,
as the points are inserted incrementally and the flips are done at each insertion, whereas all
points are know in advance in [12], which requires to rewrite a complete proof. Due to lack
of space, we refer the reader to [10, Lemma 1].

Note that the bound comes from the best upper bound O(Diam(S)6g−4) known so far for
the flip algorithm [12]. The actual complexity of the flip algorithm may be much better [7].

Acknowledgements. The authors wish to thank Hugo Parlier for interesting discussions.

4 A distance path on S is a shortest path between two points. It is necessarily a geodesic segment, but
not all geodesic segments are distance paths since they only locally minimize distances.
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Abstract
Imagine you are a dog behind a fence Q and a hiker is passing by at constant speed along the hiking
path P . In order to fulfil your duties as a watchdog, you desire to bark as long as possible at the
human. However, your barks can only be heard in a fixed radius ρ and, as a dog, you have bounded
speed s. Can you optimize your route along the fence Q in order to maximize the barking time with
radius ρ, assuming you can run backwards and forward at speed at most s?

We define the barking distance from a polyline P on n vertices to a polyline Q on m vertices as
the time that the hiker stays in your barking radius if you run optimally along Q. This asymmetric
similarity measure between two curves can be used to detect outliers in Q compared to P that other
established measures like the Fréchet distance and Dynamic Time Warping fail to capture at times.
In this extended abstract, we consider this measure in the discrete setting, where the traversals of
P and Q are both discrete. In this setting, we show how to compute the barking distance in time
O(nm log s).

Related Version arXiv:2402.13159

1 Introduction

A curve is any sequence of points in Rd where consecutive points are connected by their line
segment. Curves may be used to model a variety of real-world input such as trajectories [12],
handwriting [11, 17] and even strings [3]. Curves in R1 may be seen as time series which model
data such as music samples [10], the financial market [13] and seismologic data [16]. A common
way to analyse data that can be modeled as curves is to deploy a curve similarity measure,
which for any pair of curves series (P, Q) reports a real number (where the number is lower
the more ‘similar’ P and Q are). Such similarity measures are a building block for common
analysis techniques such as clustering [7, 15], classification [1, 8, 9] or simplification [2, 6, 14].
The two most popular similarity measures for curve analysis are the Fréchet distance and
the Dynamic Time Warping (DTW) distance. The discrete Fréchet distance for two curves
P = (p1, . . . , pn) and Q = (q1, . . . , qm) is illustrated as follows. Imagine a dog walking along

Funding statement: F.K. is supported by a “María Zambrano grant for attracting international talent”.
I.P. is a Serra Húnter fellow. I.,H.: This project has additionally received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 899987.
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community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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P

Q
ρ d

Figure 1 An intended trajectory P and a faulty sample Q of it. The Fréchet distance between P

and Q is d and captures the first detour, but fails to capture the others. Continuous DTW, even
with a speed bound, cannot distinguish Q from a copy of P translated by ρ if the right part is
sufficiently long. Barking distance with barking radius ρ however captures all three detours.

Q and its owner walking along P . Both owner and dog start at the beginning of their curves,
and in each step the owner may stay in place or jump to the next point along P and the
dog may stay in place or jump to the next vertex along Q, until both of them have reached
the end of their curves. Intuitively, the Fréchet distance is the minimal length of the leash
between the dog and its owner. The DTW distance is defined analogously but sums over all
leash lengths instead.

Both distance measures can be made continuous by defining a traversal as continuous
monotone functions f : [0, 1] → P and g : [0, 1] → Q which start and end at the respective
start and end of the curve. However, for DTW such a direct translation from discrete to
continuous traversals invites degenerate behavior. To avoid such degeneracies, Buchin [5]
proposed several variants of continuous DTW distances (originally called average Fréchet
distance) that each penalise the speed of the dog and its owner. The existing curve similarity
measures each have their corresponding drawback: The Fréchet distance is not robust
versus outliers. The discrete DTW distance is heavily dependent on the sampling rate.
The continuous DTW variants are robust to outliers, but they are difficult to compute [4].
Further, all of them fail to capture detours, as can be seen in Figure 1. We present a new
curve similarity measure, specifically designed for computing similarities between curves
under outliers.

Discrete walks. Given two curves P and Q, we define discrete walks. First, consider the
n × m integer lattice embedded in R2. We can construct a graph Gnm over this lattice
where the vertices are all lattice points and two lattice points l1, l2 share an edge whenever
d(l1, l2) ≤

√
2.

▶ Definition 1.1. For curves P and Q, a discrete reparametrization F is any walk in Gnm

from (1, 1) to (n, m). F is a curve in R2 and it is x-monotone whenever its embedding is.
The speed σ(F ) is the size |S| for the largest horizontal or vertical subcurve S ⊆ F .

Defining Discrete Barking Distance. The barking distance stems from the following
illustration, which is again dog-based:1 assume you are hiking with constant speed along

1 This illustration is inspired by a dog that some of the authors met while on a hike.
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a curve P . A dog is running at bounded speed on a curve Q, constantly barking at you.
However, the dogs barks can only be heard within radius ρ ∈ R. The dog tries to optimize its
route in order to maximize the time you hear it. This maximum time is the barking distance
of P to Q. Formally, for ρ ∈ R we define the threshold function as follows:

θρ(p, q) =
{

1 if d(p, q) > ρ

0 otherwise.

▶ Definition 1.2. For curves P and Q, denote by F the set of all pairs of discrete x-monotone
reparametrizations of (P, Q). For any ρ, s ∈ R, the discrete barking distance is defined as:

Ds
B(P, Q) = min

F ∈F
σ(F )≤s

∑

(i,j)∈F

θρ(pi, qj).

2 Computing the Discrete Barking Distance

Let Gn,m = (V, E) be a graph defined on top of an n × m lattice in R2 where vi,j ∈ V is
identified with the lattice point at coordinate (i, j). We find (vi,j , vi′,j′) ∈ E with distinct
vi,j , vi′,j′ ∈ V whenever vi,j and vi′,j′ are identified with points of the lattice at distance
≤

√
2. We say that vi′,j′ is the southern, south-western, western, north-western, or northern

neighbor of vi,j if vi′,j′ lies in the corresponding cardinal direction in the lattice.
For vi,j ∈ V we set w(vi,j) = θ(pi, qj), with pi the i-th corner of P and qj the j-th corner

of Q. Similarly, we set w(π) =
∑k

a=0 w(via,ja
) for a walk π = (vi1,j1 , . . . , vik,jk

) in Gn,m. We
say that π is monotone if ja ≤ ja′ whenever a ≤ a′ and we define the length of π as |π|,
i.e., the number of vertices in the walk. A sub-walk of π is said to be horizontal if all its
vertices correspond to lattice points with the same y-coordinate and vertical if all its vertices
correspond to lattice points with the same x-coordinate. Moreover, we say that π has speed s

if the longest horizontal or vertical sub-walk of π has length at most s. Let Π(s, ρ) be the set
of all monotone walks in Gn,m starting at v1,1 and ending at vn,m with speed s and weight
function depending on the threshold ρ. The next observation now follows from Definitions 1.1
and 1.2.

▷ Observation 1. Given two polygonal curves P and Q, a threshold ρ, and a speed bound s,
let Gn,m be defined as above, then w(π) = Ds

B(P, Q) for any π ∈ Π(s, ρ) of minimum weight.

By Observation 1 we can restrict our attention to monotone paths from v1,1 to vn,m that
have speed at most s and are of minimum weight. Our strategy is to compute for each vertex
vi,j ∈ V the weight of such a path from v1,1 and to vi,j . Our computation will proceed in n

rounds, where in each round we consider the m vertices of column j. The challenge is to
compute the length of a minimum weight monotone path of speed s in time O(log s).

Let Ri(j1, j2) be the weight of path (vi,j1+1, vi,j1+2, . . . , vi,j2) and Cj(i1, i2) be the weight
of path (vi1+1,j , vi1+2,j , . . . , vi2,j). Observe, that these values can be computed in constant
time if we have arrays containing at position i the length of a path from the first element
in the row or column to the i-th element of the row or column. For each row and column
and taking either side as the starting vertex. We precompute these arrays for all rows at the
beginning and for each column only when we process this column in the computation.

Let Fδ(i, j) with δ ∈ D = {↑, ↗, →, ↘, ↓} be the minimum weight of a monotone path
of speed s from v1,1 to vi,j where the vertex preceding vi,j on the path is the southern,
south-western, western, north-western, or northern neighbor of vi,j , respectively. We set
Fδ(i, j) = ∞ if vi,j cannot be reached with any monotone path of speed s from v1,1.

EuroCG’24
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We then compute the minimum weight monotone path of speed s from v1,1 to vi,j as
F (i, j) = min{Fδ(i, j) | δ ∈ D}. To compute F (i, j) from left to right along the columns
we maintain the relevant minima of paths Fδ ending at vertices around vi,j for each row
and for the current column in separate heaps. Moreover, instead of updating the weights
of all heap-elements explicitly for each vi,j , we precompute the lengths of paths starting at
the beginning or end of a row or column. From this we can in constant time compute the
necessary offsets. The runtime of O(nm log s) then follows as every of the O(nm) elements
gets only inserted and deleted from some min-heap a constant number of times and at no
point any min-heap contains more than s elements.

For the following proof we rewrite Fd(i, j) as a recurrence taking the speed-bound s into
account for j > 1. Recall that w(vi,j) contributes to the values of Cj and Ri.

Fd(i, j) =





min{Cj(i − k, i) + Fδ(i − k, j) | δ ∈ {↗, →, ↘} ∧ k ∈ [1, s]} if d =↑
F (i − 1, j − 1) + w(vi−1,j−1) if d =↗
min{Ri(j − k, j) + Fδ(i, j − k) | δ ∈ {↑, ↗, ↘, ↓} ∧ k ∈ [1, s]} if d =→
F (i + 1, j + 1) + w(vi+1,j+1) if d =↘
min{Cj(i + k, i) + Fδ(i + k, j) | δ ∈ {↗, →, ↘} ∧ k ∈ [1, s]} if d =↓

▶ Theorem 2.1. Given two polygonal curves P and Q with n and m vertices, respectively,
the discrete Barking distance of P to Q can be computed in time O(nm(log s)) where s is the
speed bound or time O(nm log(nm)) if s > n or s > m.

Proof. For the first column, i.e., j = 1, we can compute F (i, j) as follows. Clearly, F (1, 1) =
w(v1,1) = θρ(p1, q1). We set F (i, 1) = ∞ for all i > s. Finally, we find that the remaining
entries F (i, 1) with i ∈ [2, s] in a bottom-up traversal as the values C1(1, i). We conclude
this step by initializing a min-heap Hi for each row i containing vertex vi,1 as its sole element
and F (i, 1) = F→(i, 1) as the key.

Assume now that we want to compute the entries Fd(i, j) for i ∈ [1, m] where all entries
Fd(i, j′) with j′ < j are already computed and for row i we have a min-heap Hi containing
all F→(i, j − k) for k ∈ [1, s] ordered by key F→(i, j − k) + Ri(j − k, j − 1). From this
information we can for each i immediately compute F→(i, j) as the minimum of Hi, say vi,j′

plus Ri(j − j′, j). We then update Hi by deleting all entries for vi,j−s and then inserting
(vi,j , F↑(i, j)), (v1,j , F↓(i, j)), (v1,j , F↘(i, j)), and (v1,j , F↗(i, j)) using as key for comparison
F·(i, j) + Ri(j − k, j) in the insertion. Note that since for all elements already present in Hi

their keys change only by w(vi,j) and hence their order remains the same. Moreover, we can
directly compute F↗(i, j) and F↘(i, j) for each i.

It remains to compute F↑(i, j) and F↓(i, j) for each i ∈ [1, m] in column j. We describe
how to compute F↑(i, j), F↓(i, j) can be computed symmetrically. We start from v1,j . Clearly,
F↑(1, j) = ∞. We also initialize a min-heap H and insert (v1,j , F→(1, j)), (v1,j , F↘(1, j)),
and (v1,j , F↗(1, j) = ∞) where the second element is used as key. Assume that we now
want to compute F↑(i, j) and that we have a heap H containing for k ∈ [1, s] the elements
(vi−k,j , F→(i − k, j)), (vi−k,j , F↘(i − k, j)), and (vi−k,j , F↗(i − k, j)) ordered by key F·(i −
k, j) + Cj(i − k, i − 1). This can be done as for the row by just extracting the minimum
element from the heap H, say (vi′,j , Fδ(i′, j)), and setting F↑(i, j) = Fδ(i′, j) + Cj(i′, i). We
update the heap as in the case of Hi, with the only difference being that we need to insert
the three elements (vi,j , F→(i, j)), (v1,j , F↘(i, j)), and (v1,j , F↗(i, j))

Correctness follows since the algorithm computes directly the above recurrence. Moreover,
since every element vertex and partial weight combination gets deleted and inserted at
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most once from some heap over the whole computation and no heap contains more than
3s elements at a time, we obtain the claimed running time of O(nm log s). Note, that if
s > m or s > n we obtain a runtime of O(nm(log(m) + log(n))) since again never more than
O(s) elements are contained in a heap and no more than O(nm) elements can be inserted or
deleted. ◀

3 Outlook and Conclusion

In the full version of this paper, we also study the barking distance in two other settings,
namely the semi-discrete and the continuous setting. In the semi-discrete setting, the
traversal of Q is continuous while the one of P is again discrete. We show the following.

▶ Theorem 3.1. Given two polygonal curves P and Q with n and m vertices, respectively,
the semi-discrete Barking distance of P to Q can be computed in time O(nm log(nm)).

In the continuous setting, both traversals are continuous. Here our algorithm is slower,
but still polynomial.

▶ Theorem 3.2. Given two polygonal curves P and Q with n and m vertices, respectively,
the continuous Barking distance of Q to P can be computed in time O(n4m3 log(nm)).

For all the settings we show that, assuming the Strong Exponential Time Hypotheis
(SETH), no truly subquadratic algorithm can exist.

▶ Theorem 3.3. Let P and Q be two disjoint polygonal curves with n vertices. Assuming
OVC, solving the barking decision problem where the maximum speed of the dog matches the
speed of the hiker and with constant barking radius ρ requires Ω(n2−ϵ) time for any ϵ > 0.

In the discrete and semi-discrete setting, the runtime of our algorithms match the lower
bound up to logarithmic factors. For the continuous setting we give an algorithm that is
likely not optimal. We believe that using techniques as for the proof of 3.1 we can improve
the runtime to O(nm3 log m), but this would still leave a gap between upper and lower
bound. While we conjecture that it is possible to obtain an O(nm log(nm)) algorithm, it
is likely that new ideas are necessary for this. It would also be interesting to find more
efficient algorithms in the continuous setting for restricted types of curves such as time series.
Throughout our paper, we assumed that the barking radius ρ and the speed bound s are
fixed. Considering them as variables leads to other interesting algorithmic problems where
we ask for the minimal speed or barking radius required for the dog such that the hiker can
hear it the entire time. We leave the study of these problems for future work.
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Abstract
An edge unfolding of a polyhedron is a flat polygon obtained by cutting along the polyhedron’s edges
and unfolding the polygon onto a plane. It is known that the number of edge unfoldings is equal
to the number of spanning trees formed by the cutting edges of the polyhedron. However, some
edge unfoldings overlap, i.e., two distinct faces in the edge unfoldings overlap, so they cannot be
embedded in the plane. We do not know the percentage of the overlapping edge unfoldings for almost
all polyhedra. In particular, there exists an interesting and well-known open problem of whether
or not all convex polyhedrons have a non-overlapping edge unfolding. Horiyama et al. proposed an
enumeration algorithm for edge unfoldings using zero-suppressed binary decision diagrams (ZDDs),
which are compact data structures for families of sets. The ZDDs have attractive family algebraic
operations; for example, we can extract sets satisfying some constraints from the family of sets
over ZDDs efficiently. In this study, we propose an enumeration algorithm for non-overlapping edge
unfoldings in a polyhedron using ZDDs and their operations. The algorithm first enumerates the
minimal overlapping partial edge unfoldings (MOPEs) obtained through the “rotational unfolding”
by Shiota and Saitoh. Then, we subtract the overlapping edge unfoldings containing the MOPEs
from all edge unfoldings over ZDDs. We apply the algorithm to convex regular-faced polyhedra
(including three types of Archimedean solids, twenty types of Johnson solids, nineteen types of
Archimedean prisms, and twenty-one types of Archimedean antiprisms) and show the number of
non-overlapping edge unfoldings for each type of polyhedron.

1 Introduction

An edge unfolding of a polyhedron is a flat polygon obtained by cutting along the poly-
hedron’s edges and unfolding the polygon onto a plane. The origin of edge unfoldings is
recognized as the illustrations found in Albrecht Dürer’s “Underweysung der messung mit
dem zirckel un richt scheyt” [5] published in 1525 [3]. However, the edge unfoldings can some-
times result in overlapping polygons, i.e., two distinct faces overlap, or their boundaries are
in contact (Figure 1). In Dürer’s book, all the polyhedra are drawn as edge unfoldings

Figure 1 A cube with cut-off corners and its overlapping edge unfolding. The faces shown in
gray are a MOPE.
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Figure 2 The line graph represents the percentage of non-overlapping edge unfoldings among
1000 randomly selected edge unfoldings. Each point on the graph represents the average values for
five randomly generated convex polyhedra [15].

Table 1 Overlapping edge unfoldings for convex regular-faced polyhedra

Convex regular-faced polyhedra Is there an overlapping edge unfolding?
Platonic solids (Total 5 types) No [8]

Archimedean solids (Total 13 types) No (7 types) / Yes (6 types) [2, 8, 6, 18]
Johnson solids (Total 92 types) No (48 types) / Yes (44 types) [17]

n-gonal Archimedean prisms (n ≥ 3) No (3 ≤ n ≤ 23) / Yes (n ≥ 24) [18]
m-gonal Archimedean antiprisms (m ≥ 3) No (3 ≤ m ≤ 11) / Yes (m ≥ 12) [18]

without overlaps. Focusing on this point, Shephard proposed the following conjecture.

▶ Conjecture 1.1 ([16]). For any convex polyhedron, at least one non-overlapping edge
unfolding exists.

This conjecture is still unsolved, and some studies to solve it are ongoing. One of the studies
is Schevon’s experiment on randomly generated convex polyhedra [15]. She showed that the
percentage of non-overlapping edge unfoldings decreases as the number of vertices increases
(Figure 2). Some studies have reported the existence of an overlapping edge unfolding in a
given polyhedron. Shiota and Saitoh presented an algorithm “rotational unfolding” that can
quickly find an overlapping edge unfolding of a polyhedron, and they showed the existence
of overlapping edge unfoldings for convex regular-faced polyhedra (Table 1).

It is known that the number of edge unfoldings is equal to the number of spanning trees
formed by the cutting edges of the polyhedron. We can count the number of spanning trees
using Kirchhoff’s theorem [13] or a data structure called binary decision diagrams (BDD) [1]
/ zero-suppressed binary decision diagram (ZDD) [14]. The BDDs/ZDDs represent compact
data structures for families of sets and have family algebraic operations (i.e., union, inter-
section, and set difference). In addition, BDDs/ZDDs allow for the counting, enumerating,
and extracting of optimal families of sets. BDDs/ZDDs have been applied to enumer-
ate specific structures on graphs [12]. Horiyama et al. enumerated spanning trees using
BDDs/ZDDs and counted the number of convex regular-faced polyhedra [9, 7]. Horiyama
and Shoji proposed a method for counting the number of non-overlapping edge unfolding for
Platonic solids by extracting each spanning tree one by one from BDDs [8]. However, this
method only applies to the polyhedra with few edge unfoldings. For example, the truncated
icosahedron (Figure 3) has 375, 291, 866, 372, 898, 816, 000 (approximately 3.75 × 1020) edge
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unfoldings [9], so checking each unfolding individually, it would take over ten thousand years
with current computers.

In this study, we propose an enumeration algorithm for non-overlapping edge unfoldings
in a polyhedron using ZDDs and their operations. The algorithm first enumerates the
minimal overlapping partial edge unfoldings (MOPEs), which are the minimal units of edge
unfoldings with overlaps obtained through the rotational unfolding [18]. Then, we subtract
the overlapping edge unfoldings containing the MOPEs from all edge unfoldings over ZDDs.

We apply this counting method to convex regular-faced polyhedra, including three types
of Archimedean solids, twenty types of Johnson solids, nineteen types of Archimedean
prisms, and twenty-one types of Archimedean antiprisms, and show the number of non-
overlapping edge unfoldings for each type of polyhedron.

2 Preliminaries

A polyhedron is a three-dimensional object consisting of at least four polygons, called faces,
joined at their edges. A convex polyhedron is a polyhedron with the interior angles between
any two adjacent faces less than π. A convex regular-faced polyhedron is a convex polyhedron
with all faces being regular polygons. A Platonic solid is a convex regular-faced polyhedron
with all faces composed of congruent regular polygons. An n prism, where n ≥ 3, is a
polyhedron composed of two identical n-sided polygons, called bases, facing each other, and
n parallelograms, called side faces, connecting the corresponding edges of the two bases. An
m antiprism, where m ≥ 3, is a polyhedron composed of two congruent m-sided polygonal
bases and 2m triangular side faces alternating around the bases. An n-gonal (anti)prism
is an n (anti)prism if the bases are n-sided regular polygons. An n-gonal Archimedean
(anti)prism is an n-gonal (anti)prism if it is a convex regular-faced polyhedron (i.e., the
side faces are regular squares (or triangles)). An Archimedean solid is a convex regular-
faced polyhedron composed of regular polygons with the same type and order of regular
polygons gathered at the vertices, except for Platonic solids and Archimedean (anti)prisms.
A Johnson solid is a convex regular-faced polyhedron, except Platonic solids, Archimedean
solids, and Archimedean (anti)prisms. There are 92 Johnson solids [11].

Let Q be a polyhedron. Two faces in Q are neighbors if they contain a common edge.
An unfolding (also called a net, a development, or a general unfolding) of the polyhedron
Q is a flat polygon formed by cutting Q’s edges or faces and unfolding it into a plane. An
edge unfolding of Q is an unfolding formed by cutting only Q’s edges. Q can be viewed as a
graph GQ = (VQ, EQ), where VQ is a set of faces in the polyhedron, and EQ is a set of edges
such that two vertices are adjacent if and only if the corresponding two faces are neighbors.
The following lemma applies to an edge unfolding of Q.

▶ Lemma 2.1 (see e.g., [19], Theorem 2.2.1 and its proof). The set of non-cutting edges for

Figure 3 A truncated icosahedron (a type of Archimedean solid)
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Figure 4 (a),(c) MOPEs in J21 (a type of Johnson solid). Removing any face from each MOPE
results in non-connected structures, contradicting the definition of partial edge unfoldings. (b),(d)
Partial edge unfoldings in J21 that are not MOPE. Removing the gray faces results in MOPEs.

an edge unfolding of Q forms a spanning tree of GQ.

This lemma implies that counting the spanning trees of GQ is equal to counting the edge
unfoldings of Q. A partial edge unfolding is a flat polygon formed from a set of faces
corresponding to a connected induced subgraph of GQ.

Two distinct polygons overlap if there exists a point p contained in two polygons. Note
that any point on a boundary is included in the polygons in this paper; the polygons overlap if
they touch at the boundaries. An unfolding is overlapping if a pair of distinct faces exists such
that the faces overlap. Herein, neighbor faces are not overlapping. The algorithm rotational
unfolding has been developed to efficiently determine overlaps in a given polyhedron based
on [4, 6] ideas [18]. Rotational unfolding can enumerate minimal overlapping partial edge
unfoldings (MOPEs), a partial edge unfolding with the minimal number of faces required to
connect two overlapping faces. Figure 4 shows the example of MOPEs and non-MOPEs.

One method for counting spanning trees in a graph is using a Zero-suppressed Decision
Diagram (ZDD). A ZDD is a data structure representing families of sets compactly as a
directed acyclic graph. In a ZDD, there are two types of nodes: terminal nodes with the
out-degree zero ⊤, ⊥, and branching nodes. Branching nodes are labeled by elements of
the set, and each has two outgoing edges: a 1-edge and a 0-edge. The 1-edge indicates the
inclusion of the labeled element, while the 0-edge indicates the exclusion of the element. In a
ZDD, there is a root node with no incoming edges. For example, the ZDD, which represents
a spanning tree as shown in Figure 5, and a path from the root node (labeled e0) following
a 1-edge, a 1-edge, a 0-edge, and a 1-edge leading to ⊤ means that the set {e0, e1, e3} forms
a spanning tree. ZDDs have some operations, such as computing the union or intersection
of two ZDDs [14].

3 Counting algorithm for non-overlapping edge unfoldings

In this section, we describe an algorithm counting the number of non-overlapping edge
unfoldings for any polyhedron Q. Let P be a (partial) edge unfolding of Q, and let G(P ) =
(V (P ), E(P )) be the graph corresponding to P . The following lemma holds.

▶ Lemma 3.1. For any overlapping edge unfolding U , there exists a MOPE C such that
E(C) ⊆ E(U).

Let Ci (1 ≤ i ≤ k) be MOPEs of a polyhedron, where k is the number of MOPEs. From
Lemma 3.1, the following claim holds.
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Figure 5 (a) An example of the graph C4 and its spanning trees. (b) A ZDD representing the
spanning trees of C4. Circles represent branching nodes, labels are inside the circles, solid lines
represent 1-edges, and dashed lines represent 0-edges.

▶ Claim 3.2. Let U be a non-overlapping edge unfolding. For any MOPE Ci, E(Ci) ⊈ E(U).
The number of edge unfoldings can be counted by constructing ZDD ZS [12]. However,

it contains overlapping edge unfoldings. To exclude these overlapping unfoldings, we employ
the subsetting method, an operation over ZDDs [10]. For a ZDD Z, the subsetting method
generates a new ZDD ZC by extracting combinations satisfying a constraint C from Z.

We can count the number of non-overlapping edge unfoldings by following three steps.
Step 1 Generate a ZDD ZS .
Step 2 For each MOPE Ci, generate a new ZDD ZCi

representing combinations that do
not simultaneously include all elements of E(Ci). Herein, a ZDD ZCi serves as a filter
to exclude overlapping edge unfoldings.

Step 3 Generate a new ZDD ZC by extracting combinations that satisfy all ZCi
from ZS

using the subsetting method.

4 The number of non-overlapping edge unfoldings in convex
regular-faced polyhedra

In this section, we apply the counting algorithm described in Section 3 for non-overlapping
edge unfoldings with regular convex regular-faced polyhedra (including three types of Archi-
medean solids, twenty types of Johnson solids, nineteen types of Archimedean prisms, and
twenty-one types of Archimedean antiprisms). We use TdZdd library∗ for constructing ZDD
ZS and ZCi

. Experiments were conducted on a Mac OS Venture computer with an Apple
M1 Max chip and 64GB of memory. To enumerate the MOPEs for Archimedean solids,
Johnson solids, and Archimedean (anti)prism, we used rotational unfolding [18, 17].

We show the number of non-overlapping edge unfoldings for three types of Archimedean
solids (Table 2), twenty types of Johnson solids, nineteen types of Archimedean prisms,
and twenty-one types of Archimedean antiprisms†. Figure 6 shows the percentage of non-
overlapping edge unfoldings from all edge unfoldings for Archimedean (anti)prisms.

From the results of these experiments, we observe the following: In Archimedean solids
(Table 2), both the truncated dodecahedron and truncated icosahedron have the same num-
ber of vertices, edges, and faces, yet the truncated icosahedron has more MOPEs than
that of truncated dodecahedron. Despite this, the results indicate that the percentage of

∗ https://github.com/kunisura/TdZdd
† See https://shiotatakumi.github.io/MyPage/contents/240313-EuroCG-2024.html for the number

and percentage of non-overlapping edge unfoldings in Johnson solids, and Archimedean (anti)prisms.
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Table 2 The number and percentage of non-overlapping edge unfoldings in Archimedean solids.

Archimedean solids |V | |E| |F | #(MOP E) #(Edge unfolding) [9] #(Non-overlapping edge unfolding) %
Sunb cube 24 60 38 72 89,904,012,853,248 85,967,688,920,076 95.6

Truncated dodecahedron 60 90 32 120 4,982,259,375,000,000,000 931,603,573,888,462,350 18.6
Truncated Icosahedron 60 90 32 240 375,291,866,372,898,816,000 366,359,657,802,290,909,354 97.6

Figure 6 The relationship between the number of vertices and the percentage of non-overlapping
edge unfoldings in n-gonal Archimedean prisms and m-gonal Archimedean antiprisms.

non-overlapping edge unfoldings in the truncated dodecahedron is lower than that of the
truncated icosahedron. The truncated icosahedron’s MOPEs consist of 8 or 9 faces (Fig-
ure 7), while the truncated dodecahedron’s MOPEs have 4 faces (Figure 8). Therefore,
we observe that the number of faces constituting each MOPE, rather than the number
of MOPEs, influences the percentage of non-overlapping edge unfoldings. The same ob-
servation also applies to Archimedean (anti)prisms. In n-gonal Archimedean prisms, the
percentage of non-overlapping edge unfoldings significantly decreases at n = 29, as shown
in Figure 6 (left). This decrease may be attributed to the appearance of two new types of
MOPEs, consisting of 4 faces for n ≥ 29, as illustrated in Figure 10 (for n ≤ 28, the MOPEs
consist of 6, 7, or 8 faces (Figure 9)). Similarly, in m-gonal Archimedean antiprisms, the
percentage of non-overlapping edge unfoldings significantly decreases at m = 18, as shown
in Figure 6 (right). This decrease may be attributed to the appearance of three new types
of MOPEs, consisting of 6 faces for m ≥ 18, as illustrated in Figure 12 (for m ≤ 17, the
MOPEs consist of 8 faces (Figure 11)).

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant Num-
bers JP18H04091, JP19K12098, and JP22H03549, by MEXT KAKENHI Grant Number
JP20H05964, and by JST SPRING Grant Number JPMJSP2154.

Figure 7 MOPEs in the truncated icosahedron [9, 18]
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Figure 8 A MOPE in the truncated dodecahedron [9]

Figure 9 MOPEs in n-gonal Archimedean prisms for (a) n ≥ 24, (b) n ≥ 26, and (c) n ≥ 28.
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Abstract
We study the problem of determining the complexity of the lower envelope of a collection of n

geometric objects. For collections of rays; unit length line segments; and collections of unit squares
to which we apply at most two transformations from translation, rotation, and scaling, we prove
a complexity of Θ(n). If all three transformations are applied to unit squares, then we show the
complexity becomes Θ

(
nα(n)

)
, where α(n) is the slowly growing inverse of Ackermann’s function.

1 Introduction

Consider a set of n line segments (segments for short) in the plane. It is known that the
complexity of their lower envelope is at least Ω

(
nα(n)

)
, where α(n) is the extremely slowly

growing inverse of Ackermann’s function. The lower bound was proved by Wiernik and
Sharir [4], a matching upper bound of O

(
nα(n)

)
was proved by Hart and Sharir [1], and an

O(n log n) time and O
(
nα(n)

)
space algorithm to find such a lower envelope was described

by Hershberger [2]. The motivation of this work is to determine under which geometric
properties of a given set of n geometric objects we can ensure that their lower envelope has a
tight complexity, e.g., linear or Θ

(
nα(n)

)
.

For many of the results, we will make extensive use of Observation 1.1.

▶ Observation 1.1. Let S1 and S2 be two sets of n1 and n2 planar geometric objects whose
lower envelopes have complexity O

(
f1(n1)

)
and O

(
f2(n2)

)
, respectively.

If any pair of objects in the set S1 ∪ S2 intersect at most O(1) times, then the union of
the lower envelopes of S1 and S2 has complexity O

(
f1(n) + f2(n)

)
, where n = n1 + n2.

The observation follows by merging the two sequences of intervals generated by the
corresponding two envelopes, since any two objects will appear at most a constant number
of times in the lower envelope where they intersect. Thus, the complexity becomes as stated.
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



25:2 Lower Envelopes of Various Geometric Shapes

(a)

r

E

(b)

r
E p q

(c)

E

r

(d)

rE
p

Figure 1 Illustrating the proof of Theorem 2.1.

2 Collections of Rays

▶ Theorem 2.1. The lower envelope of a set of n rays has a complexity of Θ(n).1

Proof. Given a ray r, let s(r) and ℓ(r) denote the starting point and the supporting line of
r, respectively. Without loss of generality, we assume in the following that no ray is vertical,
since the lower envelope of any such ray is a single point.

To see the lower bound, consider n rays that move horizontally to the right, with starting
points (1, n), (2, n−1), . . . , (n, 1). The lower envelope has vertices at each integer x-coordinate
from 1 to n and therefore complexity Ω(n).

To see the upper bound, we argue as follows. Let R be the subset of rays that have no
point to the left of their starting point and let L be the subset of remaining rays. We show
next that the complexity of the lower envelope of R is O(n). By symmetry (mirroring the
rays in L along the line x = 0), the complexity of the lower envelope of L is also O(n). The
upper bound follows by combining these results and Observation 1.1.

For the rays in R, our proof makes use of the following observation.

▶ Observation 2.2. Given two rays in R that intersect, the ray that lies above the other after
their intersection point will never again be included in the lower envelope after that point.

Consider the set of rays in R and sort them by the x-coordinate of the endpoint in order
from left to right. By greedily inserting a ray r in this order into the lower envelope E of the
previously added rays we argue that the number of intersection points in the lower envelope
can increase by at most two. We have the following cases.
1. The starting point of r lies above E and r never intersects it, then r is never seen from

below and the lower envelope does not change; see Figure 1(a),
2. The starting point of r lies above E and the ray intersects it at p, then p is a vertex

of the new lower envelope. If r does not intersect the current lower envelope to the
right of p, then r is the only object seen to the right of p. If r intersects E again at
q, by Observation 2.2, the ray r will not be included in the lower envelope again, and
furthermore, since two rays can only intersect once, between p and q, there must be at
least one vertex of E . Hence, either one vertex is added to E or two are added and at
least one vertex must also be removed; see Figure 1(b),

3. The starting point of r lies below E and r never intersects E , then a vertex in the lower
envelope is introduced at the x-coordinate of the starting point of r and the ray is the
only object seen to the right of this point; see Figure 1(c),

4. The starting point of r lies below E and r intersects it at p, then a new vertex in the lower
envelope is introduced at the x-coordinate of the starting point of r and another one at p.
By Observation 2.2, r can never appear again in the lower envelope; see Figure 1(d).

Thus, at most two new vertices are introduced to the lower envelope when we insert a ray. ◀

1 This result was stated without a proof by Sharir and Agarwal in [3, page 112].
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3 Collections of Line Segments with Unit Length

▶ Theorem 3.1. The lower envelope of a set of n unit length segments has complexity Θ(n).

Proof. To prove the lower bound, consider the lower envelope of the n unit length segments
[(1, 0), (2, 0)], [(3, 0), (4, 0)], . . . , [(2n − 1, 0), (2n, 0)] with 2n vertices, establishing the claim.

To prove the upper bound, consider a square grid covering the plane whose cells have side
length 3/5. We denote by Si,j the grid cell at row i and column j. Let Li,j be the set of line
segments obtained by intersecting the input set of line segments with the region bounded by
Si,j , and let ni,j be the number of line segments in Li,j .

The lower envelope of Li,j has complexity O(ni,j), since the input segments have length 1
and the grid cells have side length 3/5. The segments of Li,j have either a single endpoint
or no endpoints in the interior of Si,j . Observe that the subset of segments of Li,j with no
endpoints behave as lines inside Si,j and each such segment has at most one connected piece
on the lower envelope of Li,j . Hence, the lower envelope of this subset has linear complexity [3].
On the other hand, note that the subset of segments of Li,j with a single endpoint behave
as rays inside Si,j . In particular, Observation 2.2 holds. Therefore, by Theorem 2.1 the
lower envelope of this subset has also linear complexity. Combining these observations with
Observation 1.1, we conclude that the lower envelope of Li,j has complexity O(ni,j).

Let S
(k)
j =

⋃∞
i=−∞ S3i+k,j , for k ∈ {0, 1, 2}, be the union of the cells in a grid column

that are three cells apart. We say that S
(k)
j is the kth sub-strip of the jth grid column. We

denote by L
(k)
j =

⋃∞
i=−∞ L3i+k,j the set of line segments resulting from intersecting the

input set of line segments with S
(k)
j . Let the number of segments of each set L

(k)
j be n

(k)
j .

No two grid cells S3i+k,j and S3i′+k,j , with i ̸= i′, in sub-strip S
(k)
j , contain a common

segment since they are more than one unit apart vertically. The lower envelope of a sub-strip
S

(k)
j is the lower envelope of the lower envelopes for the squares included in S

(k)
j and therefore

any vertex in the lower envelope in a square is either included or excluded in the lower
envelope of S

(k)
j , whereby the complexity is

∑∞
i=−∞O(n3i+k,j) = O

(
n

(k)
j

)
; see Figure 2(a).

We now consider the lower envelope of sub-strips that are three squares apart horizontally.
We denote the union of such sub-strips by S(k,l) def=

⋃∞
j=−∞ S

(k)
3j+l, for l ∈ {0, 1, 2}. Let

L(k,l) =
⋃∞

j=−∞ L
(k)
3j+l be the set of line segments resulting from intersecting the input set of

line segments with S(k,l). Let the number of segments of each set L(k,l) be n(k,l).
Any two sets L

(k)
3j+l and L

(k)
3j′+l, with j ̸= j′, must have empty intersection since the

corresponding sub-strips S
(k)
3j+l and S

(k)
3j′+l are more than one unit apart. Hence, no segment

occurs in the two sub-strips whereby the lower envelope of the segments in S(k,l) has
complexity

∑∞
j=−∞ O

(
n

(k)
3j+l

)
= O

(
n(k,l)) ⊆ O(n); see Figure 2(b).

The complexity of the lower envelope of
⋃

0 ≤ k ≤ 2
0 ≤ l ≤ 2

L(k,l), i.e., the whole domain, is then

∑

0 ≤ k ≤ 2
0 ≤ l ≤ 2

O
(
n(k,l)) ⊆

∑

0 ≤ k ≤ 2
0 ≤ l ≤ 2

O(n) = O(n), (1)

using Observation 1.1 since we are summing over nine linear sized subsets. ◀

3.1 Segments Traced by Moving Points with Constant Speed
Let P be a set of n points in the plane, each moving at the same constant speed along a
different line. The points start simultaneously moving at an instant t = 0, so at any given
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S(0,l)

S(0,l)

S(0,2)

S(0,0)
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S
(0)
j S

(0)
j+3

(a) (b)

Figure 2 Illustrating the proof of Theorem 3.1.

instant t > 0, the points have traced a set Lt of n line segments, all with equal length; see
Figure 3. By Theorem 3.1, and combining Corollary 3.2 with the algorithm by Hershberger [2],
we obtain the following result.

▶ Corollary 3.2. For any fixed t > 0, the lower envelope of Lt has a complexity of Θ(n) and
can be computed in O(n log n) time and O(n) space.

(a) (b)

Figure 3 (a) A set P of eight points in the plane at an instant t = 0. (b) The lower envelope of
the segments traced by moving the points of P along linear trajectories, at an instant t > 0.

4 Collections of Unit Squares Under Linear Transformations

We consider unit squares and allow rotation, translation, and scaling. We settle the complexity
of the lower envelope for all possible combinations of these transformations, see Table 1.
More specifically, we consider n copies of the unit square with corners at [0, 0], [0, 1], [1, 0],
and [1, 1], and apply a subset of the transformations to these n unit squares.

If we do not allow scaling, each square has four unit-length segments, out of which at
most two appear on the lower envelope. Combining Theorem 3.1 and Observation 1.1, we get

▶ Corollary 4.1 (Cases 2, 5, and 6). The lower envelope of a set of n unit squares that can
be rotated and/or translated has a complexity of Θ(n).
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Table 1 Complexity of the lower envelope of unit squares under various linear transformations.

On the other hand, if we only allow scaling, we can only achieve constant complexity.

▶ Lemma 4.2 (Case 7). The lower envelope of a set of n unit squares that can be scaled has
a complexity of Θ(1).

▶ Lemma 4.3 (Case 4). The lower envelope of a set of n unit squares that can be translated
and scaled has a complexity of Θ(n).

Proof. For the lower bound, consider the lower envelope of the n axis-aligned squares with
base edges [(1, 0), (2, 0)], [(3, 0), (4, 0)], . . . , [(n − 1, 0), (n, 0)]. Since such a lower envelope has
2n vertices, we have established the Ω(n) bound.

For the upper bound, we split the segments of the squares into two groups: All n squares
have the same rotation, hence, for each square either a single horizontal line segment (if the
squares are axis-aligned) or two line segments with two coinciding slopes for all squares may
appear on the lower envelope. We consider the line segments with non-negative and those
with negative slope separately. Let L+ and L− be the set of line segments with non-negative
and negative slope, respectively. (L− may be empty.) All line segments in L+ have the same
slope, hence, no two line segments from the set can intersect. We order the segments in L+

by their left endpoint and insert them one after another. When we insert a new line segment
ℓi ∈ L+, we introduce at most two vertices to the lower envelope:
1. If the left endpoint of ℓi is to the right of all previously inserted segments, we introduce

two new vertices to the lower envelope.
2. If the left endpoint of ℓi is to the left of some right endpoints of previously inserted line

segments, but its right endpoint is to the right of all previously inserted segments, we
introduce at most two vertices to the lower envelope: both of ℓi’s endpoints or its right
endpoint (the other vertex is in that case an already introduced endpoint of a segment).

3. If the complete segment ℓi is within the interval of x-coordinates of previously inserted
segments, no left endpoint of a segment ℓj , j < i can be to the right of ℓi’s left endpoint,
thus, depending on the y-coordinates of the so far introduced segments, we introduce
either ℓi’s endpoints, its right endpoint, or no point to the lower envelope.

Hence, the lower envelope of the line segments in L+ has complexity O(n). An analogous
argument yields the same bound for the lower envelope of line segments in L−. Hence, with
Observation 1.1, we yield the upper bound. ◀

▶ Lemma 4.4 (Case 3). The lower envelope of a set of n unit squares that can be scaled and
rotated has complexity Θ(n).

While in all previous cases, we could give a linear bound on the complexity of the lower
envelope, this does not hold if we allow all three linear transformations.

EuroCG’24
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▶ Theorem 4.5 (Case 1). The lower envelope of a set of n unit squares that can be rotated,
translated, and scaled has complexity Θ

(
nα(n)

)
.

Proof. For a collection of n line segments in the plane (none of which are vertical), Hart
and Sharir [1] showed that the complexity of the lower envelope can be at most O

(
nα(n)

)
.

For each of the n squares at most two line segments appear on the lower envelope. Thus, the
result by Hart and Sharir in combination with Observation 1.1 yields an upper bound of
O

(
nα(n)

)
on the complexity of the lower envelope of the squares.

Let G = {ℓ1, . . . , ℓn} be the set of line segments from the lower-bound construction of
Wiernik and Sharir [4]. We construct a new set of line segments G′ = {ℓ′

1, . . . , ℓ′
n} from G:

for a large constant M , we substitute each endpoint (ex, ey) of a segment by the endpoint
(ex,

ey

M ). For an example, see Figure 4. If any two segments ℓi and ℓj intersect in the point
(px, py), then ℓ′

i and ℓ′
j intersect in the point (px,

py

M ). Thus, if ℓi is on the lower envelope
of G for the interval (x1, x2), then ℓ′

i is on the lower envelope of G′ for the same interval
(x1, x2). Consequently, the complexity of the lower envelope of G′ equals that of G.

We use the new (“nearly” horizontal) line segments as the base edge of our squares S,
see Figure 4: Let ℓ′

i have endpoints (li
x, li

y) and (ri
x, ri

y), we construct a square si with side
length ||ℓ′

i||. For each of these squares at most two edges are on the lower envelope.
For M being large enough, the square edges appearing on the lower envelope that do not

stem from the line segments from the construction by Wiernik and Sharir have a very large
absolute value of slope (that is, they are “nearly” vertical). We can choose M large enough
such that for ℓi, ℓj , ℓk appearing on the lower envelope in that order, the vertical edges of si

and sk cannot block sj (with higher y-coordinate) from appearing on the lower envelope:
Let ℓj appear on the lower envelope of G within the interval Ij = [ri

x, lk
x]. We split Ij into

three equal-length closed intervals Ijl, Ijm and Ijr, aiming that si and sk may block at most
Ijl and Ijr, respectively—which yields the claim. We consider the case that ℓi has negative
slope (with positive slope, si does not block any of Ijl). For simplicity, assume that ℓj is
horizontal (similar arguments hold in the other cases). We can consider ℓj , because if ℓj is
not blocked in Ijm then ℓ′

j (with smaller y-coordinates) is not blocked either. Assume, we
construct a square σi with ℓi as base edge (instead of ℓ′

i for si). Let ei be σi’s second edge
that may appear on the lower envelope, and let pij = (pij

x , pij
y ) be the intersection point of ei

and ℓj . If pij ∈ Ijl, we are done for any value of M , hence, let pij ∈ Ijm ∪ Ijr. The slope of ei

is pij
y −ri

y

pij
x −ri

x

, the equivalent edge of si should have slope at least pij
y −ri

y

ri
x+1/3(lk

x−ri
x)−ri

x
= pij

y −ri
y

1/3(lk
x−ri

x) ,

such that we achieve pij ∈ Ijl. Hence, we need to choose M ≥ 1/3(lk
x−ri

x)
pij

x −ri
x

. By choosing M

larger than these constraints for all pairs of line segments appearing consecutively on the
lower envelope, we can ensure that while si and ℓi will not appear on the exact same interval
on the lower envelope for S and G, the sequence of the si appearing on the lower envelope
for S coincides with the sequence of the ℓi appearing on the lower envelope for G. Hence,
the lower bound for line segments established by Wiernik and Sharir [4] translates to unit
squares that can be rotated, translated and scaled. ◀

5 Open Questions

The complexity for other geometric shapes, such as differently oriented parabolae, ellipses,
and fat objects in general would be of great interest to settle. In particular, we are interested
in knowing if the complexity can be proved with purely geometric arguments.



C. Alegria, A. Brötzner, B.J. Nilsson, C. Schmidt, C. Seara 25:7

Figure 4 Example for the construction from the proof of Theorem 4.5. Top: Set of line segments
G = {ℓ1, . . . , ℓ5}; second to top: the sequence of segments of G appearing on the lower envelope;
middle: new set of line segments G′ = {ℓ′

1, . . . , ℓ′
5}; second to bottom: set of squares S = {s1, . . . , s5};

bottom: sequence of squares of S appearing on the lower envelope.
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Abstract
We study maximum c-independent sets that maximize the number of isolated vertices and present
an algorithm that computes such subgraphs for unit interval graphs in linear time. The algorithm
is based on a simple test that gives a certificate whether a specific vertex can be isolated. While
the crucial property seems straight-forward, its proof requires a careful analysis of the structure of
c-independent sets in unit interval graphs. Surprisingly, the techniques do not generalize to interval
graphs and the algorithm does not even yield an approximation on general interval graphs.

1 Introduction

Computing maximum independent sets is a fundamental problem and appears on the list of
Karp’s 21 NP-complete problems. Maximum independent sets and also its generalizations
of maximum c-independent sets find a variety of use cases across various fields in modelling
and solving real-world problems, e.g., wireless sensor networks [3], DNA sequencing in bioin-
formatics [13, 19], VLSI design [13, 23], job scheduling [6, 11] and resource allocation [20],
as well as identifying independent strategies in game theory [28]. For c ∈ N, a c-independent
set (c-IS) of a graph is the union of c independent sets.

While the special case of c = 1 is the Maximum Independent Set Problem, the special
case of c = 2 is also known as Maximum Bipartite Subgraph, Graph Bipartization, or Odd
Cycle Transversal. Not only that computing a maximum c-IS is NP-complete for general
graphs, it has also been shown that there is no approximation algorithm with a factor in
O(n1−ε) for any ε > 0 and (possibly fixed) c ∈ N≥1, unless P = NP [18, 22]. In contrast,
a maximum c-IS can be computed in polynomial time for special graph classes; including
interval graphs, even if c is part of the input [29].

We consider the problem of computing a maximum c-IS for unit interval graphs with
the additional property of maximizing the number of isolated vertices (among all maximum
c-ISs). To this end, we say that a maximum c-IS is max-iso, if no other maximum c-IS has
more isolated vertices. For an example, consider the unit interval graph depicted in Figure 1,
where the thick intervals correspond to a maximum 2-IS with one isolated vertex. Is there
a maximum 2-IS with more isolated vertices?

Figure 1 A unit interval graph where the subset of thick intervals is a maximum 2-IS with one
isolated vertex. Note that exchanging the top four intervals with the bottom four intervals yields a
maximum 2-IS with two isolated vertices, namely the first and last vertex.

Our main result is as follows.

▶ Theorem 1.1. There exists an algorithm that computes a max-iso c-IS for every unit
interval graph on n vertices with a running time in O(n), even if c is part of the input.
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Our key motivation is a scheduling problem where conflicts between machines appear
due to shared resources or spatial proximity [7]. In this variant, each job has phases of pre-
and post-processing, and no two jobs on conflicting machines may overlap in such phases.
For the case that machine conflicts can be expressed by a unit interval graph, we expect
that maximum c-ISs with many isolated vertices are crucial to obtain good schedules.

The rest of our paper is organized as follows. We review related work in Section 1.1,
introduce fundamental concepts in Section 1.2 and discuss the algorithm in Section 2.

1.1 Related work
Finding a maximum c-IS is known to be NP-complete [15] and, for graphs on n vertices,
there does not even exist an O(n1−ε)-approximation for any c ∈ N≥1 and ε > 0, unless
P = NP [18, 22, 31]. Moreover, when considering general graphs, computing a maximum
c-IS is equivalent to computing a maximum 1-IS, under polynomial-time reductions [25].

Considering c = 1, the maximum independent set (MIS) is relevant in many applica-
tions and therefore well studied, also for special graph classes. In this sense, constant fac-
tor approximations exist for bounded degree graphs and families of geometric intersection
graphs [8]. Furthermore, polynomial-time approximation schemes (PTAS) exist for families
of graphs that are closed under taking minors [16], e.g., planar graphs [5]. For many other
graph classes, a maximum weight independent set may be found in polynomial time. Fa-
mous examples include claw-free graphs [12, 24], P5-free graphs [21] and perfect graphs [17].
For chordal graphs, and thus in particular for interval graphs, maximum weight independent
sets can be computed in linear time [14]. More generally, the maximum weight independent
set can be computed in polynomial time for graphs that do not contain a k-prism or an
induced Cn with n ≥ 5 [10].

For c = 2, the problem is also known as Maximum (Induced) Bipartite Subgraph, Graph
Bipartization, or Odd Cycle Transversal. A maximum 2-IS can be found in polynomial time
in planar graphs with maximum degree three, while it is NP-complete for cubic graphs and
planar graphs with maximum degree four [4, 9]. Additionally, polynomial-time algorithms
exist for many other graph classes; including split graphs, permutation graphs, tolerance
graphs and circular-arc graphs [25, 30]. We emphasize that there are graph classes, for
which a maximum 1-IS can be computed in polynomial time, while finding a maximum
2-IS is NP-hard. Examples are circle graphs [2, 26, 27] and perfect graphs, as computing a
maximum 2-IS is NP-hard for the subclass of clique-separable graphs [1].

For general c, it is known that the class of chordal graphs allows for a polynomial-time
algorithm if c is not part of the input [29]. If c is part of the input, polynomial-time
algorithms exist for the two subfamilies of perfect graphs of i-triangulated graphs [1] and
interval graphs [29].

1.2 Fundamental Concepts
Let G = (V, E) be a graph. As usual, we denote the (open) neighborhood of a vertex v by
N(v) := {u ∈ V | uv ∈ E} and the closed neighborhood by N [v] := N(v) ∪ {v}. For a subset
U ⊂ V , G[U ] denotes the subgraph induced by U .

Independent sets. A subset of vertices U ⊂ V is an independent set of G, if no two vertices
of U share an edge in G. For a fixed c ∈ N, a c-independent set (c-IS) I of G is a union of c

independent sets I1, ..., Ic of G; its size is given by the number of vertices, i.e., |I| := | ⋃
i Ii|.

A c-IS is maximum if no other c-IS has larger size. We denote the size of a maximum c-IS of
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G by αc(G). As mentioned before, we are particularly interested in c-ISs with many isolated
vertices. To this end, we call a maximum c-IS I of G max-iso, if G has no maximum c-IS
with more isolated vertices.

Interval graphs. In a (unit) interval representation of a graph G = (V, E), every vertex
is represented by a (unit) interval in R1 such that two intervals intersect if and only if the
corresponding vertices share an edge. If a graph has a (unit) interval representation, then
it is a (unit) interval graph. Without loss of generality, we assume that no two intervals
are identical. A unit interval representation has a natural ordering of the intervals by their
start points. If the interval of a vertex v starts before the interval of w, then we say v is
smaller than w; we write v ≺ w. We write v ⪯ w if either v ≺ w, or v = w, i.e., v and
w refer to the same vertex. An ordering v1, . . . , vn of the vertices of G is a left-right-order
if vi ≺ vi+1 for all i. We shortly recall a simple greedy algorithm to compute a maximum
c-IS for a unit interval graph G = (V, E) with left-right-order v1, . . . , vn with a runtime in
O(n) [29]: We start with I = ∅ and consider the vertices by increasing index. Vertex vi is
added to I, if this maintains a c-IS in G. A useful property of the greedy solution I for G

is the following: For every vertex u ∈ V , it holds that I ′ := {v ∈ I | v ≺ u} is a maximum
c-IS in G[{v ∈ V | v ≺ u}]. Clearly, an analogous statement holds when using the reversed
(right-left) order of the vertices.

2 The Algorithm

In this section, we study the computation of max-iso c-ISs for unit interval graphs. We start
by establishing a simple test that states if it is reasonable to isolate a specific vertex for
our purposes. A straight-forward implementation would yield a quadratic algorithm. We
additionally show how to derive a linear-time algorithm.

▶ Lemma 2.1. Let G be a connected unit interval graph, Iw a max-iso c-IS of G and w be
the smallest isolated vertex in Iw. Consider a vertex v ≺ w. If αc(G − N(v)) = αc(G), then
G − N(v) contains a max-iso c-IS of G.

Proof-Sketch. We consider a maximum c-IS Iv in G − N(v), i.e., Iv has size αc(G). If
w ∈ Iv, we observe that exchanging the sets of vertices that are larger than w in Iv and Iw

(denoted by I≻
v , I≻

w ) by each other, yields a c-IS; here we use the fact that G is a unit interval
graph. For a schematic illustration consider Figure 2. Therefore, it holds that |I≻

v | = |I≻
w |

and consequently I ′ := (Iv \ I≻
v ) ∪ I≻

w is a maximum c-IS in G, where the isolated vertices
are the same as in Iw, except for isolating now v instead of w. Thus, I ′ is max-iso.

Iw

Iv

I≻
w

I≻
v

w

v

Figure 2 Illustration for the proof of Lemma 2.1. If w ∈ Iw, Iv, then replacing I≻
w and I≻

v by
each other in Iw or Iv maintains a c-IS.

Afterwards, we show that there exists a maximum c-IS in G − N(v) that contains w. In
particular, this implies that v /∈ N(w). To this end, we carefully analyse the structure of
G[Iv ∪ Iw] and, assuming that there is no such maximum c-IS, obtain a contradiction. ◀
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▶ Remark. Lemma 2.1 does not hold for interval graphs in general: Consider the interval
graph G depicted in Figure 3. Note that it contains several c-cliques and a unique (2c − 1)-
clique C = {u, b1, . . . , bc−1, r1, . . . , rc−1}. In order to obtain a maximum c-IS, we have to
delete c−1 vertices of C. There exist various choices. However, when we keep at least one bi

and one rj , then the resulting c-IS has no isolated vertex. Deleting the vertices b1, . . . , bc−1
isolates vertex v, while deleting the vertices r1, . . . , rc−1 isolates the vertices w1, . . . , wk and
thus yields the unique max-iso c-IS of G. Consequently, as N(v) = {b1, . . . , bc−1}, the graph
G − N(v) contains a maximum c-IS of G but no max-iso c-IS. This implies that the decision
of isolating v is not only suboptimal but even arbitrarily bad as the number of isolated
vertices is 1 vs k in the optimum. Consequently, Lemma 2.1 cannot be used to derive a
constant-factor approximation algorithm for general interval graphs.

b1

v u

bc−1

...
...

r1

rc−1

...
...

w1 wk. . .

Figure 3 An interval graph G and its first vertex v such that αc(G − N(v)) = αc(G), but
G − N(v) contains no max-iso c-IS of G. Thus, Lemma 2.1 does not generalize to interval graphs.

▶ Remark. It is crucial in Lemma 2.1 that v is a valid candidate for a smallest isolated
vertex. In other words, even if αc(G−N(v)) = αc(G) for some vertex v, it is not necessarily
true that G − N(v) contains a max-iso c-IS of G. For an example, consider the unit interval
graph G depicted in Figure 4. Observe that there are two disjoint (2c − 1)-cliques in G,
namely, Ci = {ui, bi

1, . . . , bi
c−1, ri

1, . . . , ri
c−1} for i ∈ {1, 2}. In order to obtain a maximum

c-IS, we have to delete c − 1 vertices from C1 and C2, respectively. The unique maximum
c-IS I that isolates v is obtained by deleting all ri

j ; note that this implies that there is no
other isolated vertex in I. In contrast, the maximum c-IS I ′ obtained by deleting all bi

j has
two isolated vertices, namely w1 and w2. Thus, when applying Lemma 2.1, it is crucial that
v is a candidate for a smallest isolated vertex (in its connected component).

...

...
...

...

w1 w2v

b11

b1c−1

...

b21

b2c−1

...

r21

r2c−1

...

r11

r1c−1

...

u1 u2

Figure 4 A unit interval graph G and vertex v with αc(G − N(v)) = αc(G), but G − N(v)
contains no max-iso c-IS of G.

As mentioned before, Lemma 2.1 yields a simple quadratic algorithm: For a given left-
right-order and increasing i, we check iteratively whether αc(G) = αc(G − N(vi)). If so, we
delete N(vi) from G and repeat with incremented i. In each step, we use Lemma 2.1 for the
connected component of vi. Finally, we compute a maximum c-IS of the modified graph and
return it. As computing a maximum c-IS takes linear time (for a given left-right-order), we
obtain a simple quadratic algorithm.

In the following, we show how to obtain a linear-time algorithm for unit interval graphs.

▶ Lemma 2.2. For every unit interval graph on n vertices with given left-right-order, Algo-
rithm 1 can be implemented to compute a max-iso c-IS with a running time in O(n).
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Algorithm 1 Algorithm for computing a max-iso c-IS in unit interval graphs
Require: Unit interval Graph G = (V, E) with left-right-order v1, . . . , vn

Ensure: max-iso c-IS of G

1: U := V

2: L := ∅
3: R := Greedy maximum c-IS with reversed order vn, . . . , v1
4: while U ̸= ∅ do
5: Identify the smallest vertex v from U and delete it from U

6: if |(L ∪ R) ∩ N [v]| = 1 then ▷ if true, v will be isolated
7: U = U \ N [v]
8: L = (L \ N [v]) ∪ {v}
9: R = R \ N [v]

10: else if |L ∩ N [v]| < c then
11: L = L ∪ {v}
12: Delete the smallest vertex from R

13: end if
14: end while
15: return L

Proof-Sketch. The key idea of the algorithm is to maintain a leftmost partial solution L

(before the current vertex) and a rightmost partial (greedy) solution R (after the current
vertex) which allows for constant update time in each iteration. This is schematically de-
picted in Figure 5. When the algorithm ends, it holds that L is a max-iso c-IS for the given
graph. More precisely, in each iteration of the while-loop, we test whether the smallest
yet unconsidered vertex v (selected in line 5) can be isolated (in line 6). If so, we delete
its neighborhood to guarantee that it is isolated and add v to our partial solution L (in
lines 7-9). If not, we test whether it can be added greedily to L (in line 10).

Throughout the algorithm, we maintain a set of invariants. To this end, consider an
iteration where v is selected in line 5 and let S denote the set of vertices for which line 6
evaluated to true so far. Before the iteration, the following invariants hold:

L ∪ R is a maximum c-IS in G in which vertices from S are isolated.
L ⊂ {u ∈ V | u ≺ v} =: VL and R ⊂ {u ∈ V | v ⪯ u} =: VR

L \ N [v] is a maximum c-IS in G[VL − N [v]] (in which vertices from S are isolated);
moreover, after the largest isolated vertex u ∈ L, vertices are added greedily to L.
R \ N [v] is a (greedy) maximum c-IS in G[VR − N [v]] (for right-left order).

L

R

v

u

Figure 5 State of L and R before the iteration where v is selected in line 5 of Algorithm 1.

These properties allow us to check efficiently the size of a largest c-IS where the vertices
S ∪ {v} are isolated, because (L ∪ R ∪ {v}) \ N(v) is such a largest c-IS. In line 6, we test
whether this size is equal to αc(G) = |L ∪ R| and if so, we isolate v. ◀
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Abstract
A pseudo-triangle is a simple polygon with exactly three convex vertices. A pseudo-triangulation T
of a point set P in R2 is a partitioning of the convex hull of P into pseudo-triangles, such that the
union of the vertices of the pseudo-triangles is exactly P . We call a size-4 pseudo-triangle a dart.
For a fixed k ≥ 1, we study k-dart pseudo-triangulations (k-DPTs), that is, pseudo-triangulations in
which exactly k faces are darts and all other faces are triangles. Our results are as follows. We prove
that the flip graph of 1-DPTs is generally not connected, and show how to compute its connected
components. Furthermore, for k-DPTs on a point configuration called the double chain we analyze
the structure of the flip graph on a more fine-grained level.

Related Version A full version of the paper is available at arxiv.org/abs/2402.12357

1 Introduction

Pseudo-triangulations were introduced in the early 1990’s by Pocchiola and Vegter to study
the visibility complex of disjoint convex regions [13] and by Chazelle et al. for ray shooting
in polygons [6]. It was in the early 2000’s that pseudo-triangulations of point sets became
popular, when Streinu showed that pointed pseudo-triangulations of point sets, those in
which every vertex is pointed, i.e., incident to an angle larger than π, are minimally rigid [15]
and used this for a solution of the Carpenter’s Rule Problem. The converse statement that
every planar minimally rigid graph admits a drawing as a pointed pseudo-triangulation was
proved by Haas et al. [8], later generalized to non-minimally rigid and non-pointed pseudo-
triangulations by Orden et al. [12] using the notion of combinatorial pseudo-triangulation, an
embedding of a planar graph together with a labelling of the angles mimicking the properties
of angles in a geometric pseudo-triangulation.

Among the many other results on pseudo-triangulations, for which we refer to the survey
by Rote et al. [14], let us highlight the notion of a flip [1, 11]. There are three types of flips.
The first one follows the spirit of flips in triangulations, exchanging the only interior edge
in the two geodesic diagonals of a pseudo-quadrilateral, as in Figure 1a-b. This includes

∗ D.O. was supported by Project PID2019-104129GB-I00 funded by MCIN/ AEI /10.13039/501100011033.
J.T. was supported by the Center for Foundations of Modern Computer Science (Charles University
project UNCE/SCI/004) and by project PRIMUS/24/SCI/012 from Charles University. This work was
initiated during the GG Week 2023, held at the University of Alcalá, Spain.
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(a) (b) (c)

Figure 1 Some flips in pseudo-triangulations.

the case of a degenerate pseudo-quadrilateral, with two consecutive corners merged into a
single one, as in Figure 1c where the two lowest vertices from Figure 1b have been merged.
The two remaining types of flip insert or remove an interior edge to obtain another pseudo-
triangulation, respectively increasing or decreasing by one the number of pointed vertices
(this will be fixed in the present work, so such types of flip will not appear). The flip graph
for pseudo-triangulations turns out to be connected and have diameter in O(n log n) [5].

The fact that a pseudo-triangle can have linear size and, therefore, the flip operation
cannot be computed in constant time as for triangulations, led to the consideration of
pseudo-triangulations with bounded size of the internal faces. In particular, Kettner et
al. [9] showed that for every point set there is a pointed pseudo-triangulation with internal
faces of size 3 or 4, called a 4-pointed pseudo-triangulation or 4-PPT. These 4-PPTs fulfill
nice properties, like being properly 3-colorable while that question is NP-complete for
general pseudo-triangulations [2]. By contrast, some properties known for general pseudo-
triangulations turned out to be elusive for 4-PPTs. In particular, a long-standing open
problem is whether the flip graph of 4-PPTs is connected, which has only been proved for
combinatorial 4-PPTs [3]. The aim of this work is to generalize this problem and prove
results on cases that can provide additional insight towards solving that open problem.

We consider flips in 4-pseudo-triangulations or 4-PT s, which are defined as general, not
necessarily pointed, pseudo-triangulations with internal faces of size 3 or 4. We call a size-4
pseudo-triangle a dart, with its tail being the concave (also called reflex) vertex, its tip being
the vertex not adjacent to the tail, and its two wings being the remaining two vertices. The
segment between the tip and tail of a dart will be referred to as its spine, though such a
segment is necessarily not an edge and therefore missing in a dart. In a 4-PT, each interior
pointed vertex is the tail of a dart, and 4-PTs with k interior pointed vertices are 4-PTs with
k darts or k-dart 4-PTs, which will be denoted as k-DPTs. See Figure 2.

For a size-n point set P with a convex hull of size h ≤ n, the maximum number of interior
pointed vertices is n − h, and therefore the maximum number of darts in a 4-PT is n − h as
well. In particular, 4-PPTs coincide with k-DPTs for k = n − h, since they are those 4-PTs
in which every interior vertex is pointed. Thus, the aforementioned open problem in [3] asks
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(a) (b) (c)

Figure 2 (a) A dart with tip a, tail b, wings c and d, and a dashed spine. (b) A 1-DPT on 7
points. (c) An (n − h)-DPT with n = 7 and h = 3; each vertex not on the convex hull is a dart tail.

about the connectivity of the flip graph of k-DPTs for the largest possible value of k, that
is k = n − h. Our first goal is to look at the opposite end of the range and study the flip
graph of k-DPTs for the smallest possible value of k, that is k = 1. This corresponds to
4-PTs with only one dart, i.e., only one interior pointed vertex. We show that the resulting
flip-graph of 1-DPTs is not connected and we show how to compute its connected components.
Furthermore, for k-DPTs on a frequently-studied point configuration, the double chain [4],
we analyze the structure of the flip graph on a more fine-grained level.

Due to space constraints, most proofs are omitted and can be found in the full version [10].

2 Components of the Flip Graph for 1-DPTs

To compute the number of components of the flip graph in the presence of a single dart, we
first partition the class of 1-DPTs on a point set P into separate classes Gp where p ∈ P .
Each such class Gp consists of all those 1-DPTs that have the tail of the dart located at p.
We show that all 1-DPTs in Gp are in the same connected component of the flip graph. The
proof consists of three steps: First, we show that for any dart d on P there exists a dart
triangle, defined as a triangle on the three corners of a dart containing no more points of P

than the tail of that dart (see Figure 3a), with the property that such a dart triangle shares
the tip and tail with the original dart d (but may have other wings, see Figures 3b-d).

▶ Lemma 2.1. For any 1-DPT of a point set P containing an arbitrary dart d there is a flip
sequence to a 1-DPT with a dart triangle that has the same tip and tail as d.

Proof sketch. We define a flip sequence that creates a dart triangle sharing the tip and tail
with d. We first flip to a triangulation where the wings of d are connected by an edge (see
Figure 3a). Such a flip sequence exists, since Dyn et al. [7] proved that a triangulation can
be flipped to any other triangulation, without ever flipping an edge in a set D of constrained
edges. We insert the spine edge and add it to D along with all other edges of d. If there are
points in the dart triangle (see Figure 3b), we flip to a triangulation on those points that can
easily be flipped to an empty dart triangle (see Figures 3c-d), and remove the spine edge. ◀

Second, we show that for a 1-DPT with the tail of the dart at point pd ∈ P , the tip can
be flipped to any point p ∈ P \ {pd} if this allocation of tip and tail permits a 1-DPT of P .

▶ Lemma 2.2. If a point pd ∈ P is the tail of the single dart in two 1-DPTs T1 and T2 on
point set P , then there is a flip sequence between T1 and T2.

Proof sketch. We apply Lemma 2.1 to T1 and T2 to ensure the respective darts are in dart
triangles, and use the obtained flip sequences as prefixes/suffixes for our final sequence. We
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(a) (b) (d)(c)

Figure 3 (a) A dart triangle. (b) A dart with an edge connecting the wings. The vertices in the
bottom face are split by the extension of the (dashed) spine. (c) The specific triangulation between
the dart and the upper envelop of the subset P ′ of points of P in the triangle formed by the wings
and tail of d, together with the wings of d. (d) A number of flips linear in |P ′| creates a dart triangle.

remove the tail vertex from the obtained triangulations and mark the new faces as special
faces. This results in two (proper) triangulations T ′

1 and T ′
2 , for which we can find a flip

sequence transforming one into the other. We apply this flip sequence to flip from T1 and T2
with one change: any flip involving an edge adjacent to a special face is substituted for a
short flip sequence as shown in Figure 4, to preserve the dart during the flip sequence. ◀

The flip sequence of Lemma 2.2 implies that all 1-DPTs in the class Gp of 1-DPTs that
have the tail of the dart located at p reside in the same connected component of the flip
graph. As the third and final step in finding the connected components of the flip graph
for 1-DPTs on P , we still have to check whether the tail of the dart can move from one
vertex p ∈ P to q ∈ P , i.e., whether the 1-DPTs in Gp and Gq all reside in the same connected
component. To do so, we consider, for each pair of vertices p, q ∈ P , each triple of points
in P distinct from p and q and check whether no other points are located in the faces of
any of the small configurations in Figure 5a-d. Observe that these five vertices must admit
two overlapping darts with different tails. If this is the case, then by Lemma 2.2 we can flip
to the 1-DPTs where the respective darts have their tips in the position prescribed in the
small configuration, and perform the flip in the configuration to swap the tails. To complete
the argument, we can use a finite case analysis to prove that we have to check only the
configurations in Figure 5a-d; no other ways to swap tails in 1-DPTs exist.

▶ Lemma 2.3. There exist exactly four configurations of five points, that allow a dart to
move its tail with an edge flip, as illustrated in Figure 5a-d.

▶ Theorem 2.4. For 1-DPTs on a set P of n points with h points on the convex hull, there
are at most n − h components in the flip graph. The exact components can be determined by
checking every quintuple of points that have a triangular convex hull.

s u

t

v

t

v

Figure 4 A flip sequence to flip an edge incident with the face containing the tail pd of a dart.
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(c) (e)(a) (b) (d)

Figure 5 (a)-(d) All dart configurations of five points that allow us to move the tail of a dart
using an edge flip. The darts share the blue triangle and each require one dashed edge. (e) Other
triangles cannot use both middle vertices as tails, without a (non-existing) point in the yellow area.

3 Characterizing the Flip Graph for the Double Chain

In this section we consider the double chain, a point set consisting of a convex 4-gon being
the hull of two concave chains of points next to opposite edges of the 4-gon, P≍ = P1 ∪ P2,
such that these concave chains do not cross the diagonals of the 4-gon, see Figure 6a. We
can completely characterize the flip graph of k-DPTs on P≍, for any possible k.

A k-DPT on a point set P≍ admits two kinds of darts, aligned darts for which the spine
connects two adjacent vertices of one concave chain, and crossing darts which have tip and
tail in opposite concave chains. In this section we prove that the tail of a dart cannot swap
between concave chains, and we say that a dart is designated to the chain where the tail is
located. Additionally, we show that we can use edge flips to flip any k-DPT of an instance P≍
to a canonical k-DPT. In such a k-DPT, all darts are aligned, and flipped as far left as
possible (see Figure 6b); for darts designated to P1 the wings on the opposite chain are
at the leftmost point on P2, while for darts designated to P2 the analogous wings are at
the rightmost tail on P1. Furthermore, all wings inside the convex hulls of their designated
chains are located at the rightmost point of the chain. By analyzing the number of canonical
k-DPTs, we will analyze the number of connected components of the flip graph.

We first prove a few properties of aligned and crossing darts using geometric observations.

▶ Lemma 3.1. In a k-DPT of point set P≍, any aligned dart has one wing on the opposite
concave chain, and for any choice of wings on the respective concave chains, a dart exists.

▶ Lemma 3.2. In a k-DPT of point set P≍, the wings and tail of any crossing dart are
consecutive on one concave chain; for any choice of tip on the opposite chain, a dart exists.

▶ Lemma 3.3. A k-DPT of point set P≍ admits only crossing and aligned darts.

Again using quintuples of points, we prove that tails cannot swap between concave chains.

(a) (b)

Figure 6 (a) A k-DPT for concave chains P1 (blue) and P2 (yellow), with k = 4. The aligned
and crossing darts are light and dark colored, respectively. Note that P1 and P2 do not cross the
dashed-grey diagonals. (b) The canonical k-DPT of (a); white faces are triangulated arbitrarily.
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Figure 7 Moving the tip of a crossing dart, followed by moving the wing of an aligned dart. Faces
(or parts thereof) inside the convex hull of either chain remain unchanged and are hence not drawn.

▶ Lemma 3.4. In any k-DPT of point set P≍ = P1 ∪ P2 the tail of a dart cannot swap
between P1 and P2 through an edge flip.

Next we show how to flip any k-DPT on an instance P≍ to the canonical k-DPT for P≍.

▶ Lemma 3.5. Any k-DPT of point set P≍ can be flipped to the canonical k-DPT.

Proof sketch. We first consider all darts with tails on P1 and flip them to be aligned darts
on the left of the k-DPT, followed by all darts with tails on P2. We move the vertices on the
opposite chain to their (final) leftmost position, as in Figure 7. Then we move the spines
in place by swapping between crossing and aligned darts with a single flip per swap, as in
Figure 8. Some tails may not be located in the leftmost position, but they can move leftward
when their dart is crossing, as in Figure 9. The end result can be seen in Figure 6b. ◀

Since any k-DPT on a set P≍ can flip to a canonical k-DPT, we can now prove that:

▶ Theorem 3.6. The number of connected components of the flip graph of k-DPTs on a
point set P≍ = P1 ∪ P2 is equal to the number of ways to designate k darts to P1 or P2.

Proof. By Lemma 3.4 we know that the tails of darts cannot swap between convex chains.
Furthermore, Lemma 3.5 tells us that all such k-DPTs can be flipped to a canonical k-DPT.
Now observe that the number of darts designated to P1 and P2 completely determines the
canonical k-DPT. Thus all k-DPTs with the same designation of darts to the concave chains
are part of the same connected component of the flip graph. ◀

If P1 and P2 have a + 2 and b + 2 points, respectively, with a, b ≥ 0, then there are a + b

points that can be a tail of a dart, and thus k ≤ a + b. Distinguishing several cases depending
on a, b, and k, we arrive at a unified formula for the number of components of the flip graph:
Intuitively, we distribute k indistinguishable balls over 2 distinguishable (fixed-size) bins.

▶ Corollary 3.7. The number of connected components of the flip graph of k-DPTs on a point
set P≍ = P1 ∪ P2, with |P1| = a + 2 and |P2| = b + 2, is equal to min{a, b, k, a + b − k} + 1
for 0 ≤ k ≤ a + b.

Figure 8 Flipping a crossing dart to be aligned, followed by a flip from an aligned to a crossing dart.
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Figure 9 Moving a crossing dart designated to P2 leftwards.

4 Conclusion

We studied the flip graph of pseudo-triangulations with faces of size 3 (triangles) and a
bounded number k of size-4 faces (darts). For k = 1 in any point configuration, and for any k

in the double chain point configuration, we showed how to find the connected components of
the flip graph. For general point configurations, we conjecture that a similar approach will
work for slightly higher values of k, such as k ∈ {2, 3}. Our goal in studying these special
configurations is to obtain new insights into the flip graph of pointed pseudo-triangulation
with faces of size 3 or 4. However, our current findings do not seem to allow us to reach much
further than low values of k, as the required number of cases for higher k becomes infeasible.
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Abstract
An important aim of inverse problems in topological data analysis is to better understand sets of
directional topological descriptors that uniquely correspond to an underlying shape; such sets are
called faithful for the shape. Here, we specifically focus on sets of verbose persistence diagrams
that arise from lower-star filtrations of geometric simplicial complexes. While explicit constructions
of finite faithful sets in this setting exist in the literature, they do not come with any guarantees
of optimality in terms of cardinality. To better understand faithful sets with low cardinality, we
first establish a tight lower bound on the size of any faithful set. Then, we construct a family of
simplicial complexes for which faithful sets must have size at least linear in the number of vertices.

1 Introduction

The persistent homology transform of a shape in Euclidean space was first explored in [15],
and is the set of persistence diagrams corresponding to lower-star filtrations in every possible
direction. Importantly, [15] establishes that this uncountably infinite set of persistence
diagrams uniquely represents the underlying shape, i.e., it is faithful for the underlying
shape. Since then, related theoretical work has focused on finding finite sets of persistence
diagrams or other topological descriptors (such as Euler Characteristic functions or Betti
functions) that are faithful [1, 3, 7, 14]. A key parameter in such work is whether or not
the descriptors are assumed to be verbose or concise, i.e., if they contain information with a
trivial lifespan. The relevance of verbose or concise descriptors was explored in [5, 13, 18],
although with slightly different language.

In the full version of this work [8], we develop a framework for comparing the rela-
tive strengths of different topological descriptor types through the cardinality of faithful
sets. Roughly speaking, if faithful sets of a particular topological descriptor type are always
larger than faithful sets of another type, it is weaker than that other type. Thus, in such
quantitative comparisons, it can be vital to understand minimum faithful sets. While ex-
plicitly identifying a minimum faithful set is a difficult problem in general, we are able to
provide lower bounds on the cardinality of minimum faithful sets, both in general and in
a worst-case construction. In what follows, we focus on the specific topological descriptor
type of verbose persistence diagrams; we refer the reader to our full version to see how this
and similar constructions apply to other common descriptor types.
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2 Preliminary Considerations

We assume the reader has familiarity with ideas from topology, including homology and
simplicial complexes. See [4, 9] for further details. We always take N to include zero. For
a simplicial complex K, we use the notation Ki for its i-skeleton and ni as the number
of i-simplices. We always assume our simplicial complexes are geometric and finite. A
filter of K is a map f : K → R such that, for τ, σ ∈ K, whenever τ is a face of σ, then
we have f(τ) ≤ f(σ). Then, letting F (t) := f−1(−∞, t], the sequence {F (t)}t∈R is the
filtration associated to f ; in particular, the filtration is a sequence of nested subcomplexes
along with inclusion maps F (s) ↪→ F (t) for every s ≤ t. Moreover, for each k ∈ N, the
inclusion F (s) ↪→ F (t) induces a linear map on homology, Hk(F (s)) → Hk(F (t)). We
write βs,t

k (K, f) to mean rank of this map, or simply βs,t
k if K and f are clear from context.

In particular, the lower-star filter of a simplicial complex K immersed in Rd with respect
to some direction s ∈ Sd−1, is the map fs : K → R defined by fs(σ) = max{s·v | v ∈ K0∩σ}.
Note that s defines a preorder on K0, v0 ≤ v1 ≤ . . . ≤ vn0−1. Then, the lower-star filtration
of K with respect to s is

∅ ⊂ f−1
s (−∞, s · v0] ⊆ f−1

s (−∞, s · v1] ⊆ . . . ⊆ f−1
s (−∞, s · vn0−1] = K.

Any filter function has compatible index filters, which are functions f ′ : K → R such that f ′

orders all the simplices of K uniquely and if f(τ) ≤ f(σ), then f ′(τ) ≤ f ′(σ). We say their
corresponding filtrations are compatible index filtrations.

Our principal objects of study are verbose persistence diagrams. As they are closely
related to the more familiar concise persistence, we begin with the following definition.

▶ Definition 2.1 (Concise Persistence Diagram, ρ). Let f : K → R be a filter function. We
define the kth-dimensional persistence diagram as the following multiset:

ρf
k :=

{
(i, j)µ(i,j)

s.t. (i, j) ∈ R2 and µ(i,j) = βi,j−1
k − βi,j

k − βi−1,j−1
k + βi−1,j

k

}
,

where R = R∪{±∞} and (i, j)m denotesm copies of the point (i, j). The persistence diagram
of f , denoted ρf , is the union of all k-dimensional persistence diagrams ρf := ∪k∈Nρ

f
k .

Since simplices can appear at the same parameter value in a general filtration, not all cycles
are represented in the persistence diagram. However, having every simplex “appear” in the
persistence diagram is helpful, in addition to being natural. Thus, we introduce verbose
persistence diagrams, which contain this information.

▶ Definition 2.2 (Verbose Persistence Diagram, ρ̂). Let f : K → R be a filter and let f ′ be
a compatible index filter. For k ∈ N, the k-dimensional verbose persistence diagram is the
following multiset:

ρ̂f
k :=

{
(f(σi), f(σj)) | (i, j) ∈ ρf ′

k

}
. (1)

The verbose persistence diagram of f , denoted ρ̂f , is the union of all ρ̂f
k .

While concise persistence diagrams may feel more familiar, the idea of verbose persistence
diagrams is not new. Indeed, many typical algorithms for computing persistence (e.g., [4,
Chapter VII]), explicitly compute topological events with trivial lifespan but then discard
them from the output. In [11], persistence diagrams are the same as our definition of ρ̂.
In [16], we see filtered chain complexes as a source of verbose persistence; [2, 12, 13, 17] also
take this view.
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If a verbose persistence diagram corresponds to a direction s in addition to a simplicial
complex K, we use the notation ρ̂(K, s), or ρ̂(s) when K is clear from context. Furthermore,
we refer to the set of verbose persistence diagrams parameterized by S as ρ̂(K,S). We denote
the ith standard basis vector by ei, so e1 is the unit vector in the x-direction, etc. We say
a (parameterized) set of verbose diagrams is faithful for a simplicial complex K if only K

could have generated that same set of diagrams.

▶ Definition 2.3 (Faithful Set). Let K be simplicial complex in Rd and let S ⊆ Sd−1. We
say that ρ̂(K,S) is faithful if, for any K ′ we have the equality ρ̂(K ′, S) = ρ̂(K,S) if and
only if K ′ = K.

See Figure 1 for an example of a verbose persistence diagram and a non-faithful set.

Figure 1 The verbose persistence diagram shown above, ρ̂(K, s), is identical to the corresponding
concise persistence diagram, except for the on-diagonal points. Notice that the singelton set ρ̂(K, s)
is not faithful; any cycle with vertices at the same heights as the vertices of K produces the same
verbose persistence diagram.

3 Bounds on Faithful Sets

This section provides lower bounds on the size of faithful sets of verbose persistence diagrams.
We begin with a tight lower bound.

▶ Lemma 3.1 (Tight Lower Bound). Let K be a simplicial complex in Rd. Suppose that ρ̂(K,S)
is faithful. Then |S| ≥ d, and this bound is tight.

Proof. No vertex in K can be described using fewer than d coordinates. Thus, a set of
verbose persistence diagrams with cardinality less than d cannot be faithful for K0, let
alone K. To see that this bound is tight, consider the case where K is a single vertex; verbose
descriptors generated by any d pairwise linearly independent directions form a faithful set
for the vertex (e.g., ρ̂(K, {e1, e2, . . . , ed})). ◀

In many examples, we find that minimum faithful sets of verbose descriptors for simple
simplicial complexes in Rd often have cardinality d + 1. Precise statements characteriz-
ing simplicial complexes with faithful sets of size d + 1 remain as ongoing work. However,
frequently encountering faithful sets with a cardinality independent from the size of the
simplicial complex is not at all surprising, since (unlike concise descriptors), verbose de-
scriptors always have events corresponding to each simplex, regardless of how the complex
is imbedded or immersed. We did not expect to find a simplicial complex whose minimum
faithful set depended on the size of the complex; in fact, it was through trying to disprove
the existence of such a complex that we came across the construction in this section.
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In particular, in this section, we identify a family of simplicial complexes for which
minimum faithful sets of verbose persistence diagrams are linear in the number of vertices.
We use αi,j to denote the angle that vector vj − vi makes with the x-axis. We assume
angles take value in [0, 2π). We establish a preliminary observation, a specific instance of
the general phenomenon that a simplicial complex stratifies the sphere of directions based
on vertex order [3, 10].

▶ Observation 1. Suppose that a simplicial complex K in R2 contains an edge [v1, v2] such
that v1 and v2 have degree one. Then a birth event occurs at the height of v1 in ρ̂(K, s) for
all s in the half of S1 defined by the open interval H = (α1,2 − π, α1,2 + π) (i.e., all s so
that s ·v1 > s ·v2) and as an instantaneous event for s ∈ HC (i.e., all s so that s ·v1 ≤ s ·v2).

We also establish the following elementary lemma.

▶ Lemma 3.2. Consider a pair of nested triangles as in Figure 2. Then angle A is larger
than θ, ϕ−B, and ψ − C.

Proof. Adding angles in the larger triangle, we see θ + ϕ+ ψ = π. Then,
θ + (ϕ−B) +B + (ψ − C) + C = π

(A+B + C) + θ + (ϕ−B) + (ψ − C) = A+ π

π + θ + (ϕ−B) + (ψ − C) = A+ π

θ + (ϕ−B) + (ψ − C) = A.

All the terms in the last line are positive, meaning A is larger than θ, ϕ−B, and ψ−C. ◀

Figure 2 Nested triangles as discussed in Lemma 3.2

We now construct the building block that forms the complexes used in our bound.

▶ Construction 1 (Clothespin Motif). Let K be a simplicial complex in R2 with a vertex
set {v1, v2, v3, v4}. Suppose that only v3 is in the interior of the convex hull of {v1, v2, v4},
and that the edge set consists of [v1, v2] and [v3, v4]. See the left image in Figure 3.

Construction 1 was built specifically for the following necessary condition for faithful
sets of verbose descriptors. We state this condition in terms of ρ̂’s in the following lemma.

▶ Lemma 3.3 (Clothespin Repesentability). Let K be a clothespin motif, as in Construction 1,
and suppose that ρ̂(K,S) is faithful. Then we have at least one direction s ∈ S such that the
angle formed between s and e1 = (1, 0) lies in the region [α3,2−π, α3,4−π]∪[α3,2+π, α3,4+π].

Proof. Let K ′ be a simplicial complex in R2 with the same vertex set as K, but with
edges [v1, v4] and [v2, v3] (see the left side of Figure 3). Recall that, since ρ̂(K,S) is faithful,
the set S must contain some s so that ρ̂(K, s) ̸= ρ̂(K ′, s).
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Figure 3 The two simplicial complexes considered in the proof of Lemma 3.3.

Each vertex corresponds to either a birth event or an instantaneous event depending
on the direction of filtration. We proceed by considering each vertex vi individually and
determining subsets Ri ⊂ S1 such that, whenever s ∈ Ri, the event at s · vi is different when
filtering over K versus K ′, but for s∗ ̸∈ Ri, the type of event at s∗ · vi is the same between
the two graphs. Figure 4 shows these regions, and in what follows, we define them precisely.

First, consider v1. By Observation 1, v1 ∈ K corresponds to a birth event for all
directions in the interval B = (α1,2−π, α1,2+π) and v1 ∈ K ′ corresponds to a birth event for
all directions in the interval B′ = (α1,4 −π, α1,4 +π). Then we write R1 = (B\B′)∪(B′ \B),
which is the wedge-shaped region such that for any s ∈ R1, the type of event associated
to v1 ∈ K and v1 ∈ K ′ differ, meaning ρ̂(K, s) ̸= ρ̂(K ′, s).

Using this same notation, identify the wedge shaped region Ri for vertex i ∈ [2, 3, 4] such
that any direction from Ri generates ρ̂’s that have different event types at vertex vi when
filtering over K versus K ′. Similar arguments for i ∈ [2, 3, 4] give us the complete list;

R1 = (α1,2 − π, α1,4 − π] ∪ [α1,2 + π, α1,4 + π)
R2 = (α2,3 − π, α2,1 − π] ∪ [α2,3 + π, α2,1 + π)
R3 = (α3,2 − π, α3,4 − π] ∪ [α3,2 + π, α3,4 + π)
R4 = (α1,4 − π, α3,4 − π] ∪ [α1,4 + π, α3,4 + π)

Let W = ∪4
i=1Ri. Then, for any s ∈ W , we have ρ̂(K, s) ̸= ρ̂(K ′, s), and for any s∗ ∈ WC ,

we have ρ̂(K, s∗) = ρ̂(K ′, s∗).
Finally, we claim that W is the closure of R3, denoted R3, i.e., exactly the region

described in the lemma statement. This is a direct corollary to Lemma 3.2; the angles
swept out by each regions correspond to the angles formed by pairs of edges in K and K ′;
in particular, the angle ∡v2v3v4 is the largest and geometrically contains the others. This
means the extremal boundaries over all Ri’s are formed by the angles α2,3 ±π and α3,4 ±π,
the defining angles of R3. Observing that each of these four angles appears as an included
endpoint for some Ri, we see R1, R2, R4 ⊆ R3 = W (see Figure 4), as desired. ◀

To get a deeper intuition for this result, observe that the verbose diagrams corresponding
to K and K ′ of Figure 3 are identical when we filter in direction e1, but when we filter
in direction e2, they are distinct. We refer to the wedge shaped region of directions for
which the corresponding verbose diagrams have this distinction as a clothespin’s region of
observability (similar to observability for χ’s discussed in [6, 3]). We notate the region as
W = [α3,4 − π, α2,3 − π] ∪ [α3,4 + π, α2,3 + π]. Crucially, W is defined by the angle v2v3v4,
so a different embedding of K could result in a smaller region.
▶ Remark (W Can be Arbitrarially Small). As the angle ∡v2v3v4 approaches zero, the region
of observability, W , described in the proof of Lemma 3.3 also approaches zero.

EuroCG’24



28:6 Lower Bounding Minimal Faithful Sets of Verbose Persistence Diagrams

Figure 4 The regions described in the proof of Lemma 3.3. K is shown as solid black edges
and K′ as dashed edges. For any lower-star filtration in a direction contained in Ri, the event at
vertex vi differs when considering K or K′, thus, such directions are able to distinguish K from
K′. Note that any direction outside the regions of observability (i.e., the non-shaded portions of
the circle) is not able to distinguish K from K′.

To construct a family of simplicial complexes, each of which must have at least Θ(n0)
verbose descriptors to form a faithful set, we use the preceeding remark to knit together
clothespin motifs (Construction 1) in the following way.

▶ Construction 2 (Clothespins on a Semicircular Clothesline). Let Km be a simplicial complex
in R2 formed by m clothespins (Construction 1) such that the regions of observability for
each clothespin do not overlap. Note this is possible for any m by the remark above.

See Figure 5 for an example of Km for m = 4. This construction implies a lower bound on
the number of ρ̂’s needed to fully represent a simplicial complex.

Figure 5 An example of Construction 2 for m = 4. The regions of observability are shown below
each clothespin. By construction, each of these four double wedges define disjoint regions of S2.

▶ Theorem 3.4 (Lower Bound for Worst-Case ρ̂’s Complexity). Let Km be as in Construction 2
and suppose ρ̂(Km, S) is a faithful set. Then S must contain at least one direction in each
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of the m regions of observability, meaning that |S| ≥ m = n0/4. Thus, the size of a faithful
set of ρ̂’s for Km is Ω(n0).
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Abstract
We study the problem of covering a given point set in the plane by unit disks so that each point is
covered exactly once. We prove that 17 points can always be exactly covered. On the other hand,
we construct a set of 657 points where an exact cover is not possible.

Related Version arXiv:2401.15821

1 Introduction

In 2008, Inaba [10] gave the following puzzle about covering sets of points in the plane:
Show that any set of 10 points in R2 can be covered by nonoverlapping unit disks.

Inaba solved this puzzle [11, 17] with an elegant probabilistic argument (a deterministic
proof is also possible). In this article, we study a relaxed version of this covering problem.
Given a point set X ⊂ R2, can we find a family D of not necessarily disjoint unit disks so
that each point x ∈ X is contained in exactly one disk D ∈ D? We call such a family an
exact cover of X. For example, in Figure 1a, the two red disks form an exact cover of the
four blue points.

Let B2 :=
{

x ∈ R2 ∣∣ ∥x∥ < 1
}

, where ∥ · ∥ denotes the Euclidean norm. We define an
(open) disk with center c ∈ R2 and radius r > 0 as the set Dc,r := c + rB2; if r = 1 we call
it the unit disk and write Dc.

▶ Definition 1.1. Let σ2 be the largest n ∈ N such that any set of n points in the plane can
be covered by disjoint unit disks. Let σ̂2 ∈ N be the corresponding number for the relaxed
problem involving exact covers.

As a covering using disjoint disks is also an exact covering, we have the basic relation-
ship σ̂2 ≥ σ2. The current best known bounds for σ2 are 12 ≤ σ2 ≤ 44 [1]. Aloupis, Hearn,
Iwasawa, and Uehara (2012) [1] improved Inaba’s lower bound to σ2 ≥ 12 through a careful

(a) (b)

Figure 1 Left: primal solution (exact covering). Right: dual solution (exact hitting set).
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analysis of the probabilistic method on one-dimensional slices of the plane. In the other
direction, σ2 is finite: Intuitively, with a dense enough arrangement of points, this problem
becomes similar to the problem of covering the entire set conv X, which is impossible using
disjoint disks. Specific upper bounds were reduced in rapid succession from σ2 < 60 by
Winkler (2010) [17] to σ2 < 55 by Elser (2011) [7] and σ2 < 53 by Okayama, Kiyomi,
and Uehara (2012) [16]. Most recently, Aloupis, Hearn, Iwasawa, and Uehara (2012) [1]
proved σ2 < 50 “by hand” and demonstrated σ2 < 45 using computer calculations.

1.1 Results
In Section 2, we build on some of the mentioned works on lower bounds to establish the
following lower bound on σ̂2:

▶ Theorem 1.2. We have σ̂2 ≥ 17.

The finiteness of σ̂2 can be deduced by a similar argument as the finiteness of of σ2. In
Section 3 we construct a close arrangement of points that cannot be exactly covered, leading
to the following (rather weak) upper bound on σ̂2:

▶ Theorem 1.3. We have σ̂2 < 657.

For the full proofs of Theorem 1.2 and Theorem 1.3 we refer to the appendix; nevertheless,
we provide sketches of the proofs below.

1.2 Relation between exact covering and exact hitting
We denote by X the collection of all finite point sets in R2. A point x ∈ R2 is contained in a
unit disk Dc centered at c ∈ R2 if and only if c is contained in the unit disk Dx centered at x.
By this simple observation, the problem of exactly covering some given X ∈ X by unit disks
(primal problem) becomes equivalent to the following dual problem: Let DX := {Dx | x ∈ X};
find a P ∈ X such that each disk D ∈ DX contains exactly one point p ∈ P . See Figure 1b
for an example of the dual problem. In the literature, such a set P is also called an exact
hitting set. A dual solution P yields the solution D := {Dp | p ∈ P} to the exact covering
problem. Vice versa, a solution D to the exact covering problem gives a solution to the dual
problem by taking the disk centers.

In the dual perspective, the boundary circles of the disks DX decompose the plane into
cells. Observe that all points in a given cell are contained in the same set of disks, so the
exact position of a dual solution point p ∈ P is irrelevant. Hence, it is sufficient to select a set
of cells so that each D ∈ DX contains exactly one selected cell. In the example of Figure 1b,
the two red shaded cells form a solution. This observation shows that the solution space for
the dual problem and for the exact covering problem is in fact discrete, and methods such
as Knuth’s Algorithm X (see [13] or Section 7.2.2.1 in [14]), integer programming, or SAT
solvers (see [12]) can be used.

2 A lower bound

We exclude the following trivial case from our proofs in this section: If X lies on a line
then X can be covered by disjoint disks. Denote by X′ the subset of X that excludes every
point set on a line. To prove Theorem 1.2, we have to show that all X ∈ X′ with |X| ≤ 17
can be exactly covered. We combine three separate components on top of Inaba’s original
probabilistic proof. In Subsection 2.1 we show that σ̂2 ≥ σ2 + 4. In Subsection 2.2 we
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Figure 2 Extending the red disjoint disk covering of the non-boundary points by adding a new
orange disk at each uncovered boundary point.

obtain σ̂2 ≥ 16 using a covering version of Betke, Henk, and Wills’s parametric density [3]
and σ̂2 ≥ 17 by showing that in some cases, a disk D that overlaps with conv X can be
removed from an exact cover D of X so that D \ {D} is still an exact cover of X.

2.1 Boundary points
▶ Definition 2.1. Let X ∈ X and v ∈ X. The point v is a boundary point of X if v is on
the boundary of conv X.

Let X ∈ X and v1, . . . , vk be the boundary points of X. László Kozma (private communi-
cation) observed that a covering D′ of the non-boundary points X

∖ {
v1, . . . , vk

}
by disjoint

disks can always be extended to an exact cover of X. A boundary point vi is covered by at
most one disk in D′ because the disks are disjoint. If vi is not already covered by D′, then it
can be covered by a new disk which contains vi but no other point of X. The resulting disk
configuration yields an exact cover D of X (Figure 2). In particular, if |X| ≤ σ2 + k then X

can be exactly covered. We refer to this strategy as the Extension Argument:

▶ Lemma 2.2 (Extension Argument). Let X ∈ X and k be the number of boundary points
of conv X.
1. If |X| ≤ σ2 + k then X can be exactly covered.
2. If k ≤ 2 then X can be exactly covered regardless of |X|.
3. We have σ̂2 ≥ σ2 + 3.

As we assume that X does not lie on a line, we have k ≥ 3, and the Extension Argument
improves the basic inequality σ̂2 ≥ σ2 to σ̂2 ≥ σ2 + 3. This lower bound is limited by the case
where conv X is a triangle, since otherwise X has at least four boundary points. Therefore,
we wish to relax Definition 2.1 so that every X ∈ X′ has at least four “generalized boundary
points” that behave like boundary points.

▶ Definition 2.3. Let X ∈ X and b ∈ X. The point b is a generalized boundary point of X

if there exists a c ∈ R2 such that X ∩ Dc = {b}.
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All vertices and boundary points of X are generalized boundary points of X. In the full
version of this paper we prove the following generalization of the Extension Argument.

▶ Lemma 2.4 (Generalized Extension Argument). Let X ∈ X′ and k be the number of
generalized boundary points of conv X.
1. If |X| ≤ σ2 + k then X can be exactly covered. (That is, σ̂2 (k) ≥ σ2 + k.)
2. If k ≤ 3 then X can be exactly covered regardless of |X|.
3. We have σ̂2 ≥ σ2 + 4.

We show that any X ∈ X′ with a triangular convex hull contains at least four generalized
boundary points or can be exactly covered regardless of the number of points. The fourth
point is often, but not always, the closest non-vertex of X to the longest edge of conv X.

Lemma 2.4 combined with Aloupis, Hearn, Iwasawa, and Uehara’s [1] lower bound
of σ2 ≥ 12 implies σ̂2 ≥ 16.

2.2 A parameterized version of Inaba’s proof
Betke, Henk, and Wills (1994) [3] introduced the parametric density, a form of packing
density for finitely many disks which are allowed to overlap, during their work on a packing
problem called the Sausage Conjecture [8]. See [3, 5, 9] for further details on these topics.
Let

A2 :=
{(

x1
x2

)
∈ R2

∣∣∣∣
x1 =

√
3µ,

x2 = 2λ + µ,
λ, µ ∈ Z

}

be the hexagonal lattice and A
ρ
2 :=

{
c + ρB2 ∣∣ c ∈ A2

}
be the collection of disks of radius ρ ≥ 1

that are centered at the points of A2. This radius ρ is called the parameter ; the case ρ = 1
reduces to the usual hexagonal packing in Inaba’s proof. We call the subset of R2 covered
by exactly one disk Dc ∈ A

ρ
2 the “good” region of Aρ

2 and its complement the “bad” region.
An exact cover of X requires each point in X to avoid the “bad” region. If ρ > 1, then
neighboring disks of Aρ

2 overlap (Figure 3), so the “bad” region includes any part of the
plane covered by multiple disks. The critical value for ρ minimizes the total area of the “bad”
region and so maximizes the lower bound for σ̂2 (over all coverings of the form A

ρ
2).

We use the same argument as Inaba but with the parameterized family A
ρ
2 and combine

it with the Extension Argument for another proof of σ̂2 ≥ 16. However, Aρ
2 has another

advantage over A2. Removing one disk from A2 strictly expands the “bad” region, so is
never beneficial for exact covering. However, removing one disk Dc from A

ρ
2 changes the

subsets of Dc which are covered by another disk in A
ρ
2 from “bad” to “good.” In the next

subsection, we use this feature to raise our lower bound for σ̂2.

2.3 A redundant disk
Suppose that X ∈ X has a triangular or quadrilateral convex hull, v1 ∈ X is a boundary
point that is covered by two disks of Aρ

2, and A
ρ
2 is an exact cover of X

∖ {
v1}

. Under certain
conditions, we can remove one of the disks Dc that covers v1 without breaking the exact
cover. In other words, although A

ρ
2 is not an exact cover of X, we show that A

ρ
2 \ {Dc} is

an exact cover of X. This “redundant disk” method offers a slight benefit:

▶ Lemma 2.5. Let X ∈ X′ with |X| ≤ 17. If conv X is a triangle or a quadrilateral, then X

can be exactly covered.

We present the technical details and proofs in the full version of our paper. Note that
unlike the Extension Argument and parameterized family, which do not depend on the
underlying disk configuration, the redundant disk method uses specific properties of A2.



J. Chun, C. Kipp, and S. Roch 29:5

Figure 3 The disks of Aρ
2 for ρ = 1 (black) and ρ = 1.07 (blue).

Proof of Theorem 1.2. Let X ∈ X′ with |X| ≤ 17. If conv X has three or four sides, then X

can be exactly covered by Lemma 2.5. If conv X has five or more sides, then X has at least
five generalized boundary points, so X can be exactly covered by the Generalized Extension
Argument 2.4 with Aloupis, Hearn, Iwasawa, and Uehara’s [1] lower bound of σ̂2 ≥ 12. ◀

3 An upper bound

▶ Definition 3.1. Let X ⊂ R2 be a non-empty set. The distance of a point y ∈ R2 to X is
defined by

dist (y, X) := inf{∥y − x∥ | x ∈ X} (1)
and the ε-extension of X (also called the ε-thickening of X) is given by

Xε :=
{

y ∈ R2 | dist (y, X) ≤ ε
}

. (2)

We say that X is an ε-net of M ⊂ R2 if M ⊂ Xε.

▶ Definition 3.2. Let M ⊂ R2 and ε > 0. We say that M is an ε-blocker if every ε-net X ∈ X

of M does not have an exact cover.

We recall that the covering number N (M, ε) of a set M ⊂ R2 is the minimal cardinality
of an ε-net of M . The following statement is a direct consequence of Definition 3.2.
▶ Proposition 3.3. Let M ⊂ R2 be an ε-blocker. Then σ̂2 < N (M, ε). ◀

Our upper bound on σ̂2 follows from the following result, which asserts that every open
disk of radius R > 1 is an ε-blocker for a suitably chosen ε > 0.
▶ Proposition 3.4. Let ε ∈

(
0, 7 −

√
48 ≈ 0.0718

]
and

R ≥ 3
2 (1 + ε) − 1

2
√

1 − 14ε + ε2. (3)

Then D0,R = 0 + R B2 is an ε-blocker.
We now obtain Theorem 1.3 as a corollary to Proposition 3.3 by setting ε := 7 −

√
48

and R := 3
2 (1 + ε) ≈ 1.608.
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4 Conclusion

Our main result (Theorems 1.2 and 1.3) is 17 ≤ σ̂2 ≤ 656. An approach for improving the
upper bound could be to search for small ε-nets of ε-blockers and to use Proposition 3.3.

The problem of finding σ̂2 admits generalizations to all dimensions d ≥ 1 and convex
bodies K ⊂ Rd. Let σ (K) and σ̂ (K) be the largest n such that any n-point set in Rd can
be covered by disjoint translates of K or exactly covered by translates of K, respectively
(and write σd and σ̂d if K = Bd). Some of our methods, such as the Extension Argument
and the parameterized family, have counterparts for other bodies K, but our other methods
do not necessarily generalize.

Sphere packings are mostly empty space in high dimensions. Blichfeldt’s upper bound
of d+2

2 · 2− 1
2 d for the maximum packing density ([4], or see Section 6.1 of [18]) drops to less

than or equal to 0.5 for d ≥ 6. The density of the densest known packing in d = 5 is also
below 0.5 (see Table 1.2 in Chapter 1 of [6], or [15]). Therefore, we cannot hope to cover
many points by translating a dense packing of unit balls as in Inaba’s proof [11, 17]. One
possible strategy for “medium” dimensions around 5–10 is to choose one of several packings
based on the arrangement of X.

With regard to lines of further research, we mention the computational complexity of
disk covering. Considering the algorithmic issues that were discussed in Subsection 1.2, it is
natural to ask the following question: Given X ∈ X, is it NP-hard to decide whether X has
an exact cover? Ashok, Basu Roy, and Govindarajan (2020) [2] showed that it is NP-hard to
decide the following problem: Given a finite set R of unit squares and given an X ∈ X, is
there a subset R′ ⊂ R that exactly covers X? Their proof can be easily adopted for a given
family R of unit disks. It might also be interesting to study the computational complexity if
the number of disks in the exact cover is specified.

Acknowledgments
Thanks to László Kozma, Michaela Borzechowski, and Günter Rote for their feedback and
helpful discussions.

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG),
Graduiertenkolleg “Facets of Complexity” (GRK 2434).

References
1 Greg Aloupis, Robert A. Hearn, Hirokazu Iwasawa, and Ryuhei Uehara. Covering points

with disjoint unit disks. In Canadian Conference on Computational Geometry, 2012. URL:
https://api.semanticscholar.org/CorpusID:16280099.

2 Pradeesha Ashok, Aniket Basu Roy, and Sathish Govindarajan. Local search strikes again:
PTAS for variants of geometric covering and packing. J. Comb. Optim., 39(2):618–635,
2020. doi:10.1007/s10878-019-00432-y.

3 Ulrich Betke, Martin Henk, and Jörg Wills. Finite and infinite packings. Journal für die reine
und angewandte Mathematik, 1994:165–192, 01 1994. doi:10.1515/crll.1994.453.165.

4 Hans Frederick Blichfeldt. The minimum value of quadratic forms, and the closest packing
of spheres. Mathematische Annalen, 101(1):605–608, 1929. doi:10.1007/BF01454863.

5 Károly Böröczky, Jr. Finite Packing and Covering. Cambridge Tracts in Mathematics.
Cambridge University Press, 2004.

6 John H. Conway and Neil J. A. Sloane. Sphere Packings, Lattices and Groups, volume 290
of Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York, Inc., 3rd
edition, 1999.



J. Chun, C. Kipp, and S. Roch 29:7

7 Veit Elser. Packing-constrained point coverings, 2011. arXiv:1101.3468.
8 László Fejes Tóth. Research problem 13. Periodica Mathematica Hungarica, 6(2):197–199,

1975.
9 Martin Henk and Jörg M. Wills. Packings, sausages and catastrophes. Beiträge zur

Algebra und Geometrie / Contributions to Algebra and Geometry, 2020. doi:10.1007/
s13366-020-00502-x.

10 Naoki Inaba, 2008. URL: http://inabapuzzle.com/hirameki/suuri_4.html.
11 Naoki Inaba, 2008. URL: http://inabapuzzle.com/hirameki/suuri_ans4.html.
12 Tommi Junttila and Petteri Kaski. Exact cover via satisfiability: An empirical study. In

David Cohen, editor, Principles and Practice of Constraint Programming – CP 2010, pages
297–304. Springer Berlin Heidelberg, 2010.

13 Donald E. Knuth. Dancing links, 2000. arXiv:cs/0011047.
14 Donald E. Knuth. The Art of Computer Programming, volume 4B. Pearson Education, Inc.,

2023.
15 Gabriele Nebe and Neil J. A. Sloane. Table of densest packings presently known, Feb 2012.

URL: math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/density.html [cited 2024-01-
28].

16 Yosuke Okayama, Masashi Kiyomi, and Ryuhei Uehara. On covering of any point configu-
ration by disjoint unit disks. Geombinatorics, 22(1):14–23, 2012.

17 Peter Winkler. Puzzled: Solutions and sources. Commun. ACM, 53(9):110, Sep 2010.
doi:10.1145/1810891.1810917.

18 Chuanming Zong. Sphere Packings. Universitext. Springer-Verlag New York, Inc., 1999.

EuroCG’24



Fast Approximations and Coresets for
(k, ℓ)-Median under Dynamic Time Warping
Jacobus Conradi1, Benedikt Kolbe2, Ioannis Psarros3, and Dennis
Rohde1

1 Department of Computer Science, University of Bonn, Germany
2 Hausdorff Center for Mathematics, University of Bonn, Germany
3 Archimedes, Athena Research Center, Greece

Abstract
We present algorithms for the computation of ε-coresets for k-median clustering of point sequences
in Rd under the p-dynamic time warping (DTW) distance. Coresets under DTW have not been
investigated before, and the analysis is not directly compatible with existing methods as DTW is
not a metric. We achieve our results by investigating approximations of DTW that provide a trade-
off between the provided accuracy and amenability to known techniques. In particular, we observe
that given n curves under DTW, one can directly construct a metric that approximates DTW on
this set, permitting the use of the wealth of results on metric spaces for clustering purposes. The
resulting approximations are the first with polynomial running time and achieve a very similar
approximation factor compared to state-of-the-art techniques.

1 Introduction

One of the core challenges of contemporary data analysis is the handling of massive data
sets. A powerful approach to clustering problems involving such sets is data reduction,
and ε-coresets offer a popular approach that has received substantial attention [4, 5, 14].
An ε-coreset is a problem-specific condensate of the given input set of reduced size which
captures its core properties towards the problem at hand and can be used as a proxy to run
an algorithm on, producing a solution with a relative error of (1± ε).

Clustering and especially k-median represent fundamental tasks in classification prob-
lems, where they have been extensively studied for various spaces. With the growing avail-
ability of e.g. geospatial tracking data, clustering problems for time series or curves have
received growing attention both from a theoretical and applied perspective. In practice,
time series classification largely relies on the dynamic time warping (DTW) distance and
is widely used in the area of data mining. Simple nearest neighbor classifiers under DTW
are considered hard to beat [17, 24] and much effort has been put into making classification
using DTW computationally efficient [16, 19, 20, 21].

For time series and curves, k-median takes the shape of the (k, ℓ)-median problem, where
the sought-for center curves are restricted to have a complexity (number of vertices) of at
most ℓ, with a two-fold motivation. First, the otherwise NP-hard problem becomes tractable,
and second, it suppresses overfitting.

The construction of ε-coresets for the (k, ℓ)-median problem for DTW is precisely what
this paper will address. To this end, we adapt the framework of sensitivity sampling by
Feldman and Landberg [13] to our setting. We rely on approximations of nearly all objects
involved in our inquiry, thereby improving the bounds we obtain for the VC dimension of
the range spaces in question and broadening the scope of our approach.

All presently known approaches to the approximation of the (k, ℓ)-median problem are
based on an approximation scheme [6, 10, 12, 1, 7, 18]. For DTW, the best algorithm [8]
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
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Figure 1 Example of a traversal between the red and blue curve realizing the dynamic time
warping distance. The sum of the black distances is minimized.

has running time exponential in k, roughly with a dependency of Õ((32k2ε−1)k+2n).

Our results and methods We derive a bound on the VC dimension of a range space that
approximates that of closed balls under DTW, obtained from a distance function approx-
imating DTW. We modify and apply the sensitivity sampling framework by Feldman and
Langberg [13], which relies on the bounds of the VC dimension and requires a first rough ap-
proximation of the (k, ℓ)-median problem under DTW, to construct coresets for (k, ℓ)-median
under DTW. To adapt the sensitivity sampling framework to our (non-metric) setting, we
investigate weaker versions of the triangle inequality for DTW and find a generalized it-
erated triangle inequality (Lemma 4.1). This novel inequality allows the approximation of
DTW with a metric and thus the application of metric clustering algorithms.

2 Preliminaries

We think of a sequence (p1, . . . , pm) ∈
(
Rd
)m of points in Rd as a (polygonal) curve, with

complexity m. We denote by Xd
=m the space of curves in Rd with complexity exactly m and

by Xd
m the space of curves with complexity at most m.

▶ Definition 2.1 (p-Dynamic Time Warping). For given m, ℓ > 0 we define the space Tm,ℓ of
(m, ℓ)-traversals as the set of sequences ((a1, b1), (a2, b2), . . . , (al, bl)), such that

a1 = 1 and b1 = 1; and al = m and bl = ℓ,
for all i ∈ [l−1] := {1, . . . , l−1} it holds that (ai+1, bi+1)−(ai, bi) ∈ {(1, 0), (0, 1), (1, 1)}.

For p ∈ [1,∞) and two curves σ = (σ1, . . . , σm) ∈ Xd
=m, τ = (τ1, . . . , τℓ) ∈ Xd

=ℓ the
(p-)Dynamic Time Warping distance (p-DTW) is defined as

dtwp(σ, τ) = min
T ∈Tm,ℓ


 ∑

(i,j)∈T

∥σi − τj∥p
2




1/p

,

where ∥ · ∥p
2 is the Euclidean norm raised to the p-th power.

The central focus of the paper is the following clustering problem.

▶ Definition 2.2 (Problem definition). The (k, ℓ)-median problem for Xd
m and k ∈ N is the

following: Given a set of n ∈ N input curves T = {τ1, . . . , τn} ⊂ Xd
m, identify k center curves

C = {c1, . . . , ck} ⊂ Xd
ℓ that minimize cost(T,C) =

∑
τ∈T minc∈C dtw(τ, c).

An influential approach to solving k-median problems is to construct a point set that acts
as proxy on which to run computationally more expensive algorithms that yield solutions
with approximation guarantees. The condensed input set is known as a coreset.
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X1

X2

X3

Figure 2 Illustration of a coreset (red), i.e. a weighted sparse representation of the original set
of curves (in red and black). The weights in this case are w(X1) = 3, w(X2) = 2 and w(X3) = 1.

▶ Definition 2.3 (ε-coreset). Let T ⊂ Xd
m be a finite set and ε ∈ (0, 1). Then a weighted

multiset S ⊂ Xd
m with weight function w : S → R>0 is a weighted ε-coreset for (k, ℓ)-median

clustering of T under dtwp if for all C ⊂ Xd
ℓ with |C| = k

(1− ε) cost(T,C) ≤
∑

s∈S

w(s) min
c∈C

dtwp(s, c) ≤ (1 + ε) cost(T,C).

▶ Definition 2.4 ((α, β)-approximation). Let a set of n ∈ N input curves T = {τ1, . . . , τn} ⊂
Xd

m be given. A set Ĉ ⊂ Xd
ℓ is called an (α, β)-approximation of (k, ℓ)-median, if |Ĉ| ≤ βk

and
∑

τ∈T minc∈Ĉ dtwp(τ, c) ≤ α∑τ∈T minc∈C dtwp(τ, c) for any C ⊂ Xd
ℓ of size k.

Focusing on approximations allows us to pass through simplifications of the input curves.

▶ Definition 2.5 ((1 + ε)-approximate ℓ-simplifications). Let σ ∈ Xd
m, ℓ ∈ N and ε > 0. We

call σ∗ ∈ Xd
ℓ an (1 + ε)-approximate ℓ-simplification if

inf
σℓ∈Xd

ℓ

dtwp(σℓ, σ) ≤ dtwp(σ∗, σ) ≤ (1 + ε) inf
σℓ∈Xd

ℓ

dtwp(σℓ, σ).

A range space is defined as a pair of sets (X,R), where X is the ground set and R is
the range set which is a subset of the power set P(X) = {X ′|X ′ ⊂ X}. Let (X,R) be
a range space. For Y ⊆ X, we denote: R|Y = {R ∩ Y | R ∈ R}. If R|Y = P(Y ), then
Y is shattered by R. A key property of range spaces is the so called Vapnik-Chernovenkis
dimension [22, 23, 25] (VC dimension) which for a range space (X,R) is the maximum
cardinality of a shattered subset of X.

3 VC Dimension bounds and coresets for DTW

We now derive bounds on the VC dimension of a range space that approximates the range
space induced by all closed balls in Xd

m centered at curves in Xd
ℓ under p-DTW. The following

lemma shows that one can determine (approximately) the p-DTW between two sequences,
based solely on the signs of certain polynomials, that are designed to provide an approxima-
tion of all point-wise distances and forms the basis for the results in this section. Missing
proofs and statements can be found in the full version [11].

▶ Lemma 3.1. Let τ ∈ Xd
=ℓ, σ ∈ Xd

=m, r > 0 and ε ∈ (0, 1]. For each i ∈ [ℓ], j ∈ [m]
and z ∈ [⌊ε−1 + 1⌋] define fi,j,z(τ, r, σ) = ∥τi − σj∥2 − (z · εr)2. There is an algorithm that,
given as input the values of sign(fi,j,z(τ, r, σ)), for all i ∈ [ℓ], j ∈ [m] and z ∈ [⌊ε−1 + 1⌋],
outputs a value in {0, 1} such that if dtwp(τ, σ) ≤ r then it outputs 1 and if dtwp(τ, σ) >
(1 + (m+ ℓ)1/pε)r then it outputs 0.

EuroCG’24
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The algorithm of Lemma 3.1 essentially implements approximate p-DTW balls member-
ship and satisfies the requirements set by previous results that upper bound the VC dimen-
sion by decomposing the underlying predicate to sign evaluations of polynomials (Theorem
8.3 [2]). However, it is only defined on curves in Xd

=ℓ and Xd
=m. We extend the approach to

all curves in Xd
m, which provides the basis for a distance function d̃twp between elements of

Xd
m and Xd

ℓ that approximates dtwp with a relative error of (1 + ε). The properties of d̃twp

culminate in the following theorem giving a bound on the VC dimension on the approximate
range space of p-DTW induced by d̃twp.

▶ Theorem 3.2. Let ε ∈ (0, 1] and R̃p
m,ℓ = {{x ∈ Xd

m | d̃twp(x, τ) ≤ r} ⊂ Xd
m | τ ∈ Xd

ℓ , r >

0} be the range set consisting of all balls centered at elements of Xd
ℓ under d̃twp in Xd

m. The
VC dimension of (Xd

m, R̃p
m,ℓ) is in O(dℓ log(ℓmε−1)).

Sensitivity bounds and coresets for DTW To make use of the sensitivity sampling frame-
work for coresets by Feldman and Langberg [13], we recast the input set T ⊂ Xd

m as a
set of functions. Consider for any y ∈ Xd

m and ε > 0 the real-valued function f̃y de-
fined on (finite) subsets of Xd

ℓ by f̃y : P(Xd
ℓ ) \ {∅} → R with f̃y(C) = minc∈C d̃twp(y, c),

transforming T into F̃T = {f̃τ | τ ∈ T}. To construct a coreset, one draws elements
from T according to a fixed probability distribution over T , and reweighs each drawn el-
ement. Both the weight and sampling probability are expressed in terms of the sensi-
tivity of the drawn element t, which describes the maximum possible relative contribu-
tion of t to the cost of any query evaluation. We bound the sensitivity of each f̃τ ∈
F̃T by a function γ(f̃τ ), which solely depends on a (α, β)-approximation, m, ℓ and p.
The sensitivity sampling framework and Theorem 3.2 then yield Theorem 3.3.

▶ Theorem 3.3. For f̃ ∈ F̃ , let λ(f̃) = 2⌈log2(γ(f̃))⌉, with γ(f̃) the aforementioned sensitivity
bound, associated to an (α, β)-approximation consisting of k̂ ≤ βk curves, for (k, ℓ)-median
for curves in Xd

m under dtwp, Λ =
∑

f̃∈F̃
λ(f̃), ψ(f̃) = λ(f̃)

Λ and δ, ε ∈ (0, 1). A sample S of

Θ
(
ε−2αk̂(mℓ)1/p

(
(dℓ log(ℓmε−1))k log(k) log(αn) log(αk̂(mℓ)1/p) + log(1/δ)

))

elements τi ∈ T , drawn independently with replacement with probability ψ(f̃i) and weighted
by w(f̃i) = Λ

|S|λ(f̃i)
is a weighted ε-coreset for (k, ℓ)-median clustering of T under dtwp with

probability at least 1− δ.

4 Linear time approximation algorithm for (k, ℓ)-median

As Theorem 3.3 requires an initial (α, β)-approximate solution of the (k, ℓ)-median prob-
lem to compute the bounds γ(·) of the sensitivities, we turn to developing approximation
algorithms for (k, ℓ)-median for a set T ⊂ Xd

m of n curves. For this, we approximate dtwp

on T by a metric using a new inequality for dtwp (Lemma 4.1). This allows the use of any
approximation algorithm for metric k-median, leading to an initial approximation algorithm
of the original problem. Combined with a k-median algorithm in metric spaces [15], we
obtain a linear time (O((mℓ)1/p), 1)-approximation algorithm, which in turn allows us to
compute a coreset in linear (in n) time.

Metrification of p-DTW We begin with the following more general triangle inequality for
dtwp, which motivates analysing the metric closure of the input set. While dtwp does not
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Figure 3 Illustration of how the optimal traversals Wsx, Wxy and Wyt of visited curves can be
‘composed’ to yield a set W that induces a traversal W̃ (in red) of s and t. Any single matched
pair of vertices in Wsx, Wxy or Wyt is at most |W | ≤ ℓ + ℓ′ times a part of W .

satisfy the triangle inequality, the inequality shows it is never ‘too far off’. Remarkably, the
inequality does not depend on the complexity of the curves ‘visited’. Missing proofs of this
section can be found in the full version [11]. Figure 3 illustrates Lemma 4.1.

▶ Lemma 4.1 (Iterated triangle inequality). Let s ∈ Xd
ℓ , t ∈ Xd

ℓ′ and X = (x1, . . . , xr) be an
arbitrary ordered set of curves in Xd

m. Then

dtwp(s, t) ≤ (ℓ+ ℓ′)1/p

(
dtwp(s, x1) +

∑

i<r

dtwp(xi, xi+1) + dtwp(xr, t)
)
.

▶ Definition 4.2 (metric closure). Let (X,ϕ) be a finite set endowed with a distance function
ϕ : X ×X → R. The metric closure ϕ of ϕ is the function

ϕ : X ×X → R, (s, t) 7→ min
r≥2,{τ1,...,τr}⊂X

s=τ1,t=τr

∑

i<r

ϕ(τi, τi+1).

▶ Lemma 4.3. For any set of curves X and two curves σ, τ ∈ X of complexity at most m
it holds that the metric closure dtwp |X of the restriction of dtwp onto the set X is bounded
by dtwp(σ, τ) ≤ (2m)1/pdtwp |X(σ, τ) ≤ (2m)1/p dtwp(σ, τ).

Linear time algorithm Naïvely, we would like to apply linear time algorithms [9] to the
metric closure of dtwp. However, constructing the metric closure usually takes cubic time
resulting in cubic time algorithms. We circumvent this by applying Indyk’s sampling tech-
nique for bicriteria k-median approximation [15], which reduces a k-median instance with
n points to two k-median instances with O(

√
n) points, simply by sampling. We apply this

technique twice, so that we only compute the metric closure on four sampled subsets of size
O(n1/4), resulting in the following theorem.

EuroCG’24
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▶ Theorem 4.4. For any ε > 0 there is an algorithm which computes a (O(1+ε)(mℓ3)(1/p), 4)-
approximation for (k, ℓ)-median for an input set X of n curves of complexity m under dtwp

in time

O(nm3d+ nk log(k)ℓ2d+ nk2 log2(k)ε−4 log2(ε−1) + k7ε−5 log5(n)).

5 Coreset Application

The theoretical derivations of the previous sections culminate in an approximation algo-
rithm (Theorem 5.1) to (k, ℓ)-median that is particularly useful in the big data setting,
where n ≫ m. Our strategy is to first compute an efficient but not very accurate approx-
imation(Theorem 4.4) of (k, ℓ)-median, which we use to construct a coreset. By virtue of
the size reduction we greatly reduce the running time of slower more accurate algorithms,
yielding a better approximation. Missing proofs can be found in the full version [11].

Algorithm 1 ((32 + ε)(4mℓ)1/p)-approximate (k, ℓ)-median
procedure (k, ℓ)-Median(X ⊂ Xd

m, p, ε)
ε′ ← ε/46
Compute (O((16mℓ3)1/p), 4)-approximation C ′ (Theorem 4.4)
Compute bound γ(f̃x) of sensitivity for each curve x ∈ X from C ′

Compute sample size s← O(ε−2dℓk2(m2ℓ4)1/p log3(mℓ) log2(k) log(ε−1) log(n))
Sample and weigh ε′-coreset S of X of size s (Theorem 3.3)
Compute a 2-simplification for every curve in S resulting in the set S∗ of curves
Compute metric closure ϕ(x, y) = dtwp |S∗(x, y) for every x, y ∈ S∗

Return (5 + ε′, 1)-approximation of weighted metric k-median in (S∗, ϕ) (c.f. [3, 9])
end procedure

▶ Theorem 5.1. Let 0 < ε ≤ 1. There is an ((32 + ε)(4mℓ)1/p, 1)-approximate algorithm
with constant success probability ((k, ℓ)-Median in Algorithm 1) for (k, ℓ)-median on curves
under dtwp with a running time of Õ

(
n(m3d+ k2 + kℓ2d) + ε−6d3ℓ3k7 p

√
m6ℓ12

)
, where Õ

hides polylogarithmic factors in n, m, ℓ, k and ε−1.

▶ Corollary 5.2. There is an algorithm that computes an ε-coreset for (k, ℓ)-median in time
Õ
(
n(m3d+ k2 + kℓ2d) + ε−6d3ℓ3k7 p

√
m6ℓ12

)
with constant success probability of size

O(ε−2dℓk2(m2ℓ2)1/p log3(mℓ) log2(k) log(ε−1) log(n)).
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Abstract
A graph is 3-planar if it admits a drawing in the plane such that every edge is crossed at most
three times. A 3-planar graph is maximal 3-planar if addition of any edge results in a graph that is
not 3-planar. A 3-planar graph on n vertices has at most 5.5n − 11 edges, and a 3-planar graph
that has exactly 5.5n − 11 edges is an optimal 3-planar graph. In contrast to planar graphs where
maximal and optimal graphs coincide, a maximal 3-planar graph may have fewer edges than an
optimal 3-planar graph. In this paper, we study properties of maximal 3-planar graphs. First, we
characterize the graphs on nine vertices that are (maximal) 3-planar. Second, we show that—in
contrast to maximal 1– and 2-planar graphs—maximal 3-planar graphs may contain cut vertices.
Third, we give a first upper bound on the minimal edge density by constructing maximal 3-planar
graphs on n vertices with only 2.375n + O(1) edges.

1 Introduction

Planar graphs are graphs that can be drawn on the plane without crossings. If the addition
of any edge to a planar graph makes it impossible for the resulting graph to admit a plane
drawing, the planar graph is said to be a maximal planar graph. Maximal planar graphs
are well-studied and have many interesting properties. For example, the number of edges
in maximal planar graphs is solely dependent on the number of vertices. Specifically, every
maximal planar graph on n ≥ 3 vertices has 3n − 6 edges. It is natural to further explore
the edge density for various families of beyond-planar graphs, which have been extensively
studied over the past decade [5, 8].

In this paper, we focus on 3-planar graphs. A graph is k-planar if it admits a drawing
where each edge has at most k crossings. Pach and Tóth [11] gave upper bounds on the
number of edges in a k-planar graph, which they used to improve the Crossing Lemma.
Unlike planar graphs, the class of k-planar graphs is not closed under edge contractions.
Thus, many useful properties of minor closed classes do not apply to k-planar graphs.

As k gets larger, the density of a k-planar graph on n vertices clearly increases, but the
exact correlation is still unknown. Pach and Tóth [11] showed a general upper bound of
4.108

√
kn edges for k-planar graphs. For small values of k, i.e., k = 1 and k = 2, they also

gave tight upper bounds. The class of 1-planar graphs was introduced by Ringel [12] in the
context of planar graph colorings. A 1-planar graph has at most 4n − 8 edges, and there are
infinitely many optimal 1-planar graphs that achieve the bound [13]. A 2-planar graph on n

vertices has at most 5n − 10 edges, and there are infinitely many optimal 2-planar graphs
that achieve this bound [11].

A lot is left to be explored for maximal k-planar graphs, where a graph is maximal
k-planar if there is no edge that can be added such that the resulting graph is still k-planar.
In contrast to planar graphs, maximal k-planar graphs are not necessarily optimal k-planar
graphs. Indeed the gap between maximal and optimal can be very large for k-planar graphs.
Hudák et al. [9] showed an infinite family of maximal 1-planar graphs with 8

3 n+O(1) ≈ 2.667n

edges, and a sparser construction by Brandenburg et al. [4] only has 45
17 n + O(1) ≈ 2.647n

edges. Brandenburg et al. [4] also proved that every maximal 1-planar graph has at least
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31:2 On Maximal 3-Planar Graphs

28
13 n − O(1) ≈ 2.153n edges. This lower bound was further improved by Barát and Tóth [3]
to 20

9 n ≈ 2.22n.
Interestingly, the density even decreases for maximal k-planar graphs when k increases

from 1 to 2. Hoffmann and M. Reddy [6] showed that every maximal 2-planar graph on n ≥ 5
vertices has at least 2n edges, and they also described an infinite family of maximal 2-planar
graphs on n vertices with only 2n + O(1) edges. So, even though they allow more crossings,
some maximal 2-planar graphs have a lower edge density than any maximal 1-planar graph.

Results. First, in Section 3 we characterize the graphs on nine vertices that are (maximal) 3-
planar. Next, in Section 4 we exhibit maximal 3-planar graphs that contain vertices for which
all incident edges are crossed, in every simple 3-plane drawing of the graph. As a consequence,
maximal 3-planar graphs are not necessarily 2-connected and may contain vertices of degree
one. In contrast, all maximal 1-and 2-planar graphs are 2-connected. Finally, in Section 5,
we construct maximal 3-planar graphs on n vertices with only 2.375n + O(1) edges.

2 Preliminaries

A drawing is simple if any pair of edges has at most one common point, including endpoints.
To analyze k-plane drawings of a graph, one typical restriction is to consider a drawing that
minimizes the total number of crossings among all k-plane drawings of the graph, which is
called a crossing-minimal k-plane drawing. The benefit of such a restriction is that for k ≤ 3,
a crossing-minimal k-plane drawing is always simple [10]. Consequently, 3-planar graphs
always admit a simple 3-plane drawing.

▶ Lemma 1. If a 3-planar graph G is not maximal 3-planar, then there exists a simple
3-plane drawing of G that is not maximal 3-plane.

Proof. If G is not maximal 3-planar, then there exists a pair u, v of nonadjacent vertices
such that G′ = G ∪ e is 3-planar where e = (u, v). Take any simple 3-plane drawing of G′

and remove e to obtain a simple 3-plane drawing of G that is not maximal. ◀

In all figures of this paper, the edges are colored to indicate their number of crossings.
Uncrossed edges are shown green, singly crossed edges are shown purple, doubly crossed edges
are shown orange, and triply crossed edges are shown blue. Edges with an undetermined
number of crossings are shown black.

3 Characterization of (Maximal) 3-planar Graphs on 9 Vertices

Angelini et al. [2] showed that K8 is 3-planar, while K9 is 4-planar (but not 3-planar).
This motivated us to study the set of 3-planar graphs on nine vertices. With the help of a
computer program, we can enumerate all possible simple 3-plane drawings of a given graph;
see Section 6.

The basic idea is to check all graph structures on nine vertices in decreasing order based
on the number of edges. Specifically, starting from K9 \ K2, which is generated by removing
a single edge from a K9, we check if the given graph admits a 3-plane drawing. Further, if
we want to remove two edges from a clique, we can either remove two independent edges or
remove a path P3 of length two. If we restrict to a graph with nine vertices, that is equivalent
to saying that any graph with nine vertices and thirty-four edges will be isomorphic to either
K9 \ (K2 + K2) or K9 \ P3. We have a similar argument if we remove three edges.
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Figure 1 (Left) Drawing D1 of graph G1 by removing five independent edges from K10. (Right)
Drawing D′

1 of graph G′
1 by inserting a new vertex x10 to G1 and adding five edges incident to x10.

Using our computer program, we were able to verify that all graphs on nine vertices that
have at least 34 edges do not admit a simple 3-plane drawing, while all the remaining graphs
on nine vertices are 3-planar. The result can be verified with the code in our repository [7].

▶ Theorem 2. A graph on nine vertices is 3-planar if and only if it has at most 33 edges,
and it is maximal 3-planar if and only if it has exactly 33 edges.

We therefore notice that maximal 3-planar graphs and maximum 3-planar graphs on n

vertices coincide for n ≤ 9.

4 Uncrossed Edge in Maximal 3-planar Graphs

Though we allow crossings in beyond-planar graphs, it does not necessarily mean that every
edge will have a crossing. In a more general sense, crossings are not equally distributed over
the edges. In maximal k-planar graphs where k ≤ 2, it has been shown that every vertex
must be incident to an uncrossed edge in every crossing-minimal k-plane drawing [6]. But
when k = 3, the situation is different and we have the following

▶ Lemma 3. There exist infinitely many maximal 3-planar graphs that each contains a
vertex v such that all edges incident to v are crossed in every simple 3-plane drawing of the
graph.

Proof. The proof of Lemma 3 is based on a graph G′
1 that has the required properties. Then

we can use G′
1 to create larger graphs. To construct a graph G′

1, we start from a base graph
G1 that is isomorphic to K10 minus five independent edges. Specifically, we take the vertex
set as {x0, x1, ..., x9}, and include all edges of the induced complete graph except the five
edges {x0, x1}, {x2, x3}, {x4, x5}, {x6, x7} and {x8, x9}. We enumerated all simple 3-plane
drawings of G1 using our program and found that this graph has exactly one simple 3-plane
drawing up to automorphism. This drawing is illustrated in Fig. 1, and let this drawing be
D1. We can observe that it is impossible to add an edge to D1 while maintaining 3-planarity,
thus it proves G1 is a maximal 3-planar graph from Lemma 1.

We can further obtain a new graph G′
1 by adding a new vertex x10 to G1 and connecting it

to the five vertices x0, x2, x4, x6, x8. We claim that the drawing D′
1 illustrated in Fig. 1(right)
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x10

Figure 2 Graph G2 by gluing two copies of G1 on a merged vertex.

is the unique simple 3-plane drawing of G′
1 (up to automorphisms). To see this, consider

every face of D1. It turns out that there exists exactly one face where the vertex x10 can be
placed such that the five edges to vertices x0, x2, x4, x6, x8 can be added while maintaining
3-planarity, and the resulting drawing is D′

1. This concludes that the graph G′
1 is maximal

3-planar. We further note that x10 is not incident to any uncrossed edge in any 3-plane
drawing of G′

1.
Further we can take two copies of the graph G′

1 and merge the two vertices with degree
five from each of the copies into a single vertex with degree ten to obtain a new graph G2. It
can be interpreted as gluing two copies of G′

1 together at the vertex x10. Refer to Fig. 2 for
one possible 3-plane drawing of G2.

We claim that G2 is a maximal 3-planar graph. Consider an arbitrary simple 3-plane
drawing of G2. The subdrawings corresponding to the two copies of G1 that are still simple
drawings should be the same as D1. It can also be viewed as adding a copy of D1 into an
existing drawing D1. Again, considering all the faces of D1 we can observe that the drawing
shown in Fig. 2 is the only possible 3-plane drawing of G2 up to automorphism.

This replication can be repeated infinitely many times to obtain larger graphs, and in
each such graph the vertex x10 is not incident to any uncrossed edge in every simple 3-plane
drawing, concluding the proof. ◀

Clearly, x10 is a cut vertex in G2 and every graph obtained by following the replicating
procedure. Thus, we have the following

▶ Theorem 4. There exist infinitely many maximal 3-planar graphs that are not 2-connected.

5 Number of Edges in Sparse Maximal 3-planar Graphs

We describe a construction of sparse maximal 3-planar graphs based on G1 in this section.

▶ Theorem 5. There exist an infinite family of maximal 3-planar graphs on n vertices with
at most 2.375n + O(1) edges.

Proof. We construct a nested graph with arbitrarily many layers where each layer is a
variation of G1 as shown in Fig. 3. Specifically, in each layer, we add a hermit vertex
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Figure 3 A single layer in the nested graph structure. Some labels are omitted for simplicity.

connecting to two endpoints of each planar edge, and a triangle to each original vertex, where
a hermit is a degree-two vertex.

Further, as shown in Fig. 3, consecutive layers are connected with each other with orange
dashed lines, which represent half edges. Specifically, suppose vertices from layer i are
indexed as xi

j for 0 ≤ j ≤ 9, and corresponding triangle vertices are labelled as xi ′
j and xi ′′

j .
To connect layers i and i + 1, an edge is added between xi ′

j and xi+1 ′
j+1 for even j. To close

the innermost and outermost layers, we simply use two 5-stars respectively to complete the
graph.

We argue that the constructed graph still admits few simple 3-plane drawings. We start
from each layer based on the unique simple drawing D1. For those inserted triangles, since
the drawing is symmetric considering the innermost face and the outermost face, it is enough
to argue about the outer triangles. We note that outer vertices xi

j of layer i for odd j should
be reachable from a single face because all vertices from other layers have to be drawn in
a single face of the drawing for layer i. Thus the only eligible face is the outermost face.
Observe that xi ′′

j connects to xi
j and xi ′

j , so the drawing of triangles has to be the same
as shown in Fig. 3. We then note that each planar edge is enclosed by blue curves. Thus
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every hermit vertex can only be drawn in faces on two sides of the planar edge. For the
closing 5-star, the argument is similar as stated for graph G′

1. Then consider all possible
simple 3-plane drawing of such a nested graph, it is impossible to add any edge in any of the
drawing, and this concludes that the graph is maximal 3-planar.

For each layer, we have 40 vertices and 90 edges. And between two layers, there are 5
edges connecting them. We can charge these 5 edges to one layer, and extend to arbitrarily
many layers. In total we will have 40k + 2 vertices and 95k + 5 edges for a graph with k

layers. And it gives an edge density of 95k+5
40k+2 · n = 2.375n + O(1) where n is the number of

vertices. This concludes the proof. ◀

It is possible that the construction for 2-planar graphs with roughly 2n edges [6] can be
extended to the 3-planar case; see Fig. 4. But new ideas are needed to prove maximality.
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Figure 4 Nested C14 is a possible maximal 3-planar graph.

6 Enumeration of 3-plane drawings

In this section, we sketch the program we used to enumerate all possible simple 3-plane
drawings of small graphs. This program was used to show certain properties of 3-planar
graphs, like maximality. The basic idea is similar to previous work [1, 6]. We adapted the
code for 2-planar graphs from [6] and extended it to 3-planar graphs. It is available in our
repository [7].

To enumerate all simple k-plane drawings of a graph up to strong isomorphism (that is,
up to a homeomorphism of the plane), we enumerate combinations of all possible drawings
of each edge. We fix a labeling of the vertices and an ordering of the edges to then use
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depth first search to explore all possible simple 3-plane drawings. The restriction to simple
drawings is without loss of generality by Lemma 1.

We add edges one by one to the current drawing, and try to complete the given graph.
Whenever we add an edge, we take every valid drawing of the edge into consideration. After
we run out of different ways to draw the current edge, we backtrack and try to draw the
previous edge differently. Whenever we successfully added all edges into the drawing, we
found a simple 3-plane drawing of the given graph. We record the drawing and continue.

The time complexity of such a search is exponential in the number of edges, and thus
it can be used for small graphs only. In practice, it takes roughly one hour to enumerate
drawings for graphs on 9 vertices, and 30 hours for graphs on 10 vertices. For larger graphs
it seems challenging to enumerate all simple 3-plane drawings within reasonable time limits.
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Abstract
We deal with the problem of decomposing a complete geometric graph into plane star-forests. In
particular, we disprove a recent conjecture by Pach, Saghafian and Schnider by constructing an
infinite family of complete geometric graphs on n vertices which can be decomposed into 2n

3 plane
star-forests. We also describe a method which can be potentially used to construct such infinite
families of geometric graphs decomposable into cn plane star-forests given only a single such graph,
for any given c ∈ ( 1

2 , 1).

1 Introduction

A classic question asked in graph theory is the following: “Given a graph G, what is the
minimal number of subgraphs with property P that G can be partitioned into?” Historically,
this question was asked for abstract graphs and property P was replaced with forests, trees,
complete bipartite graphs and many more [2, 7, 10]. Similar questions can be asked about
graphs drawn in the plane or on any other surface. Here we want to decompose our complete
graph into plane/k-planar/k-quasiplanar subgraphs with a given property. Answering such
questions is a similar, but separate research direction that has been pursued by many authors
in discrete geometry and graph drawing communities.

A geometric graph is a graph drawn in the plane, with vertices represented by points in
general position and edges as straight line segments between them.

Recently, there has been a lot of work done on decomposing geometric graphs into planar
subgraphs of a special kind, such as trees, stars, double stars etc. [11, 6]. This paper will be
concerned with plane star-forests. A star is a connected graph on k vertices with one vertex
of degree k − 1, which we call the center of the star, and k − 1 vertices of degree one. This
definition allows for a single edge to be a star, in this case we decide arbitrarily which of its
endpoints is the center. A star-forest is a forest whose every connected component is a star.
A star-forest is plane if it is drawn in the plane without crossings. It is easy to observe that
a complete graph Kn can be decomposed into n − 1 stars. A fact that is not obvious is that
Kn cannot be decomposed into less than n − 1 stars [3]. In the same paper, Akiyama and
Kano proved that Kn can be decomposed into ⌈ n

2 ⌉ + 1 star-forests.
The story is different for complete geometric graphs. Recently, Pach, Saghafian and

Schnider [8] showed that a complete geometric graph whose vertices form a convex polygon

∗ The research was conducted during a scholarship provided by Višegrad Fund.
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cannot be decomposed into fewer than n − 1 plane star-forests. In the same paper, the
authors posed the following question:
▶ Question 1.1. What is the minimal number of plane star-forests that a complete geometric
graph can be decomposed into?

Based on their findings they made the following conjecture:

▶ Conjecture 1.2 ([8]). Let n ≥ 1. There is no complete geometric graph with n vertices
that can be decomposed into fewer than ⌈3n/4⌉ plane star-forests.

The authors give a special configuration of n = 4k points and construct a simple
decomposition into 3n/4 star-forests. Motivated by this example, we find configurations of n

points that define a complete geometric graph which can be decomposed into ⌈2n/3⌉ plane
star-forests, disproving the conjecture.

Note on new results After submission of the paper to EuroCG we managed to obtain some
better results. Among other things, we answered Conejcture 4.1 positively, thus proving that
the bound ⌈ n

2 ⌉ + 1 is indeed tight. The current version of the paper is available on arXiv [5].

2 The Construction

Firstly, we will give the most general possible construction and then present the concrete
counterexample. We will write GP for a complete geometric graph whose underlying pointset
is P ⊂ R2.

▶ Theorem 2.1. Let c ∈ (1/2, 1) be a constant. If there is a complete geometric graph on
n0 points which can be partitioned into cn0 star-forests, in such a way that each vertex is
a center of at least one star, then for each integer k ≥ 1, there exists a complete geometric
graph on kn0 points that can be partitioned into ckn0 star-forests.

Proof. Let S be the underlying point set of the original complete geometric graph and let
k > 1 be an integer. Label the points in S by a1, . . . , an0 . Now, replace each ai by a set
Ai = {a1

i , ..., ak
i } of k points in general position in such a way that if we choose b1, . . . , bn0

where bi ∈ Ai, we obtain a point set of the same order type as S. Call the new point set Sk.
Now if F1, . . . , Fcn0 is the decomposition of GS into star-forests, from this, we will obtain
the decomposition of GSk into c(kn0) star-forests. Let aj be the center of a star in Fi. We
will construct k new stars with centers in a1

j , . . . , ak
j . Start with a1

j , add to it all of the edges
of the form {a1

j , al
j} that were not already used (in the case of a1

j , none were used). Now
for each edge of the form {aj , aj′} in Fi, add all of the edges from a1

j to the vertices in Aj′ .
Continue doing this for each vertex al

j , where l ∈ {1, 2, . . . , k}. We do this for each star
in Fi and for each forest in the original decomposition. The result of this process is cn0
families of star-forests, each of size k. And the planarity of the star-forests follows from the
definition of the point set Sk. To see this, assume that a tree in the new decomposition
has an intersection. Then the intersection is between edges whose 4 vertices are in different
Ai’s. But if this was the case, then a choice of transversal that includes this 4 vertices would
induce a crossing inside the original decomposition of GS. ◀

We note that the assumption that each point is a center of at least one forest is crucial as
otherwise the star-forests constructed in the proof do not cover all of the edges. For example
see Figure 1. The vertex v is not a center of any star and thus none of the edges between
vertices in Av are covered by the star-forests on the right.
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Figure 1 A complete geometric graph on 4 vertices decomposed into three star-forests and the
corresponding graph on 12 vertices with the wrong “decomposition” into 9 star-forests. (only 4 are
drawn for readability).

aaaa

Figure 2 A complete geometric graph on 4 vertices decomposed into three plane star-forests and
the corresponding graph on 12 vertices with the decomposition into 9 star-forests (only 4 are drawn
for readability). Each vertex of the point set has been used as a center of some star and colored
accordingly.

While Theorem 2.1 gives us a nice way of constructing infinitely many complete geometric
graphs that can be partitioned into few plane star-forests, we still need concrete small
examples to be able to produce the infinitudes. One example was given by the authors in
[8] and can be found in Figure 2. This example motivated Conjecture 1.2. We proceed in a
similar fashion.

▶ Lemma 2.2. There exists a configuration of 6 points in the plane which can be partitioned
into 4 plane star-forests in such a way that each point is a center of at least one star.

Proof. We consider a configuration of 6 points which is crossing-minimal according to [9].
We decompose the graph into 4 star-forests as in the Figure 3. The graph has thus been
decomposed into three 2-component star-forests colored in blue, red and black and one
3-component forest colored in purple. ◀

Now, using the pointset on n0 = 6 elements from the above lemma, which can be decomposed
into 2n0/3 = 4 star-forests, we obtain as an easy corollary a family of pointsets on n = 6k

points which can be decomposed into 2n/3 star-forests, thus disproving Conjecture 1.2. We
state this formally below.

▶ Corollary 2.3. For every k ∈ N, there exists a geometric graph on n = 6k vertices which
can be decomposed into 2n/3 plane star-forests.
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Figure 3 A complete geometric graph on 6 vertices decomposed into four star-forests, vertices
are colored same as trees whose centers they are.

3 Computing Plane Star-Forest Decompositions on Pointsets with 6
Points

Using a simple computer search, we managed to find all pointsets on 6 points that can be
decomposed into 4 plane star-forests. Out of the 16 order types which can be found on [1],
we have found decompositions which satisfy the requirements from Theorem 2.1 for 6 of
them. Those pointsets and corresponding partitions can be seen in Figure 4. The code is
available at [4]. We plan to continue improving the code to be able to perform the search on
bigger pointsets. Currently, the generation of appropriate decompositions is very slow, and
since Stirling numbers grow very fast, we are not able to do the checks for bigger pointsets.

Figure 4 Star-forest decompostions of the pointsets that admit them.
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4 Further Research and Open Questions

It is still unclear to us whether the number 2n/3 is optimal, and we would be very surprised
if it is. Thus we make the following conjecture:

▶ Conjecture 4.1. For each c ∈ (1/2, 1), there exists an n ∈ N and a complete geometric
graph on n vertices which can be decomposed into ⌈cn⌉ plane star-forests.

If our conjecture is true, that would mean that the bound of ⌊n/2⌋ + 1 is almost tight.
We also note that there is an interesting variation of this problem that we have not

explored yet but where our approach can also be used. We define a k-star-forest to be a
star-forest with at most k components. Authors in [8] proposed the following conjecture:

▶ Conjecture 4.2. The number of plane k-star-forests needed to decompose a complete
geometric graph is at least (k+1)n

2k .

Our example does not show anything regarding Conjecture 4.2. But, it is not hard to see
that the construction from Theorem 2.1 preserves the maximal number of components among
all forests. Thus, we believe a similar approach could be used to attack this conjecture.
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Abstract
With the notable exception of an algorithm for the decision problem for planar piecewise smooth
curves due to Rote (2007), research into algorithms for computing the Fréchet distance has con-
centrated on comparing polygonal curves. We present an algorithm for the decision problem for
piecewise smooth curves that is both conceptually simple and naturally extends to the first algo-
rithm for the problem for piecewise smooth curves in Rd. To this end, we introduce a decomposition
of the free space diagram into a controlled number of pieces that can be used to solve the decision
problem using techniques similar to the polygonal case. Assuming the algorithm is given two con-
tinuous curves, each consisting of a sequence of m, resp. n, smooth pieces, where each piece belongs
to a sufficiently well-behaved class of curves, such as the set of algebraic curves of bounded degree,
we solve the decision problem in O(mn) time. Furthermore, we study approximation algorithms
for piecewise smooth curves that are also c-packed. We adapt the existing framework for (1 + ε)-
approximations and show that an approximate decision can be computed in O(cn/ε) time for any
ε > 0.

1 Introduction and motivation

The Fréchet distance is a well-studied distance measure between curves, with a long history
in both applications and algorithmic research. The wealth of work surrounding the analysis
of algorithms for computing the Fréchet distance is centered primarily on polygonal curves.
However, more complicated curves and especially splines are natural objects that have be-
come commonplace in industrial applications for, e.g., computer graphics, robotics and to
represent motion tracking or planning data. A crucial prerequisite to using smooth curves
similarly to polygonal curves in such contexts is the ability to effectively answer elementary
algorithmic questions for such curves. A natural and fundamental task in computational
geometry is the computation of the Fréchet distance between smooth curves such as splines.
Despite this, as far as we know, there is no known approach to realizing such a computa-
tion for curves in Rd. To tackle the case of smooth curves in the plane (d = 2), Rote [3]
introduced an approach based on analyzing the turning angle and planar curvature of the
planar curves. However, this approach does not easily generalize to higher dimensions. We
revisit this problem and present a novel, simpler approach, with the additional benefit that it
works for higher dimensions, with the same time complexity. Our methods are conceptually
simple, but rely on a number of key technical ingredients.

Problem definition Throughout the paper, γ1 and γ2 will be used to denote two piecewise
smooth curves in Rd with d fixed, that is, continuous maps γ1, γ2 : [0, 1] → Rd that are
comprised of m and n smooth pieces, each of class C2. Let A[0,1] be the set of continuous
and bijective maps α : [0, 1] → [0, 1] that are increasing. The Fréchet distance between
γ1 and γ2 is defined as dF (γ1, γ2) := inf

α,β∈A[0,1]
max

t∈[0,1]
∥γ1(α(t)) − γ2(β(t))∥. Our methods
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naturally allow any fixed ℓp norm with 1 < p < ∞ for the norm ∥ · ∥ (the cases p = 1, ∞,
while possible, would add a level of technicality to our treatment that distracts from its
relative simplicity). We focus primarily on the decision problem of deciding whether the
Fréchet distance between two piecewise smooth curves is at most a given δ > 0.

Results Our first main contribution is that we establish an algorithm to solve the decision
problem for the Fréchet distance between piecewise smooth curves. Assuming that the
curves are algebraically bounded curves, i.e., piecewise smooth algebraic curves where
the degree of the curves is bounded by a constant, we obtain a bound of O(mn) for the time
complexity of the decision problem, which matches the polygonal case. The running time
is independent of the ambient dimension but the algebraic complexity of the operations
involved in the algorithm depends on the dimension and the nature of the curves. Our
algorithm for the decision problem results in an algorithm for the computation of the Fréchet
distance for algebraically bounded curves in O(mn log(mn)) time using parametric search,
similarly to the polygonal case.

It is known [1] that the decision problem cannot be solved in strongly subquadratic
time, so research has focused on investigating algorithms for restricted classes of curves.
Our second contribution is that we show that we can adapt the framework from [2] for an
efficient (1 + ϵ)-approximation algorithm for the Fréchet distance between two c-packed,
polyognal curves to the setting of c-packed piecewise smooth curves in Rd. To this end, we
introduce a simplification procedure for piecewise smooth curves and distill the necessary
ingredients to obtain a linear time decision algorithm for algebraically bounded c-packed
curves.

Comparison to previous work To arrive at an algorithm for the decision problem for
smooth planar curves for the ℓ2-norm for a given δ in general position, Rote uses a parti-
tioning of the smooth curves, induced by condition on the turning angle and planar curva-
ture, to obtain pieces for which the associated free space diagram FSDδ (Section 2) is
well-behaved. In contrast to this, our approach is to analyze the free space diagram directly,
by studying the boundary of the free space Dδ in FSDδ, leading to a conceptually simpler
algorithm. The free space is defined as the set of parameter value pairs at which the curves
are at most a distance of δ apart. We propose a refined decomposition of each cell of FSDδ

into a controlled number (depending on the degree of the curves) of subcells, for which
determining the existence of a monotone path connecting two intervals on the boundary
of a subcell is easy. Here, the role of convexity of the free space in a cell for polygonal
curves is replaced by monotonicity of the boundary curves of Dδ within each subcell of the
refined decomposition. We emphasize that our construction of the refined decomposition
exclusively accesses the same values that are also required in Rote’s work to process each
subcell of FSDδ.

Unlike the polygonal case, the free space within a cell of FSDδ can be very complicated,
as illustrated by a contour plot of the distance function in parameter space for two degree
3 splines in R3 in Figure 1 for different values of δ. Figure 3 shows another example of the
kind of behavior of the free space one can expect within a cell. We note that both Rote’s
decision algorithm as well as ours assume values of δ for which the boundary of Dδ has
no singularities. We show that singularities of the boundary of Dδ are confined to a small
number of critical values of δ and are thus not necessary for the computation of dF .
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Figure 1 Two smooth curves in R3 and a contour plot of the associated distance function in the
joint parametric space of the curves.

Computational assumptions We assume that we can compute the intersection of a curve
with a sphere of a given radius centered at a point of another curve and find the parameter
values in [0, 1] that correspond to the intersections.

2 A combinatorial description of the free space diagram

For two piecewise smooth curves γ1, γ2 : [0, 1] → Rd consisting of m and n pieces, respec-
tively, and δ > 0, the free space Dδ = Dδ(γ1, γ2) is defined as

Dδ(γ1, γ2) =
{

(x, y) ∈ [0, 1]2|∥γ1(x) − γ2(y)∥ ≤ δ
}

.

The complement of Dδ in [0, 1]2 is referred to as the forbidden region. There is a natural
partition of the joint parameter space [0, 1]2 of both curves into m · n rectangular cells such
that γ1 and γ2 are smooth when restricting to the interior of each rectangle. The resulting
decomposition of [0, 1]2 together with the partitioning into the free space and forbidden
region is known as the free space diagram FSDδ. A key motivation behind the definition
is the observation that dF (γ1, γ2) ≤ δ iff there is a path from (0, 0) to (1, 1) through the free
space in [0, 1]2 that is monotone in both coordinates.

Overview of the algorithm Similarly to the classical polygonal case, to solve the decision
problem, we investigate the existence of a monotone (in both coordinates) path from (0, 0) to
(1, 1) in the free space Dδ. To this end, we refine the free space diagram using the boundary
Bδ of the free space. Our decision algorithm has the following high-level description.

1. Mark the minima and maxima of the boundary Bδ of the free space in FSDδ in the x

(horizontal) and y (vertical) direction.
2. Cut each cell of FSDδ into subcells, horizontally (vertically) through each marked point

if it has a vertical (horizontal) tangent. Mark each point of intersection of a cut with Bδ.
3. For each resulting subcell, pair the marked points on the boundary according to how

they are connected by Bδ through monotone arcs, so that adjacent points are paired.
4. Solve the decision problem for FSDδ using only the marked points and pairings by

computing reachable intervals on the boundaries of cells, in particular
a. process all cells in lexicographical order of their indices (row by row, from the left);
b. for each cell, process all subcells within the cell in lexicographical order.
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33:4 Revisiting the Fréchet distance between piecewise smooth curves

2.1 Refining the free space diagram
We consider the boundary Bδ of FSDδ as a set of curves, as opposed to the boundary of a
region. Let Ising be the set of singularities of Bδ in the interior of the cells of FSDδ, consisting
of points where Bδ has a cusp or intersects itself. Like Rote, we assume that Ising = ∅. It
turns out that for almost all δ, there are no singular points of Bδ in the interior of each
cell in FSDδ associated to the smooth pieces of the curves, so that Ising = ∅, after possibly
applying a small perturbation to δ, as illustrated in Figure 2. Intuitively, the scarcity of
critical values for δ can be explained by noting that each critical value corresponds to a
value of δ for which there are points (t1, t2) ∈ Bδ such that

d
dt1

∥γ1(t1) − γ2(t2)∥p = 0 = d
dt2

∥γ1(t1) − γ2(t2)∥p, (1)

equations which themselves do not depend on δ. In contrast, we note that for the norms ℓ1
and ℓ∞ in the definition of the Fréchet distance, Bδ may contain cusp singularities for all
values of δ in an open interval.

Dδ+ϵDδ−ϵ Dδ

Figure 2 Illustration of singular points and changes of the boundary Bδ as δ changes.

Let Eh ⊂ Bδ (Ev ⊂ Bδ) be the set of extrema of the free space in the y direction, with
horizontal tangent (in the x direction, with vertical tangent). For simplicity of exposition,
we assume that each of Eh and Ev is a collection of isolated points. In particular, Bδ does
not have a vertical or horizontal segment, which means that there is no arc of one curve
that lies at a constant distance δ from a point on the other.

For a point z ∈ Eh (Ev), we fix the cell in FSDδ containing z, and trace the vertical
(horizontal) line incident to z inside this cell. The result is a refinement of each cell of FSDδ

into a collection of subcells {S}, illustrated in Figure 3 for one cell of FSDδ.

▶ Lemma 2.1. In the interior of each subcell in {S}, Bδ is a union of smooth arcs that are
monotone in both coordinates of R2 and disjoint except possibly at the boundary of a subcell.

We record each intersection IS of Bδ with the boundary of each subcell S, which together
form the set I =

⋃
S is subcell IS of all intersections of subcell walls with Bδ. Notice that Bδ

can be naturally interpreted as a graph Gδ with vertex set I, and each edge a monotone
arc contained in a subcell. We partition the two sets Eh and Ev into the sets E+

h and E−
h ,

and E+
v and E−

v , respectively, according to whether the forbidden region lies locally to the
right of or above the point (−), or to the left of or below the point (+). For the bottom
and left edge of each subcell S, we refer to the information of whether the boundary Bδ at
each point in IS is increasing or decreasing as a function of the horizontal x-coordinate as
the slope information of these points. In other words, the slope information at a point
z ∈ IS can be thought of as an extra bit associated to z that encodes whether Bδ curves to
the left or to the right at z, illustrated in Figure 3 by arrows.
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Figure 3 The decomposition of a cell of the free space diagram into subcells arising from the
horizontal and vertical lines at extremities of the forbidden region in the coordinate directions.

The slope information on the bottommost and leftmost edges of the original cells of FSDδ

leads to a construction recipe for the combinatorial structure of Gδ from its vertex set.

▶ Lemma 2.2. Assume δ is such that Ising = ∅. There is an algorithm that reproduces the
combinatorial structure of Gδ, using the sets E+

h , E−
h , E+

v , E−
v , and I along with the slope

information on the bottommost and leftmost edges of FSDδ, in time O(|I|).
▶ Remark. Figure 4 illustrates the necessity of some knowledge of the slope information on
edges of a subcell for the accurate reconstruction of Bδ inside a cell.

As illustrated in Figure 5, the slope information for points in a subcell can be gleaned
by evaluating the distance between the two curve segments at certain test points.

The parts of the cell walls that are reachable by monotone paths in the free space can be
computed in a structurally similar way to the polygonal case, leading to an algorithm for the

Figure 4 Two different sets of slope information and their combinatorial structures in a subcell.
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z ∈ E+
h

∥γ1 − γ2∥ < δ

∥γ1 − γ2∥ > δ

z ∈ E−
h

∥γ1 − γ2∥ > δ

∥γ1 − γ2∥ < δ

z ∈ E−
h

∥γ1 − γ2∥ > δ∥γ1 − γ2∥ < δ

z ∈ E+
h

∥γ1 − γ2∥ < δ
∥γ1 − γ2∥ > δ

Figure 5 Finding slope information by evaluating the distance at points.

decision problem. The crucial insight is that each arc of the boundary of the free space inside
each subcell is a monotone arc, which allows for to transfer the reachable intervals on the
bottom and left subcell walls to neighboring cell walls in constant time. The following result
is due to there only being a constant number of subcells in each original cell for algebraically
bounded curves, with constant depending only on the allowed degree of the curves.

▶ Proposition 2.3. Given two algebraically bounded piecewise smooth curves γ1, γ2 in Rd

comprised of m and n pieces, respectively, and a value of δ such that Bδ has no singularities,
one can decide if dF (γ1, γ2) ≤ δ. The running time is bounded by O(mn).

The solution to the decision problem can be used to compute the Fréchet distance in
the same way as in the case of polygonal curves, using parametric search. For this, the
first step is to identify the O(mn) critical values where marked points appear or disappear,
components merge, appear, or start touching the boundary of cells. We then apply a binary
search among these O(mn) critical values to narrow down the range of values for the Fréchet
distance to be a critical value corresponding to a change of the order in the x- and y-direction
of the marked points in the free space diagram. Inbetween these O(mn) critical values,
Cole’s variant of parametric search with a parallel sorting algorithm for both the x- and y-
coordinates of all the marked points of Bδ yields an overall running time of O(mn log(mn))
for the computation of the Fréchet distance.

▶ Theorem 2.4. Let γ1 and γ2 be two algebraically bounded curves in Rd consisting of m

and n pieces, respectively. Then the Fréchet distance between γ1 and γ2 can be computed in
O(mn) space and in O(mn log(mn)) operations (of bounded algebraic complexity).
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3 The decision problem in linear time for c-packed curves

A curve γ is c-packed if the total arc length of γ inside any ball of radius r is at most
cr. By utilizing a simplification procedure for piecewise smooth curves that transforms c-
packed curves into c′-packed curves and guarantees a minimum arclength of each piece of
the simplification, one can show that the number of grid cells that are reachable and contain
free space, of simplified c-packed curves, depends linearly on n. This ultimately leads to our
main result concerning approximate decision algorithms.

▶ Corollary 3.1. Let γ1 and γ2 be two piecewise smooth algebraically bounded c-packed
curves, 1 ≥ ϵ > 0 and δ > 0. There is an algorithm that correctly outputs, in O(cn/ϵ) time,
either (i) a (1 + ϵ)-approximation to dF (γ1, γ2), (ii) dF (γ1, γ2) < δ, or (iii) dF (γ1, γ2) > δ.
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Abstract
Enclosing depth is a recently introduced depth measure which gives a lower bound to many depth
measures studied in the literature. So far, enclosing depth has only been studied from a combinatorial
perspective. In this work, we give the first algorithms to compute the enclosing depth of a query
point with respect to a data point set in any dimension. In the plane we are able to optimize
the algorithm to get a runtime of O(n log n). In constant dimension, our algorithms still run in
polynomial time.

Related Version arXiv:2402.12371

1 Introduction

Medians play an important role in statistics. In contrast to the mean value of some given data,
the median depends only on the order of the data points and not on their exact positions.
Hence, it is robust against outliers. As data sets are multidimensional in many cases, we
are interested in an extension of the term ’median’ to higher dimensions. Since there is
no clear order of the data points, there are various generalizations of the median to higher
dimensions [4, 12, 13]. In order to define the median of some data, the notion of depth of a
query point has been introduced. A median is then a query point with the highest depth.
Many depth measures only depend on the relative positions of the data points, just like the
median, making them again robust against outliers.

After the first depth measure was introduced by Tukey [22] (and is therefore known as
Tukey depth), Donoho and Gasko [9] established the idea of a multidimensional median as a
deepest point relative to the data points. Various depth measures with different properties
have since been introduced, such as simplicial depth [11] and convex hull peeling depth [4].

Depth measures are an important tool in Computer Science for example in geometric
matching, pattern matching, clustering [8, 10, 19] and shape fitting applications [2]. Since
depth measures give a way to compute medians of data points they also find applications in
Statistics such as data visualization [22] and regression analysis [16, 21].

I Definition 1.1 (Depth measure). Let d ∈ N and (Rd)S be the family of all finite point
sets in Rd. A depth measure is a function D : (Rd)S × Rd → R≥0, (S, q) 7→ D(S, q). In
particular, the function D assigns to a given finite point set S and a query point q a value,
which describes how deep the query point q lies within the data set S.

Assume we are given a data set S. Consider all hyperplanes spanned by the points of S.
This arrangement A of hyperplanes divides Rd into connected components of Rd\A. We call

∗ This work is based on the Master thesis of the second author.
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these connected components cells. A depth measure where all points in a cell have the same
depth is called combinatorial.

Aloupis et al. [4] used the fact that simplicial depth is a combinatorial depth measure to
compute the simplicial median for d = 2 in O(n4) time. Sachini [15] modified this algorithm
to compute the simplicial depth for the whole plane in O(n4) time. For the case d = 3 there
are various algorithms that compute the simplicial depth of a single query point in O(n2) [7].
Cheng and Ouyang [7] discussed an extension of this algorithm to compute simplicial depth
in R4 in O(n4) time. Afshani et al. [1] later introduced methods to compute simplicial depth
in O(nd log n) time for d > 4. This bound was improved by Pilz et al. [14] to O(nd−1).

Another well studied combinatorial depth measure is Tukey depth, also known as halfspace
depth. For the case d = 2, Aloupis et al. [3] gave a worst case lower bound of Ω(n log n) for
computing the Tukey depth of an arbitrary query point q with respect to a given point set
S of size n. In fact, the Tukey depth of a query point relative to a point set of size n can
be computed in O(n log n) time [17]. There are different approaches to compute the Tukey
depth in different dimensions [6, 5, 18]. The algorithm of Rousseeuw et al. [18] to compute
the Tukey depth of a query point in Rd for d > 2 has a run time of O(nd−1 log n).

Studying more general families of combinatorial depth measures, Schnider introduced
the notion of enclosing depth, which turns out to be a natural lower bounds for many
combinatorial depth measures [20]. In this work, we will focus on enclosing depth and provide
algorithms to compute it.

I Definition 1.2 (k-enclosing). Let S be a point set of size (d + 1)k in Rd and q a query
point. If S can be partitioned into d + 1 pairwise disjoint subsets S1, ..., Sd+1, each of size k,
such that for any transversal p1 ∈ S1, ..., pd+1 ∈ Sd+1 the point q lies in the convex hull of
p1, ..., pd+1, then we say that S1, ..., Sd+1 k-encloses the point q. (Figure 1)

S1

S2

S3

p1

p2

p3

p′1

p′2

p′3

q

Figure 1 The set S = S1 ∪ S2 ∪ S3 5-encloses the query point q in R2.

I Definition 1.3 (Enclosing Depth). Let S be a finite point set in Rd and q be a query point.
The enclosing depth of q with respect to S is the maximum k such that there exist subsets
S1, ..., Sd+1 of S which k-enclose q. We denote it by ED(S, q). (Figure 2)

In this work, we present algorithms to compute the enclosing depth of a query point q

with respect to a data set S in R2 (Section 2) as well as in general dimension (Section 3).
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S1

S2

S3

p1

p2

p3

p′1

p′2

p′3

q

Figure 2 The enclosing depth of the query point q is at least 5.

2 The planar case

Before describing our algorithm, we introduce some combinatorial lemmas that will be helpful
in proving the correctness of our algorithm. For these lemmas, we will assume that the query
point q is the origin and that the data point set S lies on the unit circle. Combinatorially,
this is not a restriction, as the following lemma shows.

I Lemma 2.1. Let S = {s1, . . . , sn} ⊂ R2 be a data point set and q ∈ R2 a query point
such that S ∪ {q} is in general position. Denote by S′ = {s′1, . . . , s′n} the point set defined by
centrally projecting each point in S to a circle of unit radius with center q. Then q is in the
convex hull of si, sj , sk if and only if it is in the convex hull of s′i, s′j , s′k.

Proof. Assume that q is not in the convex hull of a, b, c. Then there is a line ` through q

having all of a, b, c on the same side. This is invariant under central projection from q. J

Let now S = {s1, . . . , sn} on the unit circle be ordered in counter-clockwise direction. By
an interval [sa, sb] we denote all the points in S that lie between sa and sb, that is,

[sa, sb] =
{ {s ∈ S | sa ≤ s ≤ sb} sa ≤ sb

{s ∈ S | s ≥ sa or s ≤ sb} sa > sb

In the following, we write indices modulo n, that is, si = si−n for i ≥ n. We show that in
order to find k-enclosing sets we can restrict our attention to intervals and their endpoints.

I Lemma 2.2. Let a1, a2, b1, b2, c1, c2 ∈ S such that the intervals [a1, a2], [b1, b2] and [c1, c2]
are pairwise disjoint and for every choice of a ∈ {a1, a2}, b ∈ {b1, b2}, c ∈ {c1, c2} the origin
lies in the convex hull of a, b, c. Then for every choice a ∈ [a1, a2], b ∈ [b1, b2], c ∈ [c1, c2] the
origin lies in the convex hull of a, b, c.

Proof. Assume for the sake of contradiction that the convex hull of a, b, c does not contain
the origin and let ` be a line through the origin that has all of a, b, c on the same side `+.
As the intervals are pairwise disjoint, one of a1 or a2 must also be in `+. Thus the convex
hull of ai, b, c does not contain the origin for some i ∈ {1, 2}. Repeating this argument two
more times, we find that one of the 8 triangles spanned by the endpoints does not contain
the origin, which is a contradiction to the assumptions of the lemma. J
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We want to restrict the considered intervals even further. To this end, we define for each
point s ∈ S its opposite neighbors s(r) and s(`) as the last point in S before −s and the first
point in S after −s, respectively, see Figure 3 for an illustration.

s −s

s(`)

s(r)

Figure 3 The opposite neighbors s(r) and s(`) of a point s ∈ S.

I Lemma 2.3. Let S1 = [si, si+k], S2 and S3 be subsets of S that (k + 1)-enclose the origin.
Denote sj = s

(r)
i and sm = s

(`)
i+k. Then S1, S′2 := [sj−k, sj ] and S′3 := [sm, sm+k] also

(k + 1)-enclose the origin.

Proof. See Figure 4 for an illustration of the proof. We first note that (up to relabeling)
we must have that S2 ⊂ [si+k+1, sj ] and S3 ⊂ [sm, si−1]. Indeed, both lines through si and
the origin, as well as through si+k and the origin must separate S2 and S3, as otherwise
there would be a choice a ∈ S1, b ∈ S2, c ∈ S3 whose convex hull does not contain the origin.
Thus, we can write S2 = [sb, sb+k] for i + k + 1 ≤ b ≤ j − k and similarly S2 = [sc−k, sc] for
m + k ≤ c ≤ i− 1. In particular both si, sb, sc and si+k, sb, sc contain the origin.

We claim that si, sb, sm also contains the origin. Assume it does not. Then either the
line `i through si and the origin or the line `b through sb and the origin must separate sc

and sm. By construction, `i has both sc and sm on the same side, so it must be `b. But
this would imply that m > c, which is a contradiction. A symmetric argument also shows
that si+1, sb, sm contains the origin. Analogously it can be shown that si, sj , sc as well
as si+1, sj , sc contains the origin. Finally, by construction si, sj , sm as well as si+k, sj , sm

contains the origin. The statement now follows from Lemma 2.2 and the fact that b ≤ j − k

and m + k ≤ c. J

Description of the algorithm: We are given a set S of n data points in the plane and
a query point q. In a pre-processing step we first sort the points radially around q, giving a
counter-clockwise order s1, . . . , sn on S and then for each s ∈ S we compute s(r) and s(`)

using binary search. For the main part of the algorithm we run the following subroutine,
which for a given integer k checks whether there are three sets that (k + 1)-enclose q: for
each si ∈ S, with sj = s

(r)
i and sm = s

(`)
i+k the subroutine checks whether all 8 triangles

a, b, c for a ∈ [si, si+k], b ∈ [sj−k, sj ], c ∈ [sm, sm+k] contain q and the intervals are pairwise
disjoint, returning TRUE if this holds for some si, and FALSE otherwise. By doing a binary
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si

si+k

sj

sm

sc

sc−k

sb

sb+k

S1

S2

S3

Figure 4 An illustration of the proof of Lemma 4.

search over the values of k ∈ {0, . . . , n} we find the largest value k for which the subroutine
returns true and return (k + 1).

I Theorem 2.4. The above algorithm computes the enclosing depth of q with respect to
S ⊂ R2 in time O(n log n).

Proof. We first show the correctness of the algorithm. It follows from Lemma 2.2 that if the
subroutine returns TRUE then the considered intervals are indeed (k + 1)-enclosing. On the
other hand, if there are (k + 1)-enclosing sets, by Lemma 2.3 the subroutine will find them.

As for the runtime, we can sort in time O(n log n). After this, we perform 2n binary
searches, each taking O(log n) time, thus the total runtime of the pre-processing step is
O(n log n). For the runtime of the subroutine, we notice that for each choice of si the required
checks can be done in time O(1), so the runtime of the subroutine is O(n). As we call it for
O(log n) many values of k we get the desired runtime. J

3 Higher dimensions

Our algorithm in general dimension is based on the following observation:

I Lemma 3.1 (Lemma 20 in [20]). Let S1, . . . , Sd+1 ⊂ S ⊂ Rd be point sets which enclose
a point q, where S ∪ {q} is in general position. Then there are d + 1 closed halfspaces
H−1 , . . . , H−d+1 such that each H−i contains q on its boundary, H−i ∩ S = Si for each i and
H−1 ∪ . . . ∪H−d+1 = Rd.

Denoting by H+
i the complement of H−i we show in the full version that we get Si ⊂⋂

j 6=i H+
j and

⋂
i H+

i = {q}. As we show in the full version, given enclosing sets S1, . . . , Sd+1
we can rotate the halfspaces H+

i to get closed halfspaces H ′i whose boundaries contain q

and d − 1 points of S and for which H ′i ∩ S = H+
i ∩ S and

⋂
i H ′i = {q}. On the other
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hand, given halfspaces H ′1, . . . , H ′d+1, each boundary containing q and d− 1 points of S with⋂
i H ′i = {q}, defining Si :=

⋂
j 6=i(H ′j∩S) we show in the full version that for every transversal

p1 ∈ S1, ..., pd+1 ∈ Sd+1 the point q lies in the convex hull of p1, ..., pd+1. Combining these
facts, we get the following strengthening of Lemma 3.1.

I Lemma 3.2. Let S1, . . . , Sd+1 ⊂ S ⊂ Rd and q ∈ Rd such that S ∪ {q} is in general
position. Then S1, . . . , Sd+1 enclose q if and only if there are d + 1 halfspaces H ′1, . . . H ′d+1
whose boundaries contain q and d − 1 points of S, and for which Si ⊂

⋂
j 6=i H+

j and⋂
i H+

i = {q}.

Description of the algorithm: For each choice of d− 1 points in S, consider the two
halfspaces defined by the hyperplane through q and these d− 1 points. This defines a set H
of 2

(
n

d−1
)
halfspaces. For any d + 1 halfspaces H1, . . . , Hd+1 ∈ H first check if

⋂
i Hi = {q}.

If not, continue with the next choice, otherwise count for each i the number of points of S in⋂
j 6=i Hj and denote by k the smallest of the d + 1 numbers. In the end, return the largest

such k encountered over all choices of d + 1 halfspaces in H.

I Theorem 3.3. The above algorithm computes the enclosing depth of q with respect to
S ⊂ Rd in time O(nd2).

Proof. The correctness follows from Lemma 3.2. As for the runtime, we have |H| ∈ O(nd−1)
out of which we choose sets of d + 1 elements, so there are O(n(d−1)(d+1) sets of halfspaces
that we consider. For each set the check and the counting can be done in time O(n) so the
total runtime is O(n(d−1)(d+1)+1) = O(nd2). J

4 Conclusion

We have given two algorithms to compute the enclosing depth of a query point q with respect
to a data point set S, one for the plane and one in general dimension. The planar algorithm
matches the runtimes of computing many other depth measures. For some measures, such
as Tukey depth, matching lower bounds for the computation time have been shown [3]. It
would be interesting to adapt these lower bounds to enclosing depth.

In higher dimension, many depth measures can be computed in time O(nd−1), which is
significantly faster than the runtime of our algorithm. We believe that enclosing depth can
be computed more efficiently as well, but some additional ideas are likely required for this.

Finally, there are other natural algorithmic problems for depth measures even in the
plane, such as computing the depth of the entire plane or finding a deepest query point.
Using our algorithm and the fact that the arrangement spanned by the lines through all
pairs of data points has O(n4) cells we can solve both those problems in O(n5 log n), but we
again believe that this is not optimal.
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Abstract
In this paper, we study the computation of shortest paths within the geometric amoebot model,
a commonly used model for programmable matter. Shortest paths are essential for various tasks
and therefore have been heavily investigated in many different contexts. For example, for the
geometric amoebot model, Kostitsyna et al. have utilized shortest path trees to transform one
amoebot structure into another [DISC, 2023]. We consider the reconfigurable circuit extension of
the model where the amoebot structure is able to interconnect amoebots by so-called circuits. These
circuits permit the instantaneous transmission of simple signals between connected amoebots.

We propose two distributed algorithms for the shortest path forest problem where, given a set of
k sources and a set of ℓ destinations, the amoebot structure has to compute a forest that connects
each destination to its closest source on a shortest path. For hole-free structures, the first algorithm
constructs a shortest path tree for a single source within O(log ℓ) rounds, and the second algorithm
a shortest path forest for an arbitrary number of sources within O(log n log2 k) rounds. The former
algorithm also provides an O(1) rounds solution for the single pair shortest path problem (SPSP)
and an O(log n) rounds solution for the single source shortest path problem (SSSP) since these
problems are special cases of the considered problem.

Related Version Full Version: https://arxiv.org/abs/2402.12123

1 Introduction

Programmable matter is matter that has the ability to change its physical properties in a
programmable fashion [15]. Many exciting applications have already been envisioned for pro-
grammable matter such as self-healing structures and minimal invasive surgery, and shape-
changing robots have already been prominent examples of the potentials of programmable
matter in many blockbuster movies.

In the amoebot model, the matter consists of simple particles (called amoebots). In the
geometric variant of the model, the amoebots form a connected amoebot structure on the
infinite triangular grid, on which they move by expansions and contractions. However, since
information can only travel amoebot by amoebot, many problems come with a natural lower
bound of Ω(d) where d is the diameter of the structure.

For that reason, we consider the reconfigurable circuit extension to the amoebot model
where the amoebot structure is able to interconnect amoebots by so-called circuits. These
circuits permit the instantaneous transmission of simple signals between connected amoe-
bots. The extension allows polylogarithmic solutions for various fundamental problems, e.g.,
leader election [8], and spanning tree construction [12].

∗ This work was supported by the DFG Project SCHE 1592/10-1. The research was initialized at the
Dagstuhl Seminar 23091 “Algorithmic Foundations of Programmable Matter”. We thank Shantanu Das,
Yuval Emek, Maria Kokkou, Irina Kostitsyna, Tom Peters, and Andrea Richa for helpful discussions.
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This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
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to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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(a) Amoebot structure. (b) Reconfigurable circuit extension.

Figure 1 Amoebot model. The left figure shows an amoebot structure. The nodes indicate
X. The red edges indicate EX . The right figure shows an amoebot structure with c = 2 external
links between adjacent amoebots. The nodes on the boundary are the pins. The nodes within
the amoebots indicate the partition sets. An edge between a partition set PS and a pin p implies
p ∈ PS . Each color indicates another circuit. The figures were taken from [8].

In this paper, we consider the shortest path forest problem where, given a set of sources
and a set of destinations, the amoebots have to find a shortest path from each destination
to the closest source. Shortest paths are a fundamental problem in both centralized and
distributed systems and have also a number of important applications in the amoebot model.

For example, consider shape formation. Many algorithms for the amoebot model utilize
a canonical shape, e.g., a line, as an intermediate structure [6, 11]. However, this is rather
inefficient if the target structure is already close to the initial structure. For such cases,
Kostitsyna et al. proposed an algorithm that utilizes shortest paths to move amoebots
through the structure to their target positions [10]. Another application for shortest paths
is energy distribution [4, 16]. The amoebots require energy to perform their movements that
can be provided by other amoebots, e.g., amoebots located at external energy sources. In
order to minimize energy loss, it is more efficient to transfer the energy via a shortest path.

2 Geometric Amoebot Model

The (geometric) amoebot model was proposed by Derakhshandeh et al. [5]. The model places
a set of n anonymous finite state machines (called amoebots) on some graph G = (V, E).
Each amoebot occupies one node and every node is occupied by at most one amoebot. Let
the amoebot structure X ⊆ V be the set of nodes occupied by the amoebots. We assume that
GX = (X, EX) is connected, where GX = G∆|X is the graph induced by X. In the geometric
variant of the model, G is the infinite regular triangular grid graph G∆ = (V∆, E∆) (see
Figure 1a).

3 Reconfigurable Circuit Extension

In the reconfigurable circuit extension [8], each edge between two neighboring amoebots
u and v is replaced by c edges called external links with endpoints called pins, for some
constant c ≥ 1 that is the same for all amoebots. For each of these links, one pin is owned
by u while the other pin is owned by v. In this paper, we assume that neighboring amoebots
have a common labeling of their incident external links.

Each amoebot u partitions its pin set PS(u) into a collection C(u) of pairwise disjoint
subsets such that the union equals the pin set, i.e., PS(u) =

⋃
C∈C(u) C. We call C(u) the

pin configuration of u and C ∈ C(u) a partition set of u. Let C =
⋃

u∈S C(u) be the collection
of all partition sets in the system. Two partition sets are connected iff there is at least one
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external link between those sets. Let L be the set of all connections between the partition
sets in the system. Then, we call H = (C, L) the pin configuration of the system and any
connected component C of H a circuit (see Figure 1b). Note that if each partition set of C
is a singleton, i.e., a set with exactly one element, then every circuit of H just connects two
neighboring amoebots. An amoebot is part of a circuit iff the circuit contains at least one
of its partition sets. A priori, an amoebot u may not know whether two of its partition sets
belong to the same circuit or not since initially it only knows C(u).

Each amoebot u can send a primitive signal (a beep) via any of its partition sets C ∈ C(u)
that is received by all partition sets of the circuit containing C at the beginning of the next
round. The amoebots are able to distinguish between beeps arriving at different partition
sets. More specifically, an amoebot receives a beep at partition set C if at least one amoebot
sends a beep on the circuit belonging to C, but the amoebots neither know the origin of the
signal nor the number of origins.

We assume the fully synchronous activation model, i.e., the time is divided into syn-
chronous rounds, and every amoebot is active in each round. On activation, each amoebot
may update its state, reconfigure its pin configuration, and activate an arbitrary number of
its partition sets. The beeps are propagated on the updated pin configurations. The time
complexity of an algorithm is measured by the number of synchronized rounds required by
it.

4 Problem Statement and Our Contribution

Let S, D ⊆ X be two non-empty subsets. We call each amoebot in S a source, and each
amoebot in D a destination. A (S, D)-shortest path forest is a set of rooted trees that
satisfies the following properties.

1. For each s ∈ S, the set contains a tree Ts = (Vs, Es) rooted at s with Vs ⊆ X and
Es ⊆ EX .

2. For each s ∈ S, each leaf of Ts is in S ∪ D.

3. For each s1, s2 ∈ S, Vs1 and Vs2 are disjoint.

4. For each u ∈ D, there is a tree Ts such that u ∈ Vs, i.e., D ⊆ ⋃
s∈S Vs.

5. For each s ∈ S and u ∈ Vs, the unique path from s to u in Ts is a shortest path from s

to u in GX , and s has the smallest distance to u among all amoebots in S.
We call an (S, X)-shortest path forest also an S-shortest path forest.

We consider the (k, ℓ)-shortest path forest problem ((k, ℓ)-SPF) for k, ℓ ≥ 1. Let two sets
S, D ⊆ X of amoebots be given such that |S| = k and |D| = ℓ, i.e., each amoebot u ∈ X

knows whether u ∈ S and whether u ∈ D. We say that X computes a (S, D)-shortest path
forest if each amoebot in

⋃
s∈S Vs \S knows its parent within the (S, D)-shortest path forest.

The goal of the amoebot structure is to compute a (S, D)-shortest path forest.
Note that we obtain the classical single pair shortest path problem (SPSP) for k = ℓ = 1,

and the classical single source shortest path problem (SSSP) for k = 1 and ℓ = n.
We will present two deterministic algorithms for (k, ℓ)-SPF. For hole-free amoebot struc-

tures, our shortest path tree algorithm solves the problem within O(log ℓ) rounds for k = 1,
and our shortest path forest algorithm within O(log n log2 k) for k ≥ 1. Note that the former
result implies that we can solve SPSP within O(1) rounds, and SSSP within O(log n) rounds.

EuroCG’24



35:4 Polylogarithmic Time Algorithms for Shortest Path Forests

(a) Initial structure. (b) x-portal graph. (c) y-portal graph. (d) z-portal graph.

x

yz

(e) Axes.

Figure 2 Portal graphs. Each red connected component indicates a portal. We obtain the portal
graphs by fusing the amoebots of each portal to a single node.

5 Related Work

The reconfigurable circuit extension was introduced by Feldmann et al. [8]. They proposed
solutions for the leader election, compass alignment, and chirality agreement problems. Each
of these solutions requires O(log n) rounds w.h.p. Afterwards, they considered the recogni-
tion of various classes of shapes. An amoebot structure is able to detect parallelograms with
linear or polynomial side ratio within O(log n) rounds w.h.p. Further, an amoebot structure
is able to detect shapes composed of triangles within O(1) rounds if the amoebots agree
on a chiracilty. Feldmann et al. proposed the PASC algorithm which allows the amoebot
structure to compute distances along a path [8, 12]. With the help of it, Padalkin et al.
were able to solve the global maxima, spanning tree, and symmetry detection problems in
polylogarithmic time [12].

Shortest path problems are broadly studied both in the sequential and distributed set-
ting. In distributed setting, adjacent nodes are able to communicate via messages. The
CONGEST model limits the size of each message to a logarithmic number of bits (in n).
For weighted SSSP, Chechik and Mukhtar proposed a randomized algorithm that takes
Õ(

√
nd1/4 + d) rounds [1]. The best known lower bound is Ω(

√
n + d) [7, 13].

In the amoebot model, Kostitsyna et al. were the first to consider SSSP [9, 10]. By
applying a breadth-first search approach, they compute a shortest path tree within O(n2)
rounds. For simple amoebot structures without holes, they introduced feather trees – a
special type of shortest path trees. These can be computed within O(d) rounds where d is
the diameter of the structure. To our knowledge, there is no further work on shortest path
problems in the amoebot model or its reconfigurable circuit extension.

6 Results

Coy et al. [3] have solved the shortest path problem for hybrid communication networks
that can be modelled as grid graphs without holes. Our shortest path tree algorithm for
k = 1 adapts their approach as follows. The idea is to utilize portal graphs (see Figure 2).
The vertices (called d-portals) of the d-portal graph are the connected components if we
remove all edges that are not in parallel with the d-axis. Two d-portals are adjacent in the
d-portal graph iff there exists an edge between them. We can show that for triangular grid
graphs without holes, the distance between two nodes is half the sum of the distances of
their portals in the portal graphs. Note that this equation does not hold anymore if the
amoebot structure has holes. Further, it can be shown that the portal graph is a tree. This
allows us to utilize the Euler tour technique [14] in combination with the PASC algorithm
to compute distances in the portal graphs. We obtain the following result.

▶ Theorem 6.1. The shortest path tree algorithm computes an ({s}, D)-shortest path forest
within O(log ℓ) rounds.
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(a) Initial amoebot structure.

(b) Regions after the first phase.

(c) Regions after the second phase.

Figure 3 Regions. The red amoebots indicate the splitting portals. The encircled amoebots
indicate the splitting amoebots.

Our shortest path forest algorithm for k ≥ 1 takes a divide and conquer approach. The
idea is to split the amoebot structure into two regions, to recursively compute a shortest
path forest for both regions, and to finally merge them. In the following, we will elaborate
on these steps.

In the first step, we split the amoebot structure into smaller regions. For that, we make
use of so-called x-portals [2], i.e., connected components of the intersections of the amoebot
structure with an x-axis (see red amoebots in Figure 3a). Our goal is to split the amoebot
structure until each region intersects at most two x-portals with at least one source. We
split the amoebot structure in two phases. In the first phase, we split the amoebot structure
at all portals with at least one source and at most Ok further portals (see Figure 3b). The
splitting portal is part of both regions. In the second step, we split the amoebot structure
further at amoebots at bottlenecks (see Figure 3c). The splitting amoebot is part of both
regions. We can easily compute a shortest path forest for each resulting region. We omit
the details for these computations. Each region will maintain a shortest path forest.
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Figure 4 Propagation of the shortest path forest of the blue region into the green region. The
left figure shows the initial situation, and the right figure the result. The red amoebots indicate
the portal. The encircled amoebots indicate the sources. The pink and purple edges indicate the
shortest path trees.

Figure 5 Phases of the propagation procedure. The red amoebots indicate the portal. The
left figure indicates the amoebots visible by the portal. The right figure shows the phases. In the
first phase, we propagate the shortest path forest to the green amoebots. In the second phase, we
propagate the shortest path forest to the blue amoebots. We propagate the shortest path forests
through the amoebots with a dot.

In order to merge two adjacent regions and with that their shortest path forests, we
proceed as follows. We first propagate the shortest path forests of both regions into the
other region, respectively (see Figure 4). The propagation happens in two phases. In the
first phase, we propagate the shortest path forest to all amoebots visible by the splitting
portal (see green amoebots in Figure 5). We can show that each amoebot can determine its
parent by comparing the distances of two amoebots on the portal to their closest sources. In
the second phase, we propagate the shortest path forest to the remaining amoebots, which
may form several connected components. We propagate the shortest path forest into each
of those independently of each other. For each connected component, we can propagate the
shortest path forest through one of the its amoebots (see amoebots with a dot in Figure 5).
This allows us to apply our shortest path tree algorithm for k = 1 with that amoebot as the
source to finish the propagation (see Theorem 6.1).

Finally, we have to merge the resulting shortest path forests of both regions. By applying
the PASC algorithm on each path from the source to a leaf in both shortest path forests,
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each amoebots computes its distance to the closest source of both regions. This allows each
amoebot to determine the closest source of both regions and with that to choose its parent
in the merged shortest path forest.

Note that all steps (splitting, propagation, merging, etc.) make extensive use of the
geometric properties of the amoebot structure, e.g., that it is free of holes. By utilizing
O(k) portals to split the amoebot structure into regions and by merging the regions with
respect to a centroid decomposition tree, we obtain the following result.

▶ Theorem 6.2. The shortest path forest algorithm computes an (S, D)-shortest path forest
within O(log n log2 k) rounds.
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Abstract
We are considering the geometric amoebot model where a set of n amoebots is placed on the
triangular grid. An amoebot is able to send information to its neighbors, and to move via expansions
and contractions. Since amoebots and information can only travel node by node, most problems
relevant for programmable matter have a natural lower bound of Ω(D) where D denotes the diameter
of the structure. Inspired by the nervous and muscular system, Feldmann et al. have proposed the
reconfigurable circuit extension and the joint movement extension of the amoebot model with the
goal of breaking this lower bound.

In the joint movement extension, the way amoebots move is altered. Amoebots become able
to push and pull other amoebots. Feldmann et al. demonstrated the power of joint movements by
transforming a line of amoebots into a rhombus within O(log n) rounds. However, they left the
details of the extension open. The goal of this paper is therefore to formalize the joint movement
extension. In order to provide a proof of concept for the extension, we consider two fundamental
problems of modular robot systems: reconfiguration and locomotion.

We approach these problems by defining meta-modules of rhombical and hexagonal shape,
respectively. The meta-modules are capable of movement primitives like sliding, rotating, and
tunneling. This allows us to simulate reconfiguration algorithms of various modular robot systems.
Finally, we construct three amoebot structures capable of locomotion by rolling, crawling, and
walking, respectively.

Related Version Full Version: https://arxiv.org/abs/2305.06146

1 Introduction

Programmable matter consists of homogeneous nano-robots that are able to change the
properties of the matter in a programmable fashion, e.g., the shape, the color, or the density
[18]. We are considering the geometric amoebot model [3, 4, 5] where a set of n nano-robots
called amoebots is placed on the triangular grid. An amoebot is able to send information to
its neighbors, and to move by first expanding into an unoccupied adjacent node, and then
contracting into that node. Since amoebots and information can only travel node by node,
most problems relevant for programmable matter have a natural lower bound of Ω(D) where
D denotes the diameter of the structure. Inspired by the nervous and muscular system,
Feldmann et al. [9] proposed the reconfigurable circuit extension and the joint movement
extension with the goal of breaking this lower bound.
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under Grants 867/19 and 554/23.
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In the reconfigurable circuit extension, the amoebot structure is able to interconnect
amoebots by circuits. Each amoebot can send a primitive signal on circuits it is connected
to. The signal is received by all amoebots connected to the same circuit. Among others,
Feldmann et al. [9] solved the leader election problem, compass alignment problem, and
chirality agreement problem within O(log n) rounds with high probability (w.h.p.). These
problems will be important to coordinate the joint movements. Afterwards, Padalkin et al.
[16] explored the structural power of the circuits by considering the spanning tree problem
and symmetry detection problem. Both problems can be solved within polylogarithmic time
w.h.p.

In the joint movement extension, the way amoebots move is altered. In a nutshell, an
expanding amoebot is capable of pushing other amoebots away from it, and a contracting
amoebot is capable of pulling other amoebots towards it. Feldmann et al. [9] demonstrated
the power of joint movements by transforming a line of amoebots into a rhombus within
O(log n) rounds. However, they left the details of the extension open. The goal of this
paper is therefore to formalize the joint movement extension. In order to provide a proof of
concept for the extension, we consider two fundamental problems of modular robot systems
(MRS): reconfiguration and locomotion. We study these problems from a centralized view
to explore the limits of the extension.

In the reconfiguration problem, an MRS has to reconfigure its structure into a given
shape. Examples for reconfiguration algorithms in the original amoebot model can be found
in [6, 7, 14, 15]. However, all of these are subject of the aforementioned natural lower bound.
To our knowledge, polylogarithmic time solutions were found for two types of MRSs: in the
nubot model [20] and crystalline atom model [2].

In the locomotion problem, an MRS has to move along an even surface as fast as possible.
In the original amoebot model, one would use the spanning tree primitive to move along
the surface [3]. However, we only obtain a constant velocity with that. In terrestrial envir-
onments, there are three basic types of locomotion: rolling, crawling, and walking [11, 13].
For each of these locomotion types, we will present an amoebot structure.

2 Geometric Amoebot Model

In this section, we introduce the geometric amoebot model [4]. We slightly deviate from the
original model to make it more suitable to our extension. A set of n amoebots is placed
on the infinite regular triangular grid graph G∆ = (V, E) (see Figure 1). An amoebot is
an anonymous, randomized finite state machine in form of a line segment. The endpoints
may either occupy the same node or two adjacent nodes. If the endpoints occupy the same
node, the amoebot has length 0 and is called contracted and otherwise, it has length 1 and
is called expanded. Every node of G∆ is occupied by at most one amoebot. Two endpoints
of different amoebots that occupy adjacent nodes in G∆ are connected by bonds (red edges).
An amoebot can move through contractions and expansions. We refer to [4] for more details.

Let the amoebot structure S ⊆ V be the set of nodes occupied by the amoebots. We say

⇒

(a) Expansion.

⇒

(b) Contraction.

⇒

(c) Handover.

Figure 1 Movement in the geometric amoebot model. Red lines indicate bonds. Blue amoebots
are expanding. Green amoebots are contracting.
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⇒ ⇒

(a) Expansion.

⇒ ⇒

(b) Contraction.

⇒

(c) Handover.

Figure 2 Movements in the extension. Red lines indicate bonds. Blue amoebots are expanding.
Green amoebots are contracting. The first two figures show a movement in 0.5 time steps.

that S is connected if and only if GS is connected, where GS = G∆|S is the graph induced
by S. Initially, S is connected. Also, we assume the fully synchronous activation model,
i.e., the time is divided into synchronous rounds, and every amoebot is active in each round.
We justify this assumption with the reconfigurable circuit extension. On activation, each
amoebot may perform a movement and update its state as a function of its previous state.
However, if an amoebot fails to perform its movement, it remains in its previous state. The
time complexity of an algorithm is measured by the number of synchronized rounds required
by it.

3 Joint Movement Extension

In the joint movement extension [9], the way the amoebots move is altered. The idea
behind the extension is to allow amoebots to push and pull other amoebots. The necessary
coordination of such movements can be provided by the reconfigurable circuit extension
[9, 16]. In the following, we formalize the joint movement extension. Joint movements are
performed in two steps.

In the first step, the amoebots remove bonds from GS as follows. Each amoebot can
decide to release an arbitrary subset of its currently incident bonds in GS . A bond is removed
if and only if either of the amoebots at the endpoints releases the bond. Let EL ⊆ ES denote
the set of all edges occupied by amoebots and ER ⊆ ES the set of the remaining bonds, and
GR = (S, EL ∪ ER) the resulting graph. We require that GR is connected since otherwise,
disconnected parts might float apart. We say that a connectivity conflict occurs if and only
if GR is not connected. Whenever a connectivity conflict occurs, the amoebot structure
transitions into an undefined state such that we become unable to make any statements
about the structure.

In the second step, each amoebot may perform one of the following movements within
the time period [0, 1]. A contracted amoebot may expand on one of the axes as follows (see
Figure 2a). At t = 0, the amoebot can reorientate itself and reassign each of its incident
bonds to one of its endpoints. At t ∈ [0, 1], the amoebots has a length of t. In the process,
the incident bonds do not change their orientations or lengths. As a result, the expanding
amoebot pushes all connected amoebots. An expanded amoebot may contract analogously
by reversing the contraction (see Figure 2b). Thereby, it pulls all connected amoebots.

Furthermore, a contracted amoebot x occupying node u and an expanded amoebot y

occupying nodes v and w may perform a handover if there is a bond b between u and v, as
follows (see Figure 2c). At an arbitrary t ∈ [0, 1], we flip b = {u, v} and {v, w} such that
x becomes an expanded amoebot with endpoints occupying nodes u and v, y becomes a
contracted amoebot with both endpoints occupying w, and b becomes {v, w}. We have to
include the handover to ensure universality of the model since otherwise, it would not be
possible to move through a narrow tunnel.

In certain situations, the amoebots may not be able to perform their movements. We
distinguish between two cases. First, the amoebots may not be able to perform their move-
ments while maintaining their relative positions (see Figure 3a). We call that a structural
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⇒

(a) Structural conflicts and mappings. In the left figure, the expansions cause a structural conflict. In
the right figure, the amoebot structure can be mapped onto the triangular grid after the movement.

⇒

t = 0.0

⇒

t = 0.4 t = 1.0

(b) Collision. Initially, we have a valid amoebot structure given (t = 0). The resulting amoebot structure
can be mapped on G∆ (t = 1). However, for t ∈ [0.25, 0.75], parts of the structure collide.

Figure 3 Joint movements. Red lines indicate bonds. Blue amoebots are expanding horizontally.

conflict. Second, parts of the structure may collide into each other. More precisely, a col-
lision occurs if there is a t ∈ [0, 1] such that two non-adjacent bonds intersect at some
point (see Figure 3b). Whenever either a structural conflict or a collision occurs, the amoe-
bot structure transitions into an undefined state such that we become unable to make any
statements about the structure. The detection of structural conflicts and collisions is not
within the scope of this paper simply because we only consider movements where structural
conflicts and collisions cannot occur. We refer to [10] for more details.

Otherwise, at t = 1, we obtain a graph GM = (S, EM ) that can be mapped on the
triangular grid G∆ (see Figure 3a). In compliance with the orientations of all bonds and line
segments, the mapping of GM is unique except for translations since GR is connected. We
choose any mapping as our next amoebot structure. Afterwards, the amoebots reestablish
all possible bonds.

We assume that the joint movements are performed within look-compute-move cycles. In
the look phase, each amoebot observes its neighborhood and receives signals (beeps) from
other amoebots, according to the reconfigurable circuit structure of the system. In the
compute phase, each amoebot may perform computations, change its state, and decide the
actions to perform in the next phase (i.e., which bonds to release, and which movement to
perform). In the move phase, each amoebot may release an arbitrary subset of its incident
bonds, and perform a movement.

4 Proof of Concept

We now provide a proof of concept for the joint movement extension by considering two
fundamental problems: reconfiguration and locomotion.

In a first step, we combine multiple amoebots to meta-modules. In other models for
programmable matter and modular robots, meta-modules have proven to be very useful.
For example, they allow us to bypass restrictions on the reconfigurability [8, 19] and to
simulate (reconfiguration) algorithms for other models [1, 17]. We present two types of
meta-modules: meta-modules of rhombical and hexagonal shape. For these, we can show
various movement primitives (see Figures 4 and 5).

The meta-modules allow us to simulate reconfiguration algorithms for lattice-type MRSs
of similar shape if we can implement the same movement primitives. By simulating the
reconfiguration algorithm of Aloupis et al. [2] for rhombical robots (crystalline atoms) and
the reconfiguration algorithm of Hurtado et al. [12] for hexagonal robots, we obtain the
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⇒

(a) Contraction primitive.

⇒ ⇒ ⇒

(b) Reorientation primitive.

⇒ ⇒

(c) Realignment primitive.

⇒ ⇒

(d) Rotation primitive.

⇒
R1

R2
R3

⇒

(e) Slide primitive.

R
⇒ ⇒

⇒ ⇒
R

(f) k-tunnel primitive.

Figure 4 Movement primitives for rhombical meta-modules. Red meta-modules perform a pull
operation, and blue meta-modules a push operation.

following results.

▶ Theorem 4.1. There is a centralized reconfiguration algorithm for m hexagonal meta-
modules that requires O(m) rounds. Each module has to perform at most O(m) moves.

▶ Theorem 4.2. There is a centralized reconfiguration algorithm for m rhombical meta-
modules that requires O(log m) rounds and performs Θ(m log m) moves overall.

Finally, we consider amoebot structures capable of locomotion along an even surface.
There are three basic types of terrestrial locomotion: rolling, crawling, and walking [11, 13].
In the following, we will construct an amoebot structure for each type.

Our rolling amoebot structure imitates a continuous track that rotates around a set of
wheels. We build it from hexagonal meta-modules of alternating side lengths ℓ and ℓ − 1

⇒⇒⇒

(a) Switching primitive.

⇒R1

R2

H1

H2

⇒

(b) Rotation primitive.

Figure 5 Movement primitives for hexagonal meta-modules.
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⇒

⇒

⇒

⇒

Figure 6 Rolling structure. The blue meta-modules rotate clockwise around the green meta-
modules. We highlight one of the rotating meta-modules in a darker blue.

(see Figure 6). The structure consists of two parts: a connected substrate structure (green
meta-modules), and a closed chain of meta-modules rotating along the outer boundary of
the substrate (blue meta-modules). The amoebot structure moves by rotating the blue
meta-modules around the substrate (compare to Figure 5b). We obtain the initial structure
after two rotations. In doing so, the structure has moved a distance of 2 · ℓ. By performing
the movements periodically, we obtain the following theorem.

▶ Theorem 4.3. Our rolling structure composed of hexagonal meta-modules of alternating
side lengths ℓ and ℓ − 1 moves a distance of 2 · ℓ within each period of constant length.

Our crawling amoebot structure imitates earthworms. It consists of r rhombical meta-
modules of side length ℓ − 1 (see Figure 7). The amoebot structure moves by alternately
contacting and expanding its body (compare to Figure 4a) while utilizing the meta-module at
the front and at the end as an anchor, respectively. As a result, the contraction (expansion)
pulls (pushes) the structure to the front. By performing the movements periodically, we
obtain the following theorem.
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⇒

⇒

Figure 7 Crawling structure.

⇒

Figure 8 Walking structure.

▶ Theorem 4.4. A line of r rhombical meta-modules of side length ℓ − 1 moves a distance
of r−2

2 · ℓ every 2 rounds.

Our walking amoebot structure imitates millipedes. It consists of rhombical meta-
modules of side length ℓ − 1 (compare to Figure 8). Let p denote the number of legs.
The body and each leg consists of a line of q rhombical meta-modules. The structure moves
by moving the legs back and forth. For that, we simply apply the realignment primitive
(see Figure 4c) on all meta-modules within the legs. Note that we reach the initial amoebot
structure after two leg movements. Hence, we obtain the following theorem.

▶ Theorem 4.5. Our walking structure composed of rhombical meta-modules of side length
ℓ − 1 with p legs composed of q rhombical meta-modules moves a distance of 2 · q · ℓ within
each period of constant length.
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Abstract
We study the Fréchet queries problem. It is a data structure problem, where we are given a set S

of n polygonal curves and a distance threshold ρ. The data structure should support queries with
a polygonal curve q for the elements of S, for which the continuous Fréchet distance to q is at
most ρ. We study the case that the ambient space of the curves is 1-dimensional and show an
intimate connection to the well-studied rectangle stabbing problem. Using known data structures
for rectangle stabbing or orthogonal range searching this directly leads to a data structure with size
in O(n logt−1 n) and query time in O(logt−1 n + k), where k denotes the output size and t can be
chosen as the maximum number of vertices of either (a) the stored curves or (b) the query curves.
Note that we omit factors depending on the complexity of the curves that do not depend on n.

Related Version arXiv:2401.03762

1 Introduction

The Fréchet distance is a popular measure of similarity of two curves q and s. We focus
on a data structuring problem which we refer to as the Fréchet queries problem. Here, in
the preprocessing phase, we are given a set S of n polygonal curves of complexity at most
ts, a distance threshold ρ, and the complexity tq of the query time series. The task is to
store this set in a data structure that can answer the following type of queries efficiently:
For a polygonal curve q of complexity tq, output all curves in S that have Fréchet distance
at most ρ to q. We denote with the complexity of a curve the number of vertices that
defines it. Afshani and Driemel [2] studied this problem in 2018 for 2-dimensional curves
providing non-trivial upper and lower bounds for the exact case. Their data structure
is based on multi-level partition trees using semi-algebraic range searching and has size
in O

(
n(log log n)O(ts

2)
)

and uses query time in O
(√

n · logO(ts
2) n + k

)
, where k is the

output size and ts and tq are assumed to be constant. Recently, Cheng and Huang [6] have
generalized their approach for higher dimensions. Other works on variants of this problem
have focused on the approximate setting [4, 7, 8, 9, 10]. We study the exact setting and—
following previous work by Bringmann, Driemel, Nusser and Psarros [4] and Driemel and
Psarros [8]—we restrict the ambient space of the curves to be 1-dimensional, that is, they
are time series.

Preliminaries For any two points p1, p2 ∈ Rd, p1p2 is the directed line segment from p1
to p2. The linear interpolation of each pair of consecutive vertices of a sequence of vertices
s1, . . . , sts

∈ Rd is called a polygonal curve. This curve is also denoted as ⟨s1, . . . , sts
⟩. We

can represent polygonal curves as functions s : [1, ts] → Rd, where s(i+α) = (1−α)si+αsi+1

∗ This work was funded by 390685813 (Germany’s Excellence Strategy – EXC-2047/1: Hausdorff Center
for Mathematics); 416767905; and the Deutsche Forschungsgemeinschaft (DFG, German Research-
Foundation) – 459420781 (FOR AlgoForGe)
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Figure 1 The free space diagram Fρ(q, s) of two time series with a feasible path trough a feasible
sequence of cells C = ((1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 4), (4, 5)), which is drawn in grey.
Predicates (P1), (P2), (P3(1, 2)), (P4(3, 4)), (P5(1, 2, 3)) and (P6(3, 4, 4)) are true, because the points
pi are contained in the free space.

for i ∈ {1, . . . , ts − 1} and α ∈ [0, 1]. The (continuous) Fréchet distance between polygonal
curves q : [1, tq] → Rd and s : [1, ts] → Rd is defined as

dF(q, s) = inf
hq∈Fq,hs∈Fs

max
p∈[0,1]

∥q(hq(p)) − s(hs(p))∥2,

where Fq is the set of all continuous, non-decreasing functions hq : [0, 1] → [1, tq] with
hq(0) = 1 and hq(1) = tq, respectively Fs for s.

We show an intimate connection of the Fréchet queries problem to the following classical
problems studied in computational geometry. For rectangle stabbing, a set S of n axis-aligned
d-dimensional rectangles in Rd needs to be preprocessed into a data structure so that all
rectangles in S containing a query point q can be reported efficiently, ensuring that each
such rectangle is reported exactly once. Orthogonal range searching is its dual. Here, a
set S of n points in Rd is preprocessed into a data structure so that for a d-dimensional
axis-aligned query rectangle R all points contained in S can be reported efficiently, ensuring
that each such point is reported exactly once.

2 Predicates for Evaluating the Fréchet distance

In this section, we review the predicates used by Afshani and Driemel and how they enable
the evaluation of the Fréchet distance in a data structure context. For this, we first recall the
definition of the free space diagram from Alt and Godau [3]. For time series q : [1, tq] → R
and s : [1, ts] → R, the set Fρ(q, s) := {(x, y) ∈ [1, tq] × [1, ts] | |q(x) − s(y)| ≤ ρ} is called
free space diagram. Refer to Figure 1 for an example. They showed that there exists a
path in Fρ(q, s) from (1, 1) to (tq, ts) which is monotone in both coordinates if and only if
dF (q, s) ≤ ρ. For such a path, we say it is feasible.

We can decompose the rectangle [1, tq] × [1, ts] into (tq − 1) · (ts − 1) cells such that the
cell Cij = [i, i+1]× [j, j +1] corresponds to the part in the free space diagram defined by the
edges qiqi+1 and sjsj+1. By definition of the free space diagram, it follows that Cij ∩Fρ(q, s)
lies between two parallel lines. Therefore, we focus on the boundary of the cells Cij .

Our query algorithm will iterate over all possibilities of sequences of cells that a feasible
path could traverse in the free space diagram. In light of this, we call a sequence of cells
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C = ((i1, j1), . . . , (it, jt)) valid, if (i1, j1) = (1, 1), (it, jt) = (tq −1, ts−1), and (im+1, jm+1) ∈
{(im, jm + 1), (im + 1, jm)} for all m < t. The tuple (i, j) represents the cell Cij . Further, a
valid sequence of cells is called feasible in Fρ(q, s), if there exists a feasible path in Fρ(q, s)
traversing exactly the cells in C. The following predicates due to Afshani and Driemel [2]
can be used to decide whether a valid sequence of cells is feasible in Fρ(q, s). See Figure 1
for an example.

(P1) (Endpoint (start)) This predicate is true iff |s1 − q1| ≤ ρ.
(P2) (Endpoint (end)) This predicate is true iff |sts

− qtq
| ≤ ρ.

(P3(i, j)) (Vertex of s - edge of q) This predicate is true iff ∃ p3 ∈ qiqi+1 s.t. |p3 − sj | ≤ ρ.
(P4(i, j)) (Vertex of q - edge of s) This predicate is true iff ∃ p4 ∈ sjsj+1 s.t. |p4 − qi| ≤ ρ.
(P5(i, j, k)) (Monotone in q) This predicate is true iff ∃ p3, p5 ∈ qiqi+1 s.t. p3 lies not

after p5 on the time series q and |p3 − sj | ≤ ρ and |p5 − sk| ≤ ρ.
(P6(i, l, j)) (Monotone in s) This predicate is true iff ∃ p4, p6 ∈ sjsj+1 s.t. p4 lies not

after p6 on the time series s and |p4 − qi| ≤ ρ and |p6 − ql| ≤ ρ.

The following lemma verifies that the predicates can be used to test if the Fréchet distance
between two curves is at most a given value.

▶ Lemma 2.1 (Afshani and Driemel [2]). Let C = ((i1, j1), (i2, j2), . . . , (it, jt)) be a valid
sequence of cells. Then C is feasible in Fρ(q, s) if and only if the following predicates defined
by q, s and ρ are true: (P1) and (P2) and (P3(i, j)) if (i, j − 1), (i, j) ∈ C and (P4(i, j))
if (i − 1, j), (i, j) ∈ C and (P5(i, j, k)) if (i, j − 1), (i, k) ∈ C for j < k and (P6(i, l, j)) if
(i − 1, j), (l, j) ∈ C for i < l.

3 Simplification of the Predicates

Given a sequence of cells C and a time series s, we want to find intervals I1, . . . , Itq
such

that C is feasible in Fρ(q, s) if and only if qi ∈ Ii for all i, where q = ⟨q1, . . . , qtq ⟩ is a time
series with some additional properties. The intervals will be defined using the predicates.
Lemma 2.1 shows which predicates need to be true such that C is feasible in Fρ(q, s).

▶ Lemma 3.1. Let q = ⟨q1, . . . , qtq ⟩ and s = ⟨s1, . . . , sts⟩ be two time series. Then the
following holds for the predicates in the free space diagram Fρ(q, s):

(i) (P1) is true ⇔ q1 ∈ [s1 − ρ, s1 + ρ],
(ii) (P2) is true ⇔ qtq

∈ [sts
− ρ, sts

+ ρ],
(iii) (P3(i, j)) is true ⇔ if qi ≤ qi+1 : qi ≤ sj + ρ and qi+1 ≥ sj − ρ and

if qi ≥ qi+1 : qi ≥ sj − ρ and qi+1 ≤ sj + ρ,
(iv) (P4(i, j)) is true ⇔ qi ∈ [min{sj − ρ, sj+1 − ρ}, max{sj + ρ, sj+1 + ρ}],
(v) (P5(i, j, k) is true ⇔ (P3(i, j)) and (P3(i, k)) are true and one of the following holds:

|sj − sk| ≤ 2ρ, or
|sj − sk| > 2ρ and sj ≤ sk and qi ≤ sj + ρ and qi+1 ≥ sk − ρ, or
|sj − sk| > 2ρ and sj > sk and qi ≥ sj − ρ and qi+1 ≤ sk + ρ.

To determine the truth value of the monotone in s predicates (P6), we introduce the
new concept of forward and backward numbers fi(q) and bi(q). Here, we take advantage of
the fact that the direction of each edge of a time series can only be orientated forward or
backward with respect to the x-axis. Refer to Figure 2 as an example.

EuroCG’24
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q1q2 q3q4 q5q6 q7q8 q9

q2 − ρ q5 + ρ

q5 + ρq9 − ρ

Figure 2 Illustration of the values f2(s) = 5 and b5(s) = 9 for a time series s.

▶ Definition 3.2 (forward and backward numbers). For a time series q = ⟨q1, . . . , qtq ⟩ and
i ∈ {1, . . . , tq}, we denote by the forward number fi(q) ≤ tq (resp. backward number
bi(q) ≤ tq) the highest number such that ⟨qi − ρ, qfi(q) + ρ⟩ (resp. ⟨qi + ρ, qbi(q) − ρ⟩) is
oriented forward (resp. backward) and its Fréchet distance to the time series ⟨qi, . . . , qfi(q)⟩
(resp. ⟨qi, . . . , qbi(q)⟩) is at most ρ, i.e.,

fi(q) := max{k ∈ {i, . . . , tq} | dF(⟨qi, . . . , qk⟩, ⟨qi − ρ, qk + ρ⟩) ≤ ρ and qi − ρ ≤ qk + ρ},

bi(q) := max{k ∈ {i, . . . , tq} | dF(⟨qi, . . . , qk⟩, ⟨qi + ρ, qk − ρ⟩) ≤ ρ and qi + ρ ≥ qk − ρ}.

Note, that for all i ≤ x ≤ fi(q), it holds that dF(⟨qi, . . . , qx⟩, ⟨qi − ρ, qx + ρ⟩) ≤ ρ and
qi−ρ ≤ qx+ρ. Respectively, for bi(q). The next lemma shows how the forward and backward
numbers can be used to determine values of the predicates (P6). To decide whether a valid
sequence of cells is feasible or not in Fρ(q, s), predicate (P6(i, l, j)) needs to be true only if
all predicates (P6(x, y, j)) need to be true with i ≤ x < y ≤ l by Lemma 2.1.

▶ Lemma 3.3. Let q = ⟨q1, . . . , qtq
⟩ and s = ⟨s1, . . . , sts

⟩ be time series, i, l ∈ {1, . . . , tq}
with i < l and j ∈ {1, . . . , ts − 1}. If sj ≤ sj+1 (resp. sj ≥ sj+1), then (P6(x, y, j)) is true
∀i ≤ x < y ≤ l if and only if fi(q) ≥ l (resp. bi(q) ≥ l) and (P4(x, j))is true ∀i ≤ x ≤ l.

4 Data Structure

In this section, we present two data structures solving the Fréchet queries problem. We
start with some assumptions, that can be made for the time series. Let s = ⟨s1, . . . , st⟩ be
a time series. Then, we can assume that either s2j−1 ≤ s2j ≥ s2j+1 for all j (M-shaped), or
s2j−1 ≥ s2j ≤ s2j+1 for all j (W-shaped). Moreover, we can assume that the complexity of
all time series in S is exactly ts by simply adding dummy vertices in the end otherwise.

By Lemma 2.1, a sequence of cells C is feasible in the free space diagram Fρ(q, s) if
and only if the predicates in Lemma 2.1 defined by C are true. The truth assignment of
all predicates (P1), (P2), (P3), (P4) and (P5) can be determined using intervals defined by
s and ρ. Furthermore, C can only be feasible in Fρ(q, s) if for all (i − 1, j), (l, j) ∈ C with
i ≤ l, the monotone in s predicate (P6(i, l, j)) is true. By Lemma 3.3, we can use the forward
number fi(q) in the case that sj ≤ sj+1 (i.e., j is odd if s is M-shaped) to determine whether
(P6(i, l, j)) is true. We define the forward number fi(C) as the highest such number l that
is needed for C to be feasible in Fρ(q, s). Respectively, if sj ≥ sj+1 (i.e., j is even if s is
M-shaped) for bi(q) and we define the backward number bi(C). Formally, we get

fi(C) =
{

l ≥ i, if ∃ (i − 1, j), (l, j) ∈ C s.t. j is odd and (l + 1, j) /∈ C,

i, otherwise;

bi(C) =
{

l ≥ i, if ∃ (i − 1, j), (l, j) ∈ C s.t. j is even and (l + 1, j) /∈ C,

i, otherwise.
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As C is valid there exists a unique j such that (i − 1, j), (i, j), . . . , (l, j) ∈ C. Hence, the
numbers fi(C) and bi(C) are well-defined.

The Data structure. Let SM be the set of stored time series that are M-shaped and SW

the set of those that are W-shaped. We will describe how SM is stored. The time series
in SW are stored in the same way after they were mirrored at the origin. Consequently,
for those the query algorithm mirrors the query time series q at the origin and is then the
same as for the time series in SM . For all valid sequences of cells C, we build two associated
rectangle stabbing data structures storing the time series in SM as tq-dimensional axis-
aligned rectangles. One for the case that the query time series q is M-shaped and the other
one for the case that q is W-shaped. Knowing the shape of q, Lemma 2.1 and 3.1 define for
every s ∈ SM an interval for every vertex qi of the query time series in which it must lie
such that C can be feasible in Fρ(q, s). For a time series s, we store the Cartesian product
of those tq intervals in the associated rectangle stabbing data structure. Note that even if
the complexity of the stored time series is greater than tq, we store only a tq-dimensional
rectangle for it.

The Query Algorithm. Let q be a query time series of complexity tq. The query al-
gorithm starts with computing the numbers f1(q), . . . , ftq (q), b1(q), . . . , btq (q). For all valid
sequences of cells C, we check whether fi(C) ≤ fi(q) and bi(C) ≤ bi(q) for all i. If so, we
do a query search in the rectangle stabbing data structure depending on C and the shape
of q with the point (q1, q2, . . . , qtq

) and output all time series associated with a rectangle
containing this point.

▶ Theorem 4.1. The Fréchet queries problem for constant parameters tq ≥ 2 and ts can be
solved with a data structure of size in O(n logtq−2 n) and query time in O(logtq−1 n + k),
where k is the size of the output (without duplicates).

Proof. The number of valid sequences of cells is constant and the forward and backwards
numbers can be computed in constant time because ts and tq are constant. So, the size and
the query time of the data structure follow by using the rectangle stabbing data structure by
Afshani, Arge and Larsen [1]. The correctness follows by the discussion above and the fact
that there exists a feasible valid sequences of cells in Fρ(q, s) if and only if dF (q, s) ≤ ρ. ◀

Using an orthogonal range searching data structure, it is possible to store the time series
in S as ts-dimensional points and the query time series defines ts-dimensional axis-aligned
rectangles depending on C. The data structure by Afshani, Arge and Larsen [1] leads to the
following.

▶ Corollary 4.2. The Fréchet queries problem for constant parameters tq and ts > 2 can
be solved with a data structure of size in O

(
n(log n/ log log n)ts−1)

that uses query time in
O(log n(log n/ log log n)ts−3 + k), where k is the size of the output (without duplicates).

Known lower bounds for rectangle stabbing and orthogonal range searching by Afshani,
Arge and Larsen [1] and by Chazelle [5] can be applied to the Fréchet queries problem,
because those problems can be transformed to it. Consider a data structure that solves the
Fréchet queries problem and operates on a pointer machine. If it uses nh space, it must use
query time in Ω(log n(log n/ log h)⌊t/2⌋−2 + k). And, if it uses query time in O(logc n + k),
where c is a constant, it must use space in Ω(n(log n/ log log n)⌊t/2⌋−1). In both cases, k

denotes the size of the output (without duplicates) and t = min{tq, ts}.

EuroCG’24
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Abstract
Detecting groups or clusters in point sets is an important task in a wide variety of application areas.
In addition to detecting such groups, the group’s shape carries meaning. In this paper, we aim
to represent a group’s shape using a simple geometric object: a line segment. Specifically, given
a radius r, we say a line segment represents the shape of a point set P if it is within Hausdorff
distance r from each point p ∈ P . Finding the shortest such line segment is equivalent to stabbing a
set of circles of radius r using the shortest line segment. We describe an algorithm for this task that
runs in O(n log h + h2) time, where n is the size of the point set and h is the size of its convex hull.

Related Version A full version of the paper is available at arxiv.org/abs/2402.12285

1 Introduction

Studying groups or clusters in point sets is an important task in a wide variety of application
areas. There are many algorithms and approaches to find such groups; examples include the
well-known k-means clustering [11] or DBSCAN [9]. In addition to the mere existence of
such groups, the group’s characteristics can carry important information as well. In wildlife
ecology, for example, the perceived shape of herds of prey animals contains information about
the behavioral state of animals within the herd [15]. Since shape is an abstract concept that
can get arbitrarily complex, it is often useful to have a simplified representation of group
shape that can efficiently be computed.

In this paper, we use a simple geometric object, a line segment, as a shape descriptor of
a group of entities in a point-location data set. Specifically, our input is a set P of n points
in R2, and a radius r. Our goal is to find an (oriented) line segment q1q2 that lies within
Hausdorff distance r from each point p ∈ P . We call such a line segment a shape-representing
line segment of P . We propose an algorithm that finds the shortest shape-representing line
segment in O(n log h + h2) time, where h is the size of the convex hull of P .

For a line segment q1q2 to be within Hausdorff distance r from a point p, it must intersect
the circle of radius r centered at p. Thus, we reformulate the problem: given a set of circles
CP of radius r centered at points in P , we must find the shortest line segment q1q2 that
intersects all circles in CP (see Figure 1). We assume that the set P is in general position;
no three points of P lie on a line, and that at most two circles of CP intersect in a point.

Due to space constraints, most proofs are omitted; they can be found in the full version.
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Figure 1 The line segment (blue) must hit every circle of radius r, centered at the points in P .

Related work. A number of shape descriptors have been proposed over the years. A few
popular ones are the alpha shape of a point set [7] or the characteristic shape [6], both of
which generate shape-representing polygons. Another way to generate the shape of a point
set is to fit a function to the point set [3, 10, 17]. The set of problems of finding one or more
geometric objects that intersect a different set of geometric objects is known as the set of
stabbing problems [8], and several variants have been studied [2, 5, 14]. To our knowledge,
stabbing a set of circles with the shortest line segment has not been studied. However, inverse
variants that stab line segments with one or more circles have been studied [4, 13].

2 Computing the Shortest Shape-Representing Line Segment

Our algorithm is similar to the rotating calipers algorithm [16]. We start by finding the
shortest shape-representing line segment for fixed orientation α, after which we rotate by π

while maintaining the line segment, and return the shortest one. Note that, even though a
shape-representing line segment does not exist for every orientation, we can easily find an
initial orientation α for which it does exist using rotating calipers; these are the orientations
at which the rotating calipers have width ≤ 2r. Although, our input point set P can be of
any shape, the following lemma shows that it suffices to consider only its convex hull CH(P ).

▶ Lemma 2.1. If a line segment q1q2 intersects all circles defined by the vertices of the
convex hull CH(P ), then q1q2 also intersects all circles defined by the points in P .

Proof. Since q1q2 crosses each circle defined by CH(P ), each vertex of CH(P ) has a distance
of at most r to q1q2. Any point on the edges of the convex hull are also at most r to q1q2, by
definition. All other points in P are inside the convex hull and thus each point in P must
have a distance of at most r to q1q2. ◀

We can compute CH(P ) in O(n log h) time, where h is the size of the convex hull [1, 12].
Observe that, if rotating calipers initially finds no orientation with width > 2r, then point
set P can be enclosed by a circle of radius at most r, and the shortest shape-representing
line segment is the center point of this enclosing circle. Hence, in the rest of this paper we
assume that the shortest shape-representing line segment has non-zero length.

Fixed orientation. We describe how to find the shortest shape-representing line segment
with fixed orientation α. Using rotating calipers [16], we can find all orientations in which a
shape-representing line segment exists. We pick α such that such a solution exists; for ease
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τ1
τ2

Figure 2 Two extremal tangents τ1 and τ2 for horizontal orientation α. The shortest line segment
of orientation α that intersects all circles, ends at the boundary of the gray regions.

of exposition and without loss of generality, we assume α to be horizontal. Let the left/right
half-circle of a circle c be the half-circle between π/2 and 3π/2 and between 3π/2 and 5π/2,
respectively. Lemma 2.1 permits us to consider only points of P on the convex hull, thus for
the remainder of this paper we use CP to indicate the set of circles of radius r centered at
the vertices of CH(P ). We use A(CP ) to denote the circle arrangement of CP .

Observe that every horizontal line that lies below the bottom-most top horizontal tangent
τ1 and above the top-most bottom horizontal tangent τ2 of all circles crosses all circles (see
Figure 2). If τ1 lies below τ2, then there exists no horizontal line that crosses all circles.

To place q1q2 in the strip between τ1 and τ2, we can define two regions R1, R2 in which
endpoints q1 and q2 must be placed such that the line segment between q1 and q2 intersects
all circles (see Figure 2). The boundaries of R1 and R2 are defined by a convex sequence
S1 and S2 of (in horizontal orientation) the right-most left arcs and left-most right arcs,
delimited by the two tangents τ1, τ2, as well as these tangents themselves. If R1 and R2
intersect, then we can place a single point in their intersection at distance at most r from all
points in P . Note that q1 and q2 must be on the convex sequences S1 and S2, respectively;
otherwise, we can move the endpoint onto the convex sequence, shortening q1q2 and still
intersecting all circles.

▶ Lemma 2.2. For fixed orientation α, we can compute S1 and S2 in O(h2).

Next, we must place q1 and q2 on S1 and S2, respectively, such that q1q2 is shortest. We
show that q1q2 is the shortest line segment of orientation α when the tangents of S1 at q1
and S2 at q2 have equal slope. Vertices on S1 and S2 have a range of tangents (see Figure 3).

▶ Lemma 2.3. Let S1 and S2 be two convex sequences of circular arcs, and let q1 and q2
be points on S1 and S2, respectively, such that line segment q1q2 has orientation α. If the
tangent on S1 at q1 and the tangent on S2 at q2 have equal slope, then q1q2 is minimal.

Observe that the length of q1q2 is unimodal between τ1 and τ2. We can hence binary
search in O(log h) time for the optimal placement of q1 and q2. By Lemmata 2.2 and 2.3 we
can compute the shortest shape-representing line segment of orientation α in O(h2) time.

Rotation. After finding the shortest line segment for a fixed orientation α, as described
in the previous section, we sweep through all orientations α while maintaining τ1, τ2, S1,
S2, and the shortest shape-representing line segment q1q2 of orientation α. We allow all of
these maintained structures to change continuously as the orientation changes, and store
the shortest shape-representing line segment found. Any time a discontinuous change would
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τ1

τ2

Figure 3 Two convex sequences between τ1 and τ2. There are multiple points on the left convex
sequence that have the same tangent as the right yellow vertex. Still, there is only one line segment
in horizontal orientation for which the tangents of its endpoints are equal (blue).

happen, we trigger an event to reflect these changes. We pre-compute and maintain a
number of certificates in an event queue, which indicate at which orientation the next event
occurs. This way we can perform the continuous motion until the first certificate is violated,
recompute the maintained structures, repair the event queue, and continue rotation. We
distinguish four types of events:
1. q1 or q2 moves onto/off of a vertex of S1 or S2;
2. τ1 or τ2 is a bi-tangent with the next circle on the convex hull;
3. τ1 or τ2 hits a (prospective) vertex of S1 or S2;
4. τ1 and τ2 are the same line.

Since the shortest line segment q1q2 in orientation α is completely determined by τ1, τ2,
S1, and S2, the above list forms a complete description of all possible events. Thus, we
maintain at most two certificates for events of type 1, 2, and 3, and only a single certificate
for type-4 events, which are stored in a constant-size event queue Q, ordered by appearance
orientation. Insert, remove, and search operations on Q can hence be performed in O(1) time.

Event handling. In the following descriptions, we assume that an event happens at orienta-
tion α, and that ε is picked such that no other events occur between α − ε and α + ε. Some
event may occur in two symmetric cases; one of each is omitted here.

(1) q1/q2 moves onto/off of a vertex of S1/S2. We describe, without loss of generality,
how to handle the event involving q1 and S1; the case for q2 and S2 are analogous. See
Figure 4 for an example of this event. Observe that, since vertices of S1 cover a range of
tangents, there are intervals of orientations at which q1 remains at a vertex of S1. As such,
we describe two different cases for this event: q1 moves onto or off a vertex of S1.

If q1 was moving over an arc of S1 at α − ε and encounters a vertex at α, then the
movement path of q1 is then updated to remain on the encountered vertex. Additionally, we

α− ε α α+ ε

Figure 4 When q1/q2 is at a vertex of S1/S2, it stops moving.
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α− ε α α+ ε

Figure 5 When the defining circle of τ1/τ2 changes, τ1/τ2 is parallel to a convex hull edge.

place a new type-1 certificate into the event queue that is violated when q1 should move off
of the vertex, e.g. when the final orientation covered by the vertex is reached.

▶ Lemma 2.4. Throughout the full π rotation, q1/q2 moves onto/off of a vertex of S1/S2 at
most O(h2) times, and we can resolve each occurrence of such an event in O(1) time.

(2) τ1 or τ2 is bi-tangent with the next circle on the convex hull. We describe, without
loss of generality, how to handle the event involving τ1; the case for τ2 is analogous. See
Figure 5 for an example of this event. When τ1 is a bi-tangent of two circles defined by
their centers u, v ∈ P then, by definition of τ1, u and v must both be the extremal points in
the direction θ perpendicular to α. Therefore, (u, v) must be an edge on the convex hull.
Suppose that, without loss of generality, u was the previous extremal vertex in direction
θ − ε, then v is extremal in direction θ + ε. As such, τ1 belongs to u at α − ε, and to v at
α + ε. When this happens, we insert a new type-2 certificate into the event queue that is
violated at the orientation of the next convex hull edge. Additionally, we recompute the
certificates of type 3 and 4 that are currently in the event queue to reflect the updated τ1.

▶ Lemma 2.5. Throughout the full π rotation, τ1 or τ2 are bi-tangent with another circle at
most O(h) times. The two circles that define such a bi-tangent are adjacent in the convex
hull, and we can resolve each occurrence of such an event in O(1) time.

(3) τ1 or τ2 hits a (prospective) vertex of S1 or S2. We describe, without loss of generality,
how to handle the event involving τ1 and S1; the case for τ2 and S2 is analogous. Additionally,
we can distinguish between the case where τ1 does not belong to an arc on S (Figure 6, event
3.1) and the case where it does (Figure 7, event 3.2). We will describe the prior case here.
The latter is similar, but has different certificates; the differences are described below. Let
vertex v be a vertex on convex sequence S1 that is intersected by τ1 at orientation α. Then
either vertex v is on S1 at orientation α − ε but no longer on S1 at α + ε, or vice versa.

If the arc of S1 intersecting τ1 is shrinking, then at orientation α, that arc is completely
removed from S1; vertex v becomes the endpoint of S1 and starts moving along the next arc
of S1 with the intersection point between τ1 and S1. If the affected arc or vertex appeared
in a type-1 certificate in the event queue, it is updated to reflect the removal of the arc and
the new movement of the vertex. Additionally, we place a new type-3 certificate into the
event queue that is violated when τ1 intersects the next vertex on S1 (event 3.1), or when τ1
hits an intersection point between S1 and the defining circle of τ1 (event 3.2).

▶ Lemma 2.6. Throughout the full π rotation, τ1 or τ2 hits a vertex of S1 or S2 at most
O(h2) times, and we can resolve each occurrence of such an event in O(1) time.
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α− ε α α+ ε

Figure 6 When τ1/τ2 hits a vertex of A(CP ), an arc may need to be added to S1/S2.

α− ε α α+ ε

Figure 7 When τ1/τ2 hits an intersection of its defining circle, the composition of S1/S2 changes.

(4) τ1 and τ2 are the same line. When this event takes place, then τ1 and τ2 are the
inner bi-tangent of their two respective defining circles. See Figure 8 for an example. We
distinguish two different cases for this event: either there is a solution at α − ε and no
solution at α + ε, or vice versa.

If there was a solution at α − ε and there is none at α + ε, we simply stop maintaining
q1q2, S1 and S2 until there exists a solution again. As such, we remove all type-1 and type-3
certificates from the event queue and place a new type-4 certificate into the event queue that
is violated at the next orientation where τ1 and τ2 are the same line.

▶ Lemma 2.7. Throughout the full π rotation, τ1 and τ2 become the same line at most O(h)
times, and we can resolve each occurrence of such an event in O(h) time.

▶ Theorem 2.8. Given a point set P consisting of n points and a radius r, we can find the
shortest shape-representing line segment in O(n log h + h2) time.

α− ε α α+ ε

Figure 8 When τ1 and τ2 are the same line, they are an inner bi-tangent of their two defining circles.
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3 Discussion

An obvious open question is whether the shortest shape-representing line segment can be
computed in O(n log h). In the full version of this abstract, we show that we can actually
compute the convex sequence in linear time, given the convex hull. The question is then
whether the convex sequence can be traversed efficiently, without using the full circle
arrangement A(CP ). We expect that this may be possible, yet, even this is not sufficient:
Observe that in a regular k-gon with a diameter 2r + ε, a solution appears/disappears O(n)
times. Then, a linear-time convex sequence construction is not sufficient. Furthermore, the
circles contributing to a convex sequence may be as far as n/2 vertices apart on the convex
hull, making amortization difficult. In the full version of this abstract we show that we can
compute a (1 + ε)-approximation in O(n log h + h/ε) time by sampling orientations and
applying the fixed orientation algorithm.
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Abstract
We consider hypergraph visualization that represent vertices as points and hyperedges as lines with
few bends passing through points of their incident vertices. Guided by point-line incidence theory
we show several theoretical results: if every vertex is part of at most two hyperedges, then we can
find such a visualization without bends. There exist hypergraphs with three vertices per hyperedge
and three hyperedges incident to each vertex requiring an arbitrary number of bends. It is ∃R-hard
to decide whether an arbitrary hypergraph can be visualized without bends. This only answers some
interesting questions for such visualizations and we conclude with many open research questions.

1 Introduction

Hypergraphs arise in many domains and visualizing them is a non-trivial challenge. Classical
approaches, such as Venn and Euler diagrams [1, 12, 15], do not scale to large instances.
Recent experimental work [20] has shown that representing hypergraphs as collections of
polylines (for the hyperedges) and common intersection points (for the vertices) allows
for faster and more accurate performance of hypergraph-related tasks. In particular, the
MetroSets approach [11] uses the metro map metaphor by representing each hyperedge with
a metro line and each vertex as an interchange station. It attempts to visualize the result in
the traditional octolinear fashion; see Figure 1. The visual complexity of the result depends
on the total number of bends along the metro lines in the embedding. Minimizing the visual
complexity makes the representations simpler to understand and work with. The natural
question is to ask which hypergraphs can be represented with just one bendless line per
hyperedge. Naturally, only hypergraphs such that hyperedges share at most one vertex –
called linear hypergraphs – can be represented in such a way. Otherwise, lines of hyperedges
could coincide and could not be distinguished. Further, the rank of a hypergraph is the
maximum cardinality of a hyperedge; the degree is defined equivalently as for classic graphs.
With this in mind we show that:

Maximum degree two linear hypergraphs can be represented with one line per hyperedge.
Not all rank-three maximum degree-three linear hypergraphs can be represented with one
line per hyperedge. In fact, there is a family of such hypergraphs requiring an arbitrary
number of bends.
Determining whether an arbitrary-rank linear hypergraph can be represented with one
line per hyperedge is ∃R-hard.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Figure 1 A visualization of a Simpsons hypergraph dataset using the MetroSets metaphor [11],
the visualization is taken from https://metrosets.ac.tuwien.ac.at/. Hyperedges are represented
by metro lines and elements are represented by stations.

Here, lines are infinite lines and not line segments.

2 Related Work

Representing hypergraphs with one line per hyperedge is related to classical geometric
problems going as far back as the 19th century. In particular, it is related to the study of
configurations, a set of points and an arrangement of lines, such that each point is incident to
the same number of lines and each line is incident to the same number of points [9,10,16]. This
was the main topic of the PhD thesis of Steinitz [18] and was of interest to many with notable
examples including the configurations of Desargues, Pappus, and Möbius–Kantor [10]. If the
representation of a hypergraph should however form a non-crossing straight-line drawing of
a tree, then it can be decided in polynomial time whether such a representation exists [19].
Graph-based techniques for drawing hypergraphs via support graphs [2–4] have a different
focus and do not take into account geometric straightness or bends of hyperedges.

If we ask for crossing-free representations of hypergraphs with line segments instead of
lines, there is only one line of research that we are aware of [6, 8]. Namely, Gonçalves [8] has
shown that there are planar linear hypergraphs which cannot be represented with straight
line segments (in contract to planar graphs which can always be drawn with straight lines).

The problem seems to be related to stretchability of pseudolines [17], but is different
because the order of the vertices along each hyperedge is not specified. A similar ∃R-hard
problem, called matroid representability [13] will be used to show ∃R-hardness of one of the
problems studied in this paper. We will formally explain matroid representability in the
corresponding Section 6.
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Figure 2 Illustration of a max-degree-2 hypergraph H = (V, E) with V = {v0, . . . , v6} and
E = {e1, . . . , e5}, where e1 = {v1, v4, v5}, e2 = {v0}, e3 = {v1, v3}, e4 = {v2, v3, v5}, e5 = {v2, v4}.

3 Preliminaries

A hypergraph H = (V, E) is defined by a vertex set V and a hyperedge set E, where each
e ∈ E is a subset of V . The degree of a vertex v is the number of hyperedges containing
v. The rank of a hypergraph is the maximum cardinality of a hyperedge |e| taken over
all e in E; hence a rank-2 hypergraph is an ordinary graph. A hypergraph is k-uniform if
very hyperedge has cardinality exactly k and it has degree k if every vertex has degree k.
A hypergraph is linear if |e ∩ e′| ≤ 1 for every pair of distinct hyperedges e, e′ ∈ E. A
representation of a hypergraph consists of an injective mapping α of vertices to points in
R2 and an injective mapping β of hyperedges to lines in R2 such that v ∈ e if and only if
α(v) ∈ β(e) for v ∈ V, e ∈ E.

4 Max-Degree-2 Hypergraphs

▶ Theorem 4.1. There exists a representation for any max-degree-2 linear hypergraph.

Proof. Let H be a hypergraph with n vertices v1, . . . , vn and m hyperedges e1, . . . , em.
Consider m lines ℓ1, . . . , ℓm on R2 in general position, such that any two of these lines cross;
see Figure 2. Let v be a vertex of H. If the degree of v is exactly 2, then we place v at the
intersection of ℓi and ℓj , where ℓi and ℓj are the lines corresponding to the hyperedges ei and
ej containing v. If the degree of v is 1, then we place v at any point of the line corresponding
to the hyperedge containing v that is not an intersection point of the lines ℓ1, . . . , ℓm. If
the degree of v is zero, then we place v at any point of R2 that is not on any of the lines
ℓ1, . . . , ℓm. This yields a representation of H with one line per hyperedge. ◀

5 Rank-3 Degree-3 Hypergraphs

The PhD thesis of Ernst Steinitz [18] claims that every 3-uniform degree-3 hypergraph can
be represented with one line per hyperedge, except maybe of one hyperedge (which could
be represented as a polyline with one bend). However, more careful consideration shows
that this is indeed not true as already pointed out by Grünbaum [10]. Similar results exist,
but none show the claim of Steinitz [7, 14]. We show a construction that has at least two
hyperedges that must have a bend and this construction can be generalized. For this, we
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Figure 3 Illustration of an infinite polygonal chain with 3 bends that extends infinitely in the
left and right direction.

ℓ8
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ℓ6

Figure 4 The Pappus configuration without the line through d, e, f .

define for t ∈ N0, t-bend representations for hypergraphs H as follows. In the original
definition of representations, we replace lines by what we call infinite polygonal chains. An
infinite polygonal chain consists of a (possibly empty) polygonal chain and two rays, one
ending at the first point of the chain, one ending at the last point (see Figure 3). Essentially,
an infinite polygonal chain is a polyline whose first and last segment is extended infinitely.
Further, two distinct infinite polygonal chains β(e), β(e′) for e, e′ ∈ E must not share a line
segment nor a bend point. Lastly, we require that the total number of all bends in β(E) is
exactly t. A representation in the original sense is hence a 0-bend representation.

Consider the 3-uniform degree-3 hypergraph H defined as follows. Let H1 be the
hypergraph depicted in Figure 4 with points a, b, . . . , i and hyperedges defined by the lines
ℓ1, ℓ2, . . . , ℓ8. Pappus’s theorem [5, Chapter 3.5] says that in any representation of H1, the
points d, e, f must be collinear1. Now let H2 be a copy of H1 with the points a′, b′, . . . , i′

and hyperedges defined equivalently. The hypergraph H is the union of H1, H2, and the two
hyperedges {d, e, f ′} and {d′, e′, f}.

▶ Lemma 5.1. There is no t-bend representation for H with t < 2.

Proof. If every hyperedge in the subhypergraph H1 is represented without a bend, then
β({d, e, f ′}) must pass through f . Thus, at least one hyperedge of H1 must be represented
with at least one bend. Applying the same argument to H2 we see that we require at least
two bends. ◀

The above construction can be generalized so that there is no t-bend representation
for any t < x for an arbitrary x ∈ N. Instead of one copy of H1, we add x − 1 copies
H2, H3, . . . , Hx. Further we add x hyperedges e1, e2, . . . , ex such that ei contains d, e of Hi

and f of H(i mod x)+1.

1 Formally, Pappus’s theorem is as follows: let points a, b, c be on one line, and points g, h, i be on another
line. Let the three points d, e, f be defined by the intersections of line ah with bg, ai with cg, and bi
with ch, respectively. Then d, e, f are collinear. It is clear that our formulation is equivalent.
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z-axis

(0, 0, 0)T
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⇔

Figure 5 Illustration of the equivalence between representations of H and representations of M .
Lines on the left side correspond to linear subpaces of dimension two that are common to at least
two vectors on the right side.

▶ Theorem 5.2. For any x ∈ N there exists a rank-3 hypergraph H such that there exists no
t-bend representation for H for any t < x.

Similar constructions exist (at least for x = 2) [10], the generalization has not been stated
explicitly.

6 ∃R-hardness

In this section we want to show that it is ∃R-hard to decide whether there exists a rep-
resentation for a given hypergraph H. We reduce from a problem that lends itself for a
nice reduction, called Matroid Representability [13]. For the purposes of a simple
description, we give here a simplified description of a variant of that problem that is still
∃R-hard [13]. We start with definitions. A matroid M is given as M = (X, I) where X is
the finite ground set and I ⊆ 2X is the set of independent sets with
1. ∅ ∈ I,
2. I ′ ⊂ I ∈ I implies I ′ ∈ I, and
3. I1, I2 ∈ I with |I1| < |I2| implies that there is an x ∈ I2 \ I1 with I1 ∪ {x} ∈ I.
A representation of M is an injective mapping f(X) : X → R3 such that for any Y ⊆ X

we have Y ∈ I if and only if f(Y ) forms a set of linearly independent vectors in R3. The
∃R-hard problem Matroid Representability is given as input a matroid and the question
is whether there is a representation f of M . For the vectors v ∈ R3 we call the first, second,
and third coordinate the x, y, and z-coordinates, respectively.

We start by making some normalizations to the instance M . First, we can assume
that every independent set I ∈ I has cardinality of at most 3, as there is otherwise no
representation. Second, we can assume that each pair x, x′ ∈ X of distinct elements forms
an independent set, i.e. {x, x′} ∈ I. Otherwise, f(x) = cf(x′) for some c ∈ R must hold for
any representation. We can remove x′ from X and replace any occurence of x′ in I by x,
and obtain an equivalent instance w.r.t. representability.

We are ready to state our reduction. The main idea is to identify the vectors f(X) by
points in the plane due to a projective transformation; see Figure 5.

▶ Theorem 6.1. It is ∃R-hard to decide whether a linear hypergraph can be represented.
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Proof. We reduce from Matroid Representability. We are given a matroid M = (X, I)
(we assume both above normalizations were applied already) and transform it to a hypergraph
H = (V, E) as follows. First, we set V = X. The hyperedges E are defined as follows. Let
Y ⊆ X be a maximal subset of X that must lie in the same linear subspace U of R3 (which
by definition contains the origin) with dim U = 2 for any representation f of M . Add Y to
E. All such Y can be determined in polynomial time: first, we can determine in polynomial
time all triples x, x′, x′′ ∈ X that do not form an independent set. If two triples share two
elements, the union of both triples forms a four-tuple that has to be part of a common
subspace in any representation. Continuing this process greedily, we can find all such Y .
This process terminates with the desired sets Y , as the matroid M specifies for each triple
exactly if the vectors of their representation are dependent or not. Notice also that there can
only exist polynomially many such Y as each pair of x, x′ ∈ X can be part of at most one
such Y . Lastly, we have to add pairs {x, x′}, x, x′ ∈ X, to E, that are not part of some Y

defined above. The vectors f(x), f(x′) certainly have to span a subspace U of dimension two
not containing any other vectors f(x′′).

We claim that M has a representation f if and only if H has a representation (α, β).
“⇒”: let f be a representation of M . First, if any f(x′), x′ ∈ X has z-coordinate 0 we

multiply all f(x), x ∈ X, by the same rotation matrix R ∈ SO(3) ⊆ R3×3 such that no f(x)
has z-coordinate 0. This is possible as X is finite. Second, we scale each f(x) by 1 divided
by its z-coordinate so that the z-coordinates of all vectors in f(X) are 1. The new f still is a
representation. For x ∈ X, we set α(x) equal to the point defined by the first two coordinates
of f(x). Essentially, we applied a projective transformation. Lastly, for each hyperedge e ∈ E

we set β(e) to the line through any two distinct points α(x) and α(x′) with x, x′ ∈ e (E does
not contain edges of size 1). It is now easy to verify that (α, β) is a representation of H: let
e ∈ E. For each x ∈ e the point α(x) must lie on the line β(e) because f(x) must be in the
same linear subspace of dimension two as all f(x′), x′ ∈ e. No other point can lie on that
line, as e would not have been maximal for our construction of Y above.

“⇐”: let (α, β) be a representation of H. For x ∈ X, let α(x) = (r, s)T . We set
f(x) = (r, s, 1)T and claim that f is a representation of M . Indeed, if Y ⊆ X does not form
an independent set in M , then Y ⊆ e for some e ∈ E. Thus, points α(Y ) lie on the same line
and vectors f(Y ) are in the same linear subspace of dimension two and are thus dependent
as |Y | ≥ 3. If Y ∈ I there are two cases.

If |Y | ≤ 2, f(Y ) is clearly independent as α is injective.
If |Y | = 3, let Y = {x1, x2, x3}. Because of the construction of E, there exists e ∈ E such
that x1, x2 ∈ e and x3 ̸∈ e. Thus α(Y ) forms a triangle and f(Y ) is independent. ◀

7 Conclusions and Open Problems

Motivated by a hypergraph visualization using polylines for hyperedges [11], we initiated
the investigation of visualizations with hyperedges drawn with as few bends as possible.
We provide results for special classes of hypergraphs. If the maximum vertex degree is 2,
any linear hypergraph can always be drawn without a bend. For rank-3 linear hypergraphs
arbitrarily many bends may be required. Lastly, it is even ∃R-hard to decide whether an
arbitrary linear hypergraph can be drawn without bends.

Our results are highly inconclusive and many open research directions are possible.
We have considered representations with lines and infinite polygonal chains as we could
use results from point-line incidence theory. If we replace these with line segments and
polygonal chains, respectively, our results from Sections 5 and 6 do not extend. It may as
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well be that for such definitions each connected 3-uniform degree-3 hypergraph (besides
the Fano and Möbius-Kantor configurations [10]) has a representation with line segments
without bends, and it might be that it is “easy” to decide whether such a line segment
representation exists.
Our ∃R-hardness result from Section 6 works for arbitrary rank hypergraphs. Can we
state a similar hardness result for bounded-rank linear hypergraphs, e.g. rank 3?
Are there polynomial-time algorithms to represent a 3-uniform degree-3 linear hypergraph
in such a way that the number of bends in the representation is a constant factor away
from optimum (minimum number of bends)? Are there families of 3-uniform degree-3
hypergraphs requiring more than a linear number of bends?
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Abstract
We study the recognition complexity of subgraphs of 2- and 3-connected planar cubic graphs.
Recently, we presented [ESA 2022] a quadratic-time algorithm to recognize subgraphs of planar
cubic bridgeless (but not necessarily connected) graphs, both in the variable and fixed embedding
setting (the latter only for 2-connected inputs). Here, we extend our results in two directions: First,
we present a quartic-time algorithm to recognize subgraphs of 2-connected planar cubic graphs in the
fixed embedding setting, even for disconnected inputs. Second, we prove NP-hardness of recognizing
subgraphs of 3-connected planar cubic graphs in the variable embedding setting.

1 Introduction

Given a planar graph G of maximum degree at most 3 (i.e., a subcubic planar graph), we
want to augment G by adding further vertices and edges to obtain a 3-regular (i.e., cubic)
planar graph H, which is then called a 3-augmentation of G. An embedding1 of H induces
an embedding E of G, and each face f of E may contain edges of E(H) − E(G), called new
edges, or even vertices of V (H) − V (G), called new vertices, or none of these. It is easy to
see that 3-augmentations always exist. However, this becomes non-trivial if we require H

to be k-connected for some k ∈ {1, 2, 3}. See Fig. 1 for some problematic cases. Here, we
study whether a subcubic planar graph G admits some k-connected 3-augmentation H, or
equivalently, the recognition of subgraphs of k-connected cubic planar graphs. We consider
several variants where the input graph G is given with a fixed embedding E and the desired
3-augmentation H must extend E , and/or where the input graph G is already k′-connected for
some k′ ∈ {0, 1, 2}. (If G is 3-connected, then H = G is the only connected 3-augmentation.)

1 We consider combinatorial (crossing-free) embeddings with no specific choice of an outer face.

G1 ⊂ H1 G2 ⊂ H2 G3 ⊂ H3

Figure 1 For k = 1, 2, 3, the planar subcubic graph Gk (in black) admits a (k − 1)-connected
3-augmentation Hk (new vertices and edges in orange), but no k-connected 3-augmentation.
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Previous Results. Motivated by the problem whether a given planar graph G is 3-edge-
colorable (whose complexity is still open), we recently considered the sufficient (although not
necessary) condition of whether G admits a bridgeless 3-augmentation. In fact, this can be
tested in quadratic-time in the variable embedding setting, and also in the fixed embedding
setting, provided that G is 2-connected [3].

Hartmann, Rollin and Rutter [5] studied, for each k, r ∈ N, whether a planar graph G

can be augmented by adding edges (but no vertices!), to a k-connected r-regular planar
graph H. In particular, for r = 3, they show that the problem is NP-complete in the variable
embedding setting for all k ∈ {0, 1, 2, 3}, as well as in the fixed embedding setting when k = 3.
For the remaining cases of fixed embedding and k ∈ {0, 1, 2} they present a polynomial-time
algorithm.

Let us also refer to [3] for more related work and other augmentation problems.

Our Results. We resolve the complexity of finding a k-connected 3-augmentation for a
given subcubic planar graph G in two new cases. See Fig. 2 and the following theorem.

▶ Theorem 1.1. Let G be an n-vertex planar graph with an embedding E and ∆(G) ≤ 3.
1. We can compute, in time O(n4), a 2-connected 3-augmentation H extending E, or conclude

that none exists. If G is connected, then O(n2) time suffices.
2. It is NP-complete to decide whether G admits a 3-connected 3-augmentation.

Note that Statements 1 and 2 concern the fixed and variable embedding setting, respectively.
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Figure 2 Complexity of finding 3-augmentations. Colors indicate results in this paper and [3] .

▶ Remark. For our polynomial-time algorithms in the fixed embedding setting, we shall reduce
the problem to a particular version of the Generalized Factor problem (definitions in
Section 2). This approach is similar to the treatment of 2-connected input graphs in [3]. But
here, for graphs containing bridges or consisting of several connected components, additional
tools and a more refined analysis are needed, which is also reflected in the increased runtime.

Statements marked with (⋆) are proven in the full version [4].

2 Preliminaries

A graph G = (V, E) is k-connected if G − S is connected for every set S ⊆ V of at most k − 1
vertices in G. Similarly, G is k-edge-connected if G − S is connected for every set S ⊆ E of
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at most k − 1 edges in G. We denote by θ(G) the largest k for which G is k-edge-connected.
If G has maximum degree at most 3, then G is k-connected if and only if θ(G) ≥ k.

For an integer ℓ ≥ 3, let Wℓ be the graph obtained from Cℓ□P2 by subdividing each edge
in one cycle Cℓ exactly once. See Fig. 3 (left) for an illustration. Consider a planar graph G

with an embedding E , and a vertex v ∈ V (G) with degG(v) = ℓ ≥ 3. A wheel-extension at v

is the graph and embedding obtained by replacing v with Wℓ, and by attaching v’s incident
edges to the subdivision vertices of Wℓ in a one-to-one non-crossing way. See Fig. 3 (right).

⇝

Figure 3 Left: C5□P2 with subdivision vertices. Right: Wheel-extension.

▶ Observation 2.1 (⋆). Let G be a graph (possibly containing multi-edges, but no loops), let
v ∈ V (G) be a vertex with degG(v) ≥ 3, and let G′ be obtained from G by a wheel-extension
at v. Then θ(G′) ≥ min{θ(G), 3}.

Generalized Factors. Let H be a graph with a set B(v) ⊆ {0, . . . , degH(v)} assigned to
each vertex v ∈ V (H). Following Lovász, a spanning subgraph G ⊆ H is called a B-factor
of H if and only if degG(v) ∈ B(v) for every vertex v ∈ V (H) [6]. Deciding whether a
graph H admits a B-factor is known as the Generalized Factor problem. In general, the
Generalized Factor problem is NP-complete [6]. Still, for certain well-behaved sets B(·),
the problem becomes polynomial-time solvable. A set B(v) is said to have a gap of length
ℓ ≥ 1 if there is an integer i ∈ B(v) such that i + 1, . . . , i + ℓ /∈ B(v), and i + ℓ + 1 ∈ B(v).
If all gaps of each B(v) have length 1, then an algorithm by Cornuéjols can compute a
B-factor in time O

(
|V (H)|4

)
[1]. Moreover, if there are no two consecutive forbidden degrees

i, i + 1 ∈ {0, . . . , degH(v)} for any v, i.e., i, i + 1 /∈ B(v), then a B-factor can be computed
in time O

(
|V (H)| · |E(H)|

)
by a result of Sebő [7]. (The latter condition is slightly stronger

than requiring gaps of length at most 1, explaining the better runtime.)

3 2-Connected 3-Augmentations with a Fixed Embedding

We consider the 3-augmentation problem for arbitrary input graphs G and 2-connected
output graphs H, corresponding to the third column of the table in Fig. 2. For the variable
embedding setting, a quadratic-time algorithm is given in [3, Theorem 2]. For the fixed
embedding setting here, we present a quartic-time algorithm. We start with a reduction to
graphs G with δ(G) ≥ 2.

▶ Lemma 3.1 (⋆). Let G be a planar graph with embedding E. There is a planar super-
graph G′ ⊇ G with δ(G′) ≥ 2 whose embedding E ′ extends E, such that G has a 2-connected
3-augmentation extending E if and only if G′ has one extending E ′.

The proof is simple and just requires the following preprocessing of G: Replace all
vertices v ∈ V (G) with degG(v) ≤ 1 by copies of K3 as shown in Fig. 4 (left/middle).

▶ Lemma 3.2. Let G be a planar n-vertex graph with an embedding E, δ(G) ≥ 2, and
∆(G) ≤ 3. Then we can compute, in time O(n4), a 2-connected 3-augmentation H of G

extending E, or conclude that none exists. If G is connected, then time O(n2) suffices.

EuroCG’24
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⇝ ⇝

Figure 4 Left/Middle: Replacement rules. Right: Gadget to avoid parallel edges.

Proof. The proof is by a linear-time reduction to an equivalent instance A of the General-
ized Factor problem, such that A fulfills the necessary condition to apply an O(n4)-time
algorithm by Cornuéjols [1, Section 3], or even an O(n2)-time algorithm by Sebő [7, Section 3].

We construct the 2-connected 3-augmentation H of G by adding new edges and vertices
into the faces of E . Therefore, the obtained embedding of H extends E .

Some faces of E stand out, as these must contain new edges (and possibly vertices) to
reach 2-connectedness. We call these the connecting faces Fc. Obviously, all faces incident to
at least two connected components are connecting faces. Further, for each bridge e of G, the
unique face f incident to both sides of e is a connecting face because the only way to add new
connections between the components separated by e is through f . Recall that a 3-regular
graph is 2-connected if and only if it is connected and bridgeless, so these are the only two
types of connecting faces. All other faces are considered to be normal faces, denoted by Fn.

For a connecting face f ∈ Fc, let Gf be the subgraph of G on the vertices and edges
incident to f , let Bf be its blocks (i.e., maximal 2-connected components or bridges), and
let Tf be its block-cut-forest. We partition Bf into Sf ∪ If ∪ Lf :

Sf := {b ∈ Bf | b forms a trivial (i.e., single-vertex) tree in Tf } (singleton blocks)
If := {b ∈ Bf | b is an inner vertex of a non-trivial tree in Tr} (inner blocks)
Lf := {b ∈ Bf | b is a leaf in a non-trivial tree in Tf } (leaf blocks)

The Generalized Factor instance A is a bipartite graph with bipartition classes V
and F . Here, V := {v ∈ V | degG(v) = 2} contains all vertices of G not yet having degree 3.
Similarly, vertices in F represent the faces of E . Edges of a B-factor of A will determine the
faces of E containing the new edges. In particular, F contains one vertex corresponding to
each normal face in Fn of E . Additional vertices in F are needed to handle the connecting
faces. For each connecting face f ∈ Fc, we add all blocks in Bf as vertices to F . (If there are
two faces f, g in E such that Bf and Bg contain blocks corresponding to the same subgraph
of G, then F contains two such vertices: one corresponding to the block in Bf , and another
to the block in Bg.)

In A, each x ∈ F is incident to exactly the following v ∈ V : If x is a normal face fn ∈ Fn,
then x is connected to all v ∈ V that are incident to fn in E . Otherwise, if x is a block b ∈ Bf

for some connecting face fc ∈ Fc, then x is connected to all v ∈ V that are contained in b.
See Fig. 5 for an example.

Lastly, we need to assign a set B(x) ⊆ {0, 1, . . . , degA(x)} of possible degrees to each
vertex x ∈ (V ∪ F):

B(x) :=





{1}, x ∈ V
{0, 2, 3, . . . , degA(x)}, x ∈ Fn

{0, 1, 2, . . . , degA(x)}, x ∈ If for some connecting face f ∈ Fc

{1, 2, 3, . . . , degA(x)}, x ∈ Lf for some connecting face f ∈ Fc

{2, 3, 4, . . . , degA(x)}, x ∈ Sf for some connecting face f ∈ Fc

The order and size of A are linear in n as every vertex v ∈ V (G) is contained in at most
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Figure 5 (a) A planar subcubic graph G. (b) Its corresponding Generalized Factor instance.
Thick edges denote a possible solution. (c) A 2-connected 3-augmentation of G (with an indicated
wheel-extension).

three distinct faces, and at most three blocks of Gf for any face f of E . Moreover, A can be
computed in linear time; see the full version [4, Claim 3.3] for a proof.

Also in the full version [4, Claims 3.4 and 3.5], we formally prove that A admits a B-factor
if and only if G has a 2-connected 3-augmentation H. To convey an intuition, consider a
B-factor A′ of A. Every vertex v ∈ V is incident to exactly one edge vx ∈ E(A′). Here, x is
either a face f , or there is a face f such that x is a block in Bf . In order to obtain H, we
add a new half-edge incident to v into f . Now, for each face f of E , we connect all half-edges
within f to a new vertex vf . Applying a wheel-extension (Obs. 2.1) to every vertex vf

of degree larger than 3, and replacing each vertex vf of degree 2 by the gadget in Fig. 4
(right), yields a 2-connected 3-augmentation of G. For the other direction, observe that each
degree-2-vertex of G is, in H, incident to a new edge inside a face f of E . A B-factor A′ of A

is obtained by adding vx to E(A′), where x ∈ F is either f or a block in Bf (containing v).

It remains to argue that we can compute a B-factor of A efficiently. By inspecting the
sets B(x) for all x ∈ (V ∪ F), we can see that none of them contains a gap of size 2 or greater.
Therefore, we are in a special case of the Generalized Factor problem that can be solved,
in O(n4) time, by Cornuéjols’ algorithm [1].

A closer inspection yields that only for x ∈ Sf the sets B(x) contain two forbidden
degrees. (Note that degA(v) ≤ 2 for all v ∈ V : If there is a face f such that v is contained in
two blocks of Gf , then both edges incident to v are bridges; thus v is incident to no other
face. Otherwise, this follows from degG(v) ≤ 2, i.e., v being incident to at most two faces.)
Therefore, if Sf = ∅ for all connecting faces f ∈ FC , then we can even apply the algorithm
by Sebő, taking only O(n2) time [7]. In particular, this is the case if G is connected. ◀

4 NP-Hardness for 3-Connected 3-Augmentations

In this section, we shall prove that deciding whether a given planar graph G admits a 3-
connected 3-augmentation is NP-complete. In particular, we show that the problem remains
NP-complete when restricted to connected graphs G. This implies the NP-completeness
results represented in the fourth column of the table in Fig. 2.

Recall that an embedding of any 3-connected 3-augmentation H induces an embedding E
of G, and for convenience, let us call the pair (H, E) a solution for G. Let us also define a
(≤ 2)-subdivision of a graph R to be the result of subdividing each edge in R with up to two
vertices. Note that, if R is 2-connected, then so is every (≤ 2)-subdivision of R.

EuroCG’24
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▶ Lemma 4.1 (⋆). Let G be a graph obtained from a (≤ 2)-subdivision R2 of a 3-connected
planar graph R by attaching a degree-1 vertex to each subdivision vertex. Then G admits a
solution (H, E) if and only if no face of E has exactly one or two incident degree-1 vertices.

By Lem. 4.1, any graph G as described in the lemma admits a 3-connected 3-augmentation
if and only if it admits an embedding E with no face incident to exactly one or two degree-1
vertices. Testing such graphs for such embeddings, however, turns out to be NP-complete.

▶ Theorem 4.2 (⋆). Deciding whether a given graph is a subgraph of a 3-regular 3-connected
planar graph is NP-complete.

Proof Idea. We reduce from the NP-complete problem Planar-Monotone-3SAT [2],
where an instance is a monotone 3SAT-formula Ψ together with a planar embedding EΨ
of its bipartite variable-clause incidence graph IΨ, such that (1) the x-axis contains each
variable, (2) no edge crosses the x-axis, and (3) each clause above (respectively below) the
x-axis is positive (respectively negative).

T

T

F F

T

T

T
F

T

F

T

variable gadget positive splitter gadget positive clause gadget

F

F
T

F

T

T
F

x-axis

F
T

F

Figure 6 Gadgets used in the NP-hardness reduction.

We obtain a graph GΨ from the embedding EΨ using the gadgets in Fig. 6. Each variable
gadget is the start of one upper and one lower corridor, each with alternating red (standing
for false) and blue (standing for true) faces. Each positive splitter gadget splits one
upper corridor into two, and each positive clause gadget is the end of one upper corridor of
each appearing variable. Negative splitter and negative clause gadgets below the x-axis are
symmetric, with red and blue swapped. See Fig. 7 for a full example.

With some extra vertices and edges, the result is a (≤ 2)-subdivision of a 3-connected
3-regular graph R. Attaching degree-1 vertices as in Lem. 4.1 gives GΨ, and we ask for an
embedding E of GΨ with no face having one or two degree-1 vertices. The crux is, that
except for the two highlighted faces in the clause gadgets, any pair of neighboring red and
blue faces has in total at most five subdivision vertices. Thus, for each variable x, either only
blue or only red faces in all splitters and corridors have degree-1 vertices. Setting x to true
in the former and to false in the latter case, satisfies all clauses. See Fig. 8 for an example.

In fact, Ψ is satisfiable if and only if GΨ admits an embedding as required by Lem. 4.1. ◀

▶ Remark. The (≤ 2)-subdivision in the above reduction behaves quite similar to GΨ. The
only problem is that a face f may have been chosen by exactly two incident degree-2 vertices
to contain their third (new) edge without creating a 2-edge-cut; namely, with a direct edge.
Thus, the above reduction also yields NP-completeness of recognizing induced subgraphs of
3-connected 3-regular planar graphs, even for 2-connected inputs with a unique embedding.
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x1 x2 x3 x4 x5 x6

Figure 7 Illustration of a Planar-Monotone-3SAT embedding EΨ and a corresponding
graph GΨ. Extra vertices and edges added for 3-connectivity of R are shown in gray.

Figure 8 Part of the graph GΨ together with a 3-connected 3-augmentation in orange. This
corresponds to a clause with two true variables (left with a splitter gadget, and middle) and one
false variable (right).
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Abstract
We study the subtrajectory clustering problem. Given a trajectory T , the goal is to identify a set of
subtrajectories such that each point on T is included in at least one subtrajectory, and subsequently
group these subtrajectories together based on similarity under the Fréchet distance. We wish to
minimize the set of groups. This problem was shown to be NP-complete by Akitaya, Brüning,
Chambers, and Driemel (2021), and the focus has mainly been on approximation algorithms. We
study a restricted variant, where we may only pick subtrajectories that start and end at vertices of
T , and give an approximation algorithm that significantly improves previous algorithms in both
running time and space, whilst being deterministic.
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1 Introduction

Buchin et al. [8] proposed the subtrajectory clustering problem. The goal is to partition
an input trajectory T of n vertices into subtrajectories, and to group these subtrajectories
into clusters such that all subtrajectories in a cluster have low Fréchet distance to one
another. The clustering under the Fréchet distance is a natural application of Fréchet
distance and a well-studied topic [9, 10, 11, 14, 15] that has applications in for example
map reconstruction [6, 7]. Throughout recent years, several variants of the algorithmic
problem have been proposed [1, 3, 5, 8]. Agarwal et al. [1] aim to give a general definition for
subtrajectory clustering by defining a function f that evaluates the quality of a set of clusters
C. Their definition, however, does not encompass the definition in [8] and has nuances
with respect to [3, 5, 13]. Regardless of variant, the subtrajectory clustering problem has
been shown to be NP-complete [1, 3, 8]. Agarwal et al. [1] therefore propose a bicriterial
approximation scheme. They present a heuristic algorithm for the following. Suppose that
we are given some ∆ ≥ 0. Let k denote the smallest integer such that there exists a clustering
C with k clusters with score f(C) ≤ ∆. The goal is to compute a clustering C ′ with
O(k polylog n) clusters and score f(C) ∈ Θ(∆).
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Figure 1 The trajectory T (blue, left) is covered by four pathlets. Each pathlet is given by a
reference curve (green, red, yellow) and the subcurve(s) of T the curve covers.

Akitaya et al. [3] present a less general, but more computable, bicriterial approximation
problem: suppose that we are given some ∆ ≥ 0 and integer ℓ ≥ 1. An (ℓ, ∆)-clustering is a
set C∗ of clusters (sets of subtrajectories) where (Figure 1):

C∗ covers T : for all points t on T , there is a cluster Z ∈ C∗ and curve S ∈ Z containing
t, and
every cluster Z ∈ C∗ contains a “reference curve” PZ with at most ℓ vertices, and
for every Z ∈ C∗, all subtrajectories Q ∈ Z have dF (PZ , Q) ≤ ∆.

Under the discrete Fréchet distance, [3] compute an (ℓ, 19∆)-clustering C of O(kℓ2 log kℓ) size,
using O(n) space and Õ(kn2) expected running time. Brüning et al. [5] compute, under the
continuous Fréchet distance, an (ℓ, Θ(∆))-clustering of O(kℓ log kℓ) size (where the constant
in Θ(∆) is considerably large). Their algorithm uses Õ(n3) space and has Õ(kn3) expected
running time. Recently, Conradi and Driemel [13] improve both the size and the distance of
the clustering. Under the continuous Fréchet distance, they compute an (ℓ, 11∆)-clustering
of O(k log n) size using Õ(n4ℓ) space and Õ(kn4ℓ + n4ℓ2) time.

Contribution. In this abstract, we give significant improvements in both space and running
time complexities, for the restricted case where the clustering needs to be target-discrete. A
clustering is target-discrete whenever all subtrajectories in a cluster are restricted to have
their endpoints lie on vertices of the input. Under this natural restriction, even under the
continuous Fréchet distance, our algorithm is near-quadratic and uses near-quadratic space.
In the full version we further lower the space used to O(nℓ log n). Additionally, in the full
version we investigate the unrestricted setting, as well as other variants.

2 Problem Statement

Curves and subcurves. A curve (or polyline) with n vertices is a piecewise-linear map
P : [1, n]→ Rd whose breakpoints (called vertices) are at each integer parameter, and whose
pieces are called edges. For 1 ≤ a ≤ b ≤ n, we define the subcurve P [a, b] of P that starts at
P (a) and ends at P (b). If a and b are integers, we call P [a, b] a vertex-subcurve of P .
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Fréchet distance. We define the Fréchet distance using the concept of the free space diagram.
For ∆ ≥ 0, the ∆-free space diagram is defined as follows.

▶ Definition 2.1 (Free space diagram). For two curves P and Q with n and m vertices,
respectively, the ∆-free space diagram ∆-FSD(P, Q) of P and Q is the set of all points
(x, y) ∈ [1, n]× [1, m] in their parameter space with Euclidean distance d(P (x), Q(y)) ≤ ∆.

The grid cells of the free space diagram are the squares [i, i + 1]× [j, j + 1] for integers i

and j. The obstacle space of ∆-FSD(P, Q) is its complement ([1, n]× [1, m]) \∆-FSD(P, Q).

Alt and Godau [4] observed that two curves P and Q have Fréchet distance at most ∆ between
them precisely if there exists a bimonotone path from (1, 1) to (n, m) in ∆-FSD(P, Q).

Input and output. We consider clustering a curve T with n vertices that we call the
trajectory. Given parameters ℓ ∈ N and ∆ ≥ 0, we consider constructing an (ℓ, ∆)-clustering
of T , which is a set of (ℓ, ∆)-pathlets:

▶ Definition 2.2 (Pathlet). An (ℓ, ∆)-pathlet is a tuple (P, I) where P is a curve with at
most ℓ vertices and I is a set of intervals in [1, n] where dF (P, T [a, b]) ≤ ∆ for all [a, b] ∈ I.

We call P the reference curve of (P, I). We call the pathlet target-discrete if all intervals
in I have integer endpoints. The coverage of a pathlet is Cov(P, I) =

⋃ I.

We can see a pathlet (P, I) as a cluster, where the center is P and all subtrajectories induced
by I get mapped to P . The coverage of a set of pathlets C is Cov(C) :=

⋃

(P,I)∈C

Cov(P, I). An

(ℓ, ∆)-clustering is a set C of (ℓ, ∆)-pathlets with Cov(C) = [1, n].

3 Quality of greedy algorithm

Subtrajectory clustering is closely related to the set cover problem. In this problem, we
have a discrete universe U and a family of sets S in this universe, and the goal is to pick a
minimum number of sets in S such that their union is the whole universe. For subtrajectory
clustering with target-discrete pathlets, we can set U = {[i, i + 1] | i ∈ [1, n − 1] ∩ N} and
S = {[i, i+1] ∈ ⋃ I | there exists an (ℓ, ∆)-pathlet (P, I)}. That is, the universe is the set of
intervals parameterizing the edges of T , and S is the family of sets of edge parameterizations
of T that can be covered by a pathlet.

The decision variant of set cover is NP-complete [17]. However, the following greedy
strategy gives an O(log n) approximation of the minimal set cover size [12]. Suppose we have
picked a set Ŝ ⊆ S that does not yet cover all of U . The idea is then to add a set S ∈ S that
maximizes S ∩ (U \ Ŝ), and repeat the procedure until U is fully covered.

We use this greedy strategy to focus on constructing a pathlet that covers the most
uncovered edges of T . In other words, we greedily grow a set of pathlets C, each time adding
a (ℓ, ∆)-pathlet (P, I) that (approximately) maximizes the coverage ∥Cov(P, I)\Cov(C)∥.

4 Pathlet-preserving simplification

Naively, the subtrajectory clustering problem searches over an infinite number of reference
curves for the pathlets, namely, all curves in Rd. In prior work, Brüning et al. [5] used a
simplification of T that significantly reduces the search space at the cost of increasing ∆ by
a factor 11, with the assumption that reference curves should be line segments. We propose
an alternative solution that increases ∆ by only a factor 4, while also giving guarantees for
reference curves of arbitrary length.

EuroCG’24



41:4 Faster and Deterministic Subtrajectory Clustering

Our simplification algorithm combines the simplification algorithms of Guibas et al. [16]
and Agarwal et al. [2]. The simplification is essentially a greedy procedure. Consider
moving along T , starting at T (1). We look for a locally maximal value t for which
dF (T [1, t], T (1)T (t)) ≤ ∆ (see fig. 2), and we replace T [1, t] by the directed line segment
T (1)T (t). We then recursively apply this procedure to the subcurve T [t, n], until t = n.

Let S be the resulting curve. In the full version we prove Lemma 4.1.

▶ Lemma 4.1. The curve S has Fréchet distance at most ∆ to T , and has the property
that for any (ℓ, ∆)-pathlet (P, I), there exists an (ℓ + 2, 4∆)-pathlet (P ′, I) with the same
coverage, where P ′ is a subcurve of S. Moreover, we can construct S in O(n log n) time.

The consequence of simplification. The above result lets us focus on subcurves of S as
reference curves only (see Figure 3). Still, the endpoints of reference curves may lie anywhere
on S. However, any such reference curve S[a, b] is either a segment (if ⌊a⌋ = ⌊b⌋), or it can
be decomposed into three subcurves: S[a, ⌈a⌉], S[⌈a⌉, ⌊b⌋] and S[⌊b⌋, b], the second of which
is a vertex-subcurve, and the other two are a prefix and suffix of an edge, respectively. This
observation leads to the following algorithm (Algorithm 1) where we iteratively grow a set of
(ℓ, ∆′)-pathlets C (where ∆′ ∈ Θ(∆)). In essence, we run the greedy algorithm of Section 3.
Each iteration, let C be the current set of pathlets and let (P, I) be the (ℓ, ∆)-pathlet that
maximizes the coverage ∥Cov(P, I)\Cov(C)∥. We compute:

a vertex-subcurve with maximal coverage, and
a prefix or suffix of an edge e with maximal coverage.

Via our above argument, the coverage ∥Cov(P ′, I ′)\Cov(C)∥ of the pathlet (P ′, I ′) that
we compute with maximal coverage is at least 1

3 ’rd of ∥Cov(P, I)\Cov(C)∥.
In this abstract, we restrict ourselves to vertex-subcurves of S, constructing a vertex-to-

vertex (ℓ, ∆′)-pathlet (P, I), where P is a vertex-subcurve of S and ∆′ = 4∆. In the full
version, we show how to construct an optimal (2, ∆′)-pathlet (P, I), where P is a prefix or
suffix of an edge of S.

5 Constructing pathlets with a given reference curve

Suppose first that we have been given the reference trajectory S[i, i′] and need to construct
an optimal (ℓ, ∆′)-pathlet (S[i, i′], I) using it (for |S[i, i′]| ≤ ℓ and some given ∆′). We then
proceed as follows. For every integer j′ ∈ [1, n], we consider the minimum integer j for which
dF (S[i, i′], T [j, j′]) ≤ ∆′, and if it exists, we create a unique interval Ij′ = [j, j′] and add it
to I. This trivially maximizes the coverage ∥Cov(S[i, i′], I) \Cov(C)∥ for any set of pathlets
C, and thus gives an optimal pathlet given S[i, i′].

2∆

T (1)

Figure 2 A trajectory T with all points T (t) where dF (T [1, t], T (1)T (t)) ≤ ∆ indicated in orange.
The last point of each orange connected component may be used for the simplification.
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Construct a pathlet-preserving simplification (S, MST , MT S) of T

Set ∆′ ← 4∆
Set C ← ∅
while Cov(C) ̸= [1, n] do

Construct a vertex-to-vertex (ℓ, ∆′)-pathlet (Pver, Iver)
Construct a prefix (2, ∆′)-pathlet (Ppre, Ipre)
Construct a suffix (2, ∆′)-pathlet (Psuf , Isuf)
Set (P, I) ∈ {(Pver, Iver), (Ppre, Ipre), (Psuf , Isuf)} to be the pathlet with
maximum coverage over [1, n] \ Cov(C)

Add (P, I) to C
return C

Algorithm 1: SubtrajectoryClustering(T , ℓ, ∆)

Figure 3 The simplification S of T (top-left, red). The bottom-left clustering of T may be
achieved by the right set of paths in ∆′-FSD(S, T ). Endpoints of paths with the same color must
align vertically, and the horizontal projections of the paths must cover the whole vertical axis.

We compute the above intervals using a data structure that stores information about
certain points in the free space diagram. The types of queries we use are:

1. given integers i, i′, j and j′, determine if dF (S[i, i′], T [j, j′]) ≤ ∆′, and
2. given integers i, i′ and j′, determine if dF (S[i, i′], T [j, j′]) ≤ ∆′ for some integer j.

▶ Lemma 5.1. In O(n2 log n) time, we can preprocess S and T into a data structure of
O(n2 log n) size, such that queries of type 1 can be answered in O(log n) time, and queries
of type 2 can be answered in O(1) time.

With the above data structure, we compute the intervals Ij′ in O(n log n) time altogether.
First, compute the first integer j′ for which (i′, j′) is reachable by some point (i, j) in column
i. This takes j′ queries of type 2. All intervals Ik′ for k′ < j′ are empty. Next, we compute
the first integer j for which dF (S[i, i′], T [j, j′]) ≤ ∆′. This takes j queries of type 1. We then
set Ij′ = [j, j′].

Observe that by planarity of the free space diagram, no non-empty interval Ik′ = [k, k′]
with k′ ≥ j′ has k < j. This is because if Ik′ = [k, k′], then there exists a bimonotone path
from (i, k) to (i′, k′), which intersects the bimonotone path from (i, j) to (i′, j′). Thus there
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also exists a bimonotone path from (i, k) to (i′, j′), and since k < j, we would have that
Ij′ = [k, j′].

With the above observation, we can ignore the interval [1, j − 1] for the first endpoints
of the intervals Ik′ , for k′ > j′. It follows that we use only O(n) queries, of either type, to
determine all intervals. This gives the following result:

▶ Theorem 5.2. Let C be a set of target-discrete pathlets and ∆′ ≥ 0. Given the data
structure of Lemma 5.1, we can construct in O(n log n) time a target-discrete (ℓ, ∆′)-pathlet
(P, I) maximizing ∥Cov(P, I) \ Cov(C)∥.

6 Subtrajectory clustering

As stated at the end of Section 4, in the full version we give an algorithm for constructing an
optimal (2, ∆′)-pathlet (P, I) where P is a subsegment of an edge of S. This algorithm reports
an optimal pathlet in O(n2 log n) time, using O(n) space. Together with the algorithm of
Section 5, we can construct an optimal (ℓ, 4∆)-pathlet whose reference curve is either a
vertex-subcurve of S or a subsegment of an edge of S. The construction takes O(n2ℓ log n)
time and uses O(n2 log n) space. The greedy set cover argument of Section 3 yields:

▶ Theorem 6.1. Let T be a trajectory with n vertices, and let ℓ ∈ N and ∆ ≥ 0 be parameters.
In O(kn2ℓ log2 n) time and O(n2 log n) space, we can construct a target-discrete (ℓ, 4∆)-
clustering of T with at most 3k ln n + 1 pathlets, where k is the minimum number of pathlets
in an (ℓ, ∆)-clustering.
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For all non-degenerate triangles T , we determine the minimum number of colors needed to color the
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1 Introduction

Modern combinatorial geometry is both deep and wide with powerful tools galore. Neverthe-
less, some of its questions, that may look quite simple at first glance, repel all the attempts
to answer them for several decades. Perhaps the most famous problem of this sort is due
to Nelson who asked in 1950 to find the chromatic number χ(R2) of the Euclidean plane
defined as the minimum number of colors needed to color the plane R2 such that no two
points at unit Euclidean distance apart are of the same color. Despite the long history of
research, it is only known that 5 ≤ χ(R2) ≤ 7, where the lower bound was obtained less than
five years ago, see [3, 7]. For multidimensional versions of this problem, see [2].

In their celebrated trilogy [4, 5, 6], Erdős, Graham, Montgomery, Rothschild, Spencer,
and Straus laid the foundation of Euclidean Ramsey theory which deals with questions of the
similar flavor but with more complex configurations forbidden to be monochromatic, see [9].
After a pair of points, the second simplest configuration is a (vertex set of a) triangle. We
denote by χ(R2, T ) the minimum number of colors needed to color the plane such that no
isometric (i.e., translated and rotated) copy of a triangle T is monochromatic. Erdős et al.
conjectured in [6, Conjecture 3] that χ(R2, T ) ≥ 3 for all triangles T except for an equilateral
one1, i.e., that two colors are never enough. Despite the efforts of various researchers, this
conjecture was verified only for a few special families of triangles, see [6, 15, 16]. From
the other direction, it is easy to see that χ(R2, T ) ≤ χ(R2) and thus χ(R2, T ) ≤ 7 for all
triangles T . Perhaps surprisingly, no better general upper bound is known, though Graham
conjectured, see [9, Conjecture 11.1.3] and [17], that χ(R2, T ) ≤ 3 for all triangles T , which
was confirmed for ‘not very flat’ triangles in [1]. Let us also mention that currently the best
bounds for multidimensional variant of this problem were recently obtained in [14].

In this paper, we continue the line of research from [8, 11, 12, 13] and consider a max-norm
counterpart of the aforementioned problem. To give a formal definition, let us recall some
basic notions and facts first. The `∞-distance between z1 = (x1, y1), z2 = (x2, y2) ∈ R2 is
given by ‖z1− z2‖∞ = max{|x1− x2|, |y1− y2|}. In contrast to the Euclidean case, it is easy

∗ Supported by ERC Advanced Grant ‘GeoScape’ No. 882971.
1 For an equilateral triangle 4, the same group of authors observed that χ(R2,4) = 2 and conjectured

in [6, Conjecture 1] that the corresponding two-coloring is unique, which was later disproved in [10].
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to find the exact value of χ(R2
∞) defined as the minimum number of colors needed to color

the plane such that no two points at unit `∞-distance apart are of the same color: see the
folklore proof that χ(R2

∞) = 4 in the left-hand side of Figure 1 or e.g. in [12, Section 2.1]
for more details. A subset T ′ ⊂ R2 is called an `∞-isometric copy of T ⊂ R2, if there
exists a bijection f : T → T ′ such that ‖z1 − z2‖∞ = ‖f(z1) − f(z2)‖∞ for all z1, z2 ∈ T .
Finally, we denote by χ(R2

∞, T ) the minimum number of colors needed to color the plane
such that no `∞-isometric copy of T is monochromatic. As earlier, it is easy to see that
χ(R2

∞, T ) ≤ χ(R2
∞) and thus χ(R2

∞, T ) is equal to either 2, or 3, or 4 for every triangle T .
We will show that all three of these options indeed take place.

Note that the value of χ(R2
∞, T ) depends only on the side lengths of T and is independent

of the particular position of T in the plane. For all positive a ≤ b ≤ c satisfying the triangle
inequality c ≤ a+ b, let T (a, b, c) be an arbitrary triple of points in the plane with pairwise
`∞-distances between them of a, b, c. This triangle is degenerate if c = a + b, otherwise it
is non-degenerate. Observe that if both fractions a

c and b
c are rational, then after a proper

scaling, we can assume without loss of generality that a, b, c are coprime integers. For all
such non-degenerate triangles T , our next result gives the exact value of χ(R2

∞, T ).

I Theorem 1.1. Let a ≤ b ≤ c be positive integers such that c < a+ b and gcd(a, b, c) = 1.
Put T = T (a, b, c). If (1) a+ b+ c is odd, or (2) a and b are odd, c ≥ a+ b− gcd(a, b), then
χ(R2

∞, T ) = 2. Otherwise, χ(R2
∞, T ) = 3.

Our next result covers the remaining case of ‘irrational’ non-degenerate triangles.

I Theorem 1.2. Let a ≤ b ≤ c be positive reals such that c < a+ b and a
c or b

c is irrational.
Put T = T (a, b, c). If a = q1ξ, b = q2η, c = p1ξ + p2η for some odd integers p1, p2, q1, q2 and
reals ξ, η such that ξ

η is irrational, then χ(R2
∞, T ) = 3. Otherwise, χ(R2

∞, T ) = 2.

For a degenerate triangle T = T (a, b, a+ b), several results follow from [8], where much
more general problems were studied. First, observe that every five-point subset of a nine-
element set {0, a, a+ b}2 ⊂ R2 contains an `∞-isometric copy of T and thus χ(R2

∞, T ) ≥ 3. If
a
b is irrational, the axiom of choice allows one to construct the corresponding three-coloring
of the plane showing that this bound is tight, see [8, Section 5]. Otherwise, after a proper
scaling, we can assume without loss of generality that a and b are coprime integers. In
case a ≡ b (mod 3), it is again not hard to construct a coloring of the plane matching the
aforementioned lower bound, see the right-hand side of Figure 1 for an illustration and [8,
Section 4] for a formal proof. In the remaining case a 6≡ b (mod 3), we conjecture that three
colors are not enough, which we verified for a+ b ≤ 7 by computer search.

I Conjecture 1.3. If a, b ∈ N are such that a 6≡ b (mod 3), then χ
(
R2

∞, T (a, b, a+ b)
)

= 4.

In what follows, we refer to `∞-distances and `∞-isometric copies simply as distances
and copies, respectively. Whenever we consider a two-coloring of the plane, we call these
colors red and blue or 0 and 1 for clarity. We also assume that side lengths a, b, c of a triangle
T = T (a, b, c) are reals satisfying a ≤ b ≤ c and c < a+ b, i.e., that T is non-degenerate.

We structure the reminder of the paper as follows. In Section 2, we give a necessary
condition for a triple of points to form a copy of T . In Section 3, we find some properties
satisfied by every red-blue coloring of the plane containing no monochromatic copies of T ,
for one of which, namely for Lemma 3.3, we do not provide a proof in this version of the
article. Though this proof is similar to others and based on an absolutely elementary idea
(if two vertices of T are red, then the third one must be blue, and vice versa), its exact
implementation is not that simple, and we have to omit it in order to meet the condition
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on manuscript length. Finally, in Section 4, we show that these properties are mutually
exclusive if T satisfies neither (1) nor (2), which would complete the proof of Theorem 1.1.
Note that Theorem 1.2 follows from these properties in a very similar manner, but we have
to omit this proof too.

Figure 1 A 4-coloring of the plane with no monochromatic points at unit distance apart, and a
3-coloring of the plane with no monochromatic copies of degenerate triangles T (a, b, a+ b) for all
coprime a, b ∈ N such that a ≡ b (mod 3). All squares are unit. Each colored square includes only
the bottom left vertex along with the left and the bottom sides from its boundary.

2 Copies of a non-degenerate triangle

I Lemma 2.1. Let z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3) ∈ R2 be a copy of T . Then at
least one of the differences |y1 − y2|, |y2 − y3|, |y3 − y1| equals either a, or b, or c. Moreover,
at least one of the differences |x1 + y1−x2− y2|, |x2 + y2−x3− y3|, |x3 + y3−x1− y1| equals
either a+ b− c, or c+ a− b, or b+ c− a.

Proof. The distance between two points is determined by the absolute value of the difference
of their either x- or y-coordinates. Therefore, one of the axes, say x, determines at least two
of the distances ‖z1 − z2‖∞, ‖z2 − z3‖∞, ‖z3 − z1‖∞ by the pigeonhole principle. Assume
that ‖z2 − z3‖∞ = |x2 − x3| = a, ‖z3 − z1‖∞ = |x3 − x1| = b. Observe that x3 cannot lie
between x1 and x2, since in that case we would get that c = ‖z1 − z2‖∞ ≥ |x1 − x2| = a+ b,
a contradiction. Hence, let us assume that x1 = x3 + b, x2 = x3 + a. This implies that
|x1 − x2| = b− a < c = ‖z1 − z2‖∞ and thus |y1 − y2| = c as desired. To prove the second
half of the statement, note that if y1 = y2 + c, then |x1 + y1 − x2 − y2| = b+ c− a, while if
y1 = y2−c, then |x1 +y1−x2−y2| = c+a−b. The same reasoning works in all the remaining
cases, corresponding to possible permutations of axes, indexes, and side lengths. J

This simple statement immediately gives the following sufficient condition for a horizontal
coloring, which is constant on every horizontal line y = y0, or for a diagonal coloring, which
is constant on every diagonal line x+ y = y0, to contain no monochromatic copies of T .

I Corollary 2.2. The following two statements are valid:

1. Let C̄(·) be a coloring of the line such that no two points at distance a, b, or c apart are
monochromatic. Then the corresponding horizontal coloring of the plane, defined by the
equation C(x, y) = C̄(y), contains no monochromatic copies of T .

2. Let C ′(·) be a coloring of the line such that no two points at distance a+ b− c, c+ a− b,
or b+ c− a apart are monochromatic. Then the corresponding diagonal coloring of the
plane, defined by the equation C(x, y) = C ′(x+ y), contains no monochromatic copy of T .
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3 Patterns in an arbitrary two-coloring

For this section, let us fix a red-blue coloring of the plane such that no copy of T is
monochromatic. We call a vector (x0, y0) its period (resp. anti-period) if for all x, y ∈ R, the
colors of two points (x, y) and (x+ x0, y + y0) are the same (resp. distinct). It is clear that
the addition of these vectors resembles the multiplication of signs: the sum of two periods or
two anti-periods is a period, while the sum of an anti-period and a period is an anti-period.

I Lemma 3.1. If one of the four vectors (±b, a− c), (a− c,±b) is not an anti-period, then
there exists a monochromatic axis-parallel segment of length c+ a− b. Similar statements
are valid for other permutations of the side length.

Proof. If (a− c, b) is not an anti-period, then there exist x1, y1 ∈ R such that the two points
(x1, y1) and (x1 +c−a, y1−b) are of the same color, say, both are red. It is easy to check that
this pair together with an arbitrary point from the segment {(x1+c, y) : y1−c ≤ y ≤ y1+a−b}
form a copy of T . Since there are no red copies of T , we conclude that this vertical segment
of length c+a− b is entirely blue, as desired. Similar arguments work for the other cases. J

I Corollary 3.2. If no axis-parallel segment of length c+ a− b is monochromatic, then all
eight vectors (±a, c − b), (c − b,±a), (±b, a − c), (a − c,±b) are anti-periods, and all six
vectors (2a, 0), (2b, 0), (2c, 0), (0, 2a), (0, 2b), (0, 2c) are periods. Moreover, if there also
exist n,m, k ∈ Z such that 0 < 2an+ 2bm+ 2ck ≤ a+ b− c, then four vectors (±c, b− a),
(b− a,±c) are anti-periods as well.

I Lemma 3.3. If a < b and there exists a monochromatic axis-parallel segment of length
c+ a− b, then there also exists a monochromatic axis-parallel line.

I Lemma 3.4. If the horizontal line y = 0 is red, then both lines y = a and y = b are blue.
Moreover, if there also exist n,m ∈ Z such that n+m is even and c− b ≤ an+ bm ≤ a, then
the line y = c is blue as well.

Proof. Each point (x0, a) on the line y = a forms a copy of T together with two red points
(x0− c, 0) and (x0 + b− c, 0). Thus the line y = a is entirely blue. Similarly, each point (x0, b)
on the line y = b forms a copy of T together with two red points (x0− c, 0) and (x0 +a− c, 0).
Thus the line y = a is also entirely blue.

To prove the second half of the statement, observe that the first half implies that the
color of the horizontal line y = an+ bm is determined by the parity of n+m. In particular,
if n+m is even, then this line is red. Now it is easy to see that each point (x0, c) on the line
y = c forms a copy of T together with two red points (x0 − b, an+ bm) and (x0 + a− b, 0).
Hence, the line y = c is also entirely blue, as desired. J

4 Proof of Theorem 1.1

First of all, note that the upper bound χ(R2
∞, T ) ≤ 3 is immediate from the first half of

Corollary 2.2 and the following special case of [18, Corrolary 2.1] due to Zhu.

I Theorem 4.1. Let a ≤ b ≤ c be positive integers such that c < a+ b and gcd(a, b, c) = 1.
Then there exists a three-coloring of the line such that no two points at distance a, b, or c
apart are monochromatic.

Therefore, to complete the proof, we only need to show that there exists a two-coloring of
the plane such that no copy of T is monochromatic if and only if either (1) or (2) holds. We
begin by showing the sufficiency of these conditions using the following two explicit colorings.
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I Lemma 4.2. If (1) holds, then no copy of T is monochromatic under a diagonal two-coloring
of the plane defined by C(x, y) = bx+ yc mod 2.

Proof. It is clear that bx1c 6≡ bx2c (mod 2) whenever x1, x2 ∈ R are at odd distance apart.
Since all three values a+ b− c, c+ a− b, and b+ c− a are odd by (1), the second half of
Corollary 2.2 completes the proof. J

I Lemma 4.3. If (2) holds, then no copy of T is monochromatic under a horizontal two-
coloring of the plane defined by C(x, y) = by/dc mod 2, where d = gcd(a, b).

Proof. Assume the contrary, namely that for some z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3) ∈
R2 that form a copy of T , the values by1/dc, by2/dc, by3/dc are of the same parity, say all
three are even. By Lemma 2.1, we can assume without loss of generality that y1 − y2 equals
either a, or b, or c. Note that the former two cases immediately yield a contradiction since
both fractions a/d and b/d are odd by (2). So in what follows we suppose that y1 − y2 = c.
In particular, this implies that ‖z1 − z2‖∞ = c, and thus one of the distances ‖z2 − z3‖∞,
‖z3 − z1‖∞ equals a, while the other one equals b.

It is easy to check that if ‖z2 − z3‖∞ = a, ‖z3 − z1‖∞ = b, then y1 − b ≤ y3 ≤ y2 + a.
Observe that both b(y1 − b)/dc = by1/dc − b/d and b(y2 + a)/dc = by2/dc + a/d are odd.
Moreover, the length of this segment is equal to a+ b− c which does not exceed d by (2).
Therefore, this segment is too short for the parity of by/dc to change from odd to even
and back again as y ranges between the endpoints. Hence, by3/dc is also odd, and we see
the contradiction. In the remaining case when ‖z2 − z3‖∞ = b, ‖z3 − z1‖∞ = a, we have
y1 − a ≤ y3 ≤ y2 + b, and the similar argument completes the proof. J

To prove the second half of the theorem, observe that if neither (1) nor (2) holds, then either
(3) a and b are of different parity, c is odd, or
(4) a and b are odd, c is even, and c < a+ b− gcd(a, b).
So it remains only to show that in each of these two cases, there are no two-colorings of the
plane with no monochromatic copies of T . Let us assume the contrary and fix an arbitrary
such red-blue coloring.

First, we suppose that no axis-parallel segment of length c + a − b is monochromatic.
On the one hand, the first half of Corollary 3.2 implies that all six vectors (2a, 0), (2b, 0),
(2c, 0), (0, 2a), (0, 2b), (0, 2c) are periods, and so are all their linear combinations. Since
gcd(2a, 2b, 2c) = 2, we conclude that both (2, 0) and (0, 2) are periods. Hence, every vector
such that both its coordinates are even integers is also a period. On the other hand, note
that a+ b− c is a positive even integer, and thus a+ b− c ≥ 2 = gcd(2a, 2b, 2c). Therefore,
we can also apply the second half of Corollary 3.2 in our case to find twelve anti-periods in
total including (a, c− b), (b, a− c) and (c, b− a). However, both coordinates of one of these
three vectors are even integers, and so this vector should be a period instead, a contradiction.

Second, suppose that there exists a monochromatic axis-parallel segment of length c+a−b.
Besides, note that each of the conditions (3) and (4) yields a < b. So we can apply Lemma 3.3
to find a monochromatic axis-parallel line. Without loss of generality, assume that this line
is given by the equation y = 0 and that it is entirely red. Now it is easy to deduce from
the first half of Lemma 3.4 that for all i, j ∈ Z such that i + j is odd, the horizontal line
y = ai+ bj is blue. If (3) holds, then we obtain a contradiction by taking i = b, j = −a.

If (4) holds, we use a slightly more complex argument. Observe that there exist n,m ∈ Z
such that an + bm = a − gcd(a, b). Since both a and b are odd, we conclude that n + m

is even. Moreover, the inequality c − b ≤ a − gcd(a, b) = an + bm is immediate from (4).
Therefore, we can aslo apply the second half of Lemma 3.4 in our case to deduce that the
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horizontal line y = ai+ cj is blue for all i, j ∈ Z such that i+ j is odd. Finally, we obtain
the desired contradiction by taking i = c, j = −a.
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Abstract
A fundamental question is whether one can maintain a maximum independent set (MIS) in polylog-
arithmic update time for a dynamic collection of geometric objects in Euclidean space. For a set of
intervals, it is known that no dynamic algorithm can maintain an exact MIS in sublinear update
time. Therefore, the typical objective is to explore the trade-off between update time and solution
size. Substantial efforts have been made in recent years to understand this question for various
families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects.

We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the plane
that maintains a constant-factor approximate MIS in polylogarithmic expected amortized update
time. Moreover, for a fully dynamic set of n unit disks in the plane, we show that a 12-approximate
MIS can be maintained with worst-case update time O(logn), and optimal output-sensitive reporting.

Related Version When details are missing, refer to the full version at arxiv.org/abs/2308.00979.

1 Introduction

The maximum independent set (MIS) problem is a fundamental problem in theoretical
computer science, and it is one of Karp’s 21 classical NP-complete problems [18]. In the MIS
problem, we are given a graph G = (V,E), and the objective is to choose a subset S ⊆ V of
maximum cardinality such that no two vertices in S are adjacent. The intractability of MIS
carries even under strong algorithmic paradigms. For instance, it is known to be hard to
approximate: no polynomial-time algorithm can achieve an approximation factor n1−ε (for
|V | = n and a constant ε > 0) unless P=ZPP [23]. In fact, even if the maximum degree of G
is bounded by 3, no polynomial-time approximation scheme (PTAS) is possible [4].

Geometric Independent Set. In geometric settings, the input is a collection L = {`1, . . . , `n}
of geometric objects, e.g., intervals, disks, squares, rectangles, etc., and we wish to compute a
maximum independent set in their intersection graph G: Each vertex in G corresponds to an
object in L, and each edge connects the vertices of two intersecting objects. Thus a MIS of
G corresponds to a maximum cardinality subset L′ ⊆ L of pairwise disjoint objects. A large
body of work has been devoted to geometric MIS problems, due to their wide applicability,
for example in scheduling [2], VLSI design [16], map labeling [1], and data mining [19, 3].
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Objects Approx. Ratio Update time Reference

Intervals 1 + ε O(ε−1 logn) [12]
Squares O(1) O(log5 n) amortized [5]
Arbitrary radii disks O(1) (logn)O(1) expec. amortized Theorem 1.2

Unit disks O(1) O(logn) worst-case Theorem 1.1
1 + ε n(1/ε)Ω(1) Full version [8]

f -fat objects in Rd Of (1) Of (logn) worst-case Full version [8]
d-dimensional hypercubes (1 + ε) · 2d Od,ε(log2d+1 n · log2d+1 U) [15]
Table 1 Summary of results on dynamic independent sets for n geometric objects.

Dynamic Geometric Independent Set. In dynamic settings, objects are inserted into or
deleted from the collection L over time. The typical objective is to achieve (almost) the same
approximation ratio as in the offline (static) case while keeping the update time, i.e., the
time to update the solution after insertion/deletion, as small as possible. We call this the
Dynamic Geometric Maximum Independent Set problem (for short, DGMIS).

Henzinger et al. [15] studied DGMIS for various geometric objects, such as intervals,
hypercubes, and hyperrectangles. Many of their results extend to the weighted version
of DGMIS, as well. Based on a lower bound of Marx [22] for the offline problem, they
showed that any dynamic (1 + ε)-approximation for squares in the plane requires Ω(n1/ε)
update time for any ε > 0, ruling out the possibility of sub-polynomial time dynamic
approximation schemes. On the positive side, they obtained dynamic algorithms with update
time polylogarithmic in both n and N , where the corners of the objects are in a [0, N ]d
integer grid, for any constant dimension d (therefore their aspect ratio is also bounded by N).
Bhore et al. [5] presented the first fully dynamic algorithms with polylogarithmic update time
for DGMIS, where the input objects are intervals and axis-aligned squares. For intervals,
they presented a fully dynamic (1 + ε)-approximation algorithm with logarithmic update
time. Later, Compton et al. [12] achieved a faster update time for intervals, by using a new
partitioning scheme. Recently, Bhore et al. [6] studied the MIS problem for intervals in the
streaming settings, and obtained lower bounds.

Moreover, Bhore et al. [7] studied the DGMIS problem in the context of dynamic map
labeling and presented dynamic algorithms for several subfamilies of rectangles that also
perform well in practice. Cardinal et al. [9] designed dynamic algorithms for fat objects in
fixed dimension d with sublinear worst-case update time. However, despite the remarkable
progress on the DGMIS problem in recent years, the following question remained unanswered.
I Question 1. Does an algorithm exist that, for a given dynamic set of disks in the plane,
maintains a constant-factor approximate MIS in polylogarithmic update time?

Our Contributions In this paper, we answer Question 1 in the affirmative (Theorems 1.1–
1.2); see Table 1. As a first step, we address the case of unit disks in the plane.

I Theorem 1.1. For a fully dynamic set of unit disks in the plane, a 12-approximate MIS can
be maintained with worst-case update time O(logn), and optimal output-sensitive reporting.

We prove Theorem 1.1 in the full version [8]. Similarly to classical approximation
algorithms for the static problem [16], we lay out four shifted grids such that any unit disk
lies in a grid cell for at least one of the grids, see Figure 1. For each grid, we maintain an
independent set that contains at most one disk from each grid cell, thus we obtain four
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G1

G3

G2

G4

(a) (b)

Figure 1 (a) The four shifted grids G1, . . . , G4, which respectively do not intersect the blue,
green, yellow, and red disks. (b) The radius-1 squares inside grid cells, along with the center points
of the disks that lie completely inside grid cells, as crosses. In the bottom right, besides red squares
for G4, the squares of all other grids are added to show that the squares together partition the plane.

independent sets S1, . . . , S4 at all times, where the largest is a constant-factor approximation
of the MIS. Using the MIX algorithm [9], we can maintain an independent set S ⊂ ⋃4

i=1 Si

of size Ω(max{|S1|, |S2|, |S3|, |S4|}) at all times, which is a O(1)-approximation of the MIS.
Moreover, our dynamic data structure for unit disks easily generalizes to fat objects of

comparable sizes in Rd for any constant dimension d ∈ N (see the full version [8]).
Our main result is a dynamic data structure for MIS of disks of arbitrary radii in R2.

I Theorem 1.2. For a fully dynamic set of disks of arbitrary radii in the plane, an O(1)-
approximate MIS can be maintained in polylogarithmic expected amortized update time.

To prove Theorem 1.2 in Section 2, we extend the core ideas developed for unit disks.
Finally, we note that, even for a dynamic set of unit disks in the plane, it is impossible

to maintain a (1 + ε)-approximate MIS with amortized update time nO((1/ε)1−δ) for any ε,
δ > 0, unless the Exponential Time Hypothesis (ETH) fails. This follows from a reduction to
a result by Marx [22], resembling the same result for hypercubes by Henzinger et al. [15].

2 Disks of Arbitrary Radii in the Plane

Summary of our data structures and update algorithms. When considering disks of
arbitrary radii, the general idea of our new data structure is to break the set of disks D
into subsets of disks of comparable radius. We will use several instances of shifted grids
Gi

1, . . . , G
i
4, as we also used in the unit disk case, where the grid cells now have side length

3i, are shifted by 3i
2 , and store disks with radius r, where 3i−1

4 < r ≤ 3i
4 , for i ∈ Z. The

resulting hierarchies of recursively 3× 3 subdivided grid cells form so-called nonatrees.
The main algorithmic ideas in using these nonatrees revolve around a bottom-up traversal

of the nonatree using a well-known greedy strategy [21, 13]. In the static case, greedily con-
sidering fat objects in ascending order of size allows us to find a constant-factor approximate
MIS. In the dynamic case, we want to mimic this idea by traversing paths in a nonatree
towards the root. However, the height of such a nonatree (even compressed) may be Θ(n)
for n disks (see Figure 2). Thus, for dynamic updates we cannot afford to traverse ascending
paths in their entirety with polylogarithmic update time.
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Figure 2 A nonatree with height linear in the number of stored disks, whose radii decay
exponentially. A compressed nonatree (with compressed nodes) has linear height.

Approximating a Maximum Independent Set. Regardless of the above observation, we
intend to traverse the nonatrees in bottom-up fashion, computing an O(1)-approximate MIS.
In the dynamic setting, we then ensure that we only have to update the nonatrees locally.

We start by explaining how we compute an O(1) approximation with our nonatrees. We
refer to the data structures Gi

k associated with each value i ∈ Z as a bucket, and we will
use only those buckets that store any disks, which we call relevant buckets. Within these
buckets, we call grid cells that contain disks the relevant grid cells. Furthermore, to prevent
computational overhead, our nonatrees are compressed, similar to compressed quadtrees [14,
Chapter 2]. Figure 3 illustrates the concepts in the previous and upcoming paragraph.

Two crucial high-level steps can be distinguished in our approach:

1. For each cell c ∈ Gi
k in our compressed nonatrees, we communicate upwards which disks

have been included in our independent set. To do so, we use obstacle disks, and only
input disks disjoint from obstacle disks can be chosen in the independent set. Once all
cells are handled, we output the largest independent sets computed for the nonatrees
N1, . . . , N4, to get an O(1)-approximation (Lemmata 6-8 in the full version [8]).

2. We want an obstacle disk for a cell c to cover the disks in the independent set selected
in the subtree rooted at c, to prevent overlaps. The obstacle disks for a cell c is hence
defined as the smallest enclosing disk of c. Additionally, if the independent set of the
children originates from more than one child, we do not add a disk from c, even if possible.
We still obtain an O(1) approximation under these constraints (Lemmata 9 and 10 in [8]).

I Lemma 2.1. For a set of disks in the plane, one of our shifted nonatrees N1, . . . , N4
maintains an independent set of size Ω(|OPT|), where OPT is a MIS.

Modifications to Support Dynamic Maintenance. We now highlight two changes in the
above data structures, to support efficient updates, while maintaining an O(1)-approximation.
Dynamic updates trigger bottom-up traversals through a nonatree, and these changes are
aimed at keeping updates local, leading to expected amortized polylogarithmic update time.

Obstacle cells. To support dynamic updates, we use slightly enlarged obstacle disks to
prevent cascading effects during updates. Obstacle disks are associated with so-called obstacle
cells of the nonatree Nk. Those cells that contribute to independent set Sk, are called true
obstacles. Cells of the nonatree with two or more children are also considered as obstacle cells
and are merge obstacles. The obstacle cells decompose the nonatree into ascending paths
in which each cell has relevant descendants in only one subtree (see Figure 4a). Inside an
ascending path, disks either intersect the obstacle disk of the (closest) obstacle cell below
them, or are part of Sk and therefore define a true obstacle cell (see Figures 4b and 4c).

I Lemma 2.2. A disk d in cell c ∈ Nk added to Sk can intersect only the disk do ∈ Sk in
the next obstacle cell co on the ascending path P (d) from c towards the root, if do even exists.
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(a) (b)

i

i+ 1

i+ 2

bucket

N1Gi
1 Gi+1

1

Figure 3 (a) Two compatible grids in buckets i and i + 1, with (blue) disks of D in relevant
cells. In particular, the green cell in Gi

1 is relevant, but its (green) parent cell in Gi+1
1 is not. Three

(yellow) obstacle disks of Gi
1 are drawn in both grids. Only one blue disk in Gi+1

1 is disjoint from
an obstacle, and can be chosen in the greedy bottom-up strategy. (b) Part of the compressed
nonatree N1 corresponding to (a): The colored nodes of bucket i+ 2 correspond to colored squares
in (a) of the same color. Because the green cell in Gi+1

1 is not relevant, and does not have relevant
children in two subtrees, it is not represented in N1. Instead, the green node, corresponding to the
green relevant cell in Gi

1, directly connects to an ancestor in bucket i+ 2 (by the green edge).

Barrier disks. The naïve approach for a dynamic update of the independent set S in a
nonatree N would work as follows: When a new disk d is inserted or deleted, we find
a nonatree N and a cell c ∈ N associated with d; and then in an ascending path of N
from c to the root, we re-compute the disks in S to repair the greedy bottom-up property.
Unfortunately, we cannot afford this (recall Fig. 2). Instead, we run the greedy process only
locally, on an ascending path of N between two cells c1 ≺ c2 that contain disks s1, s2 ∈ S,
respectively. Here, ≺ denotes that c1 is a descendant of c2. The greedy process guarantees
that new disks added to S are disjoint from any smaller disk in S, including s1, but they
might intersect the larger disk s2 ∈ S. In this case, we remove s2 from S, keep it as a
”placeholder” in a set B of barrier disks, and ensure that S ∪ B is a dominating set of D.
This is one of the invariants that we maintain to show that the described changes still result
in a O(1)-approximate MIS (Lemma 16 in [8]). Furthermore, we maintain an assignment β
between barrier disks and the closest obstacle cells below them. Each barrier disk β(c1) lies
along an ascending path between two obstacle cells c1 ≺ c2. Importantly, another of our
invariants states that each ascending path contains at most one barrier disk.

(a) (b) (c)

Figure 4 (a) Decomposition of a nonatree into ascending paths between merge obstacle cells.
Only relevant leaves are drawn. One ascending path between merge nodes is highlighted in grey.
This path is shown (b) abstractly and (c) geometrically: The merge obstacle cells at the top and
bottom (with yellow obstacle disks) each have no disk of Sk associated with them. Every other
obstacle cell on the path also defines a brown obstacle disk. Each such cell contains a (dark blue)
disk of Sk, disjoint from the obstacle disk below it (indicated by red crosses). All (light blue) disks
on the (red) ascending path intersect the obstacle below. Green colors identify cells in (b) and (c).
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(a) (c)(b)

c2

c2

c2

β(c2)

c1 c1 c1 c1

Figure 5 Greedy updates in an ascending path: (a) There is no disk s2 ∈ Sk in c2 that can
intersect the new (brown) obstacle disks in the gray ascending path. (b) The disk s2 ∈ Sk in c2 is
turned into a barrier if it overlaps the obstacle disk of the highest new disk in the light green cell.
(c) If β(c2) exists, remove c2 from Sk and run the greedy algorithm up to the dark green cell.

Dynamic maintenance using farthest neighbor data structures. We now sketch how to
maintain our data structures with polylogarithmic update times. One key component is the
use of the dynamic farthest neighbor (DFN) data structure by Kaplan et al. [17] (generalizing
Chan’s famous dynamic convex hull data structure [10, 11]). We adapt this data structure to
efficiently find disks that are disjoint from obstacle disks in ascending paths of our nonatrees
in polylogarithmic time, and with polylogarithmic expected amortized update time.

When a disk d associated with a cell c ∈ Nk is inserted or deleted, then c lies in an
ascending path P (d) between two obstacle cells, say c1 � c ≺ c2. To update the independent
set Sk and the barrier disks Bk, in general we run the greedy algorithm in this path. The
greedy process queries the DFN data structure to find disks that are disjoint from any smaller
disk in Sk. Now we distinguish between three cases (see Figure 5): (a) If c2 is a merge
obstacle cell, then we are done. (b) However, if c2 is a true obstacle cell, then the last disk
added to Sk may intersect the disk s2 ∈ Sk associated with c2 (and only s2, by Lemma 2.2).
If so, we delete s2 from Sk, insert it into Bk, and assign it to the highest disk in Sk in P (d)
below s2.(c) Finally, if s2 was already associated with a barrier disk, β(c2), then adding s2 to
Bk would result in two barrier disks between consecutive obstacle cells, which is not allowed.
For this reason, if β(c2) exists, we remove s2 from Sk, run the greedy algorithm up to the
cell associated with β(c2), and then reassign β(c2) to the highest disk added to Sk.

3 Conclusions

One bottleneck in our framework is the nearest/farthest neighbor data structure [17, 20],
which provides only expected amortized polylogarithmic update time. This is the only reason
why our algorithm does not guarantee deterministic worst-case update time, and it does not
extend to balls in Rd for d ≥ 3, or to arbitrary fat objects in R2. It remains open whether
there is a dynamic nearest/farthest neighbor data structure in constant dimensions d ≥ 2 with
a worst-case polylogarithmic update and query time: Such a result would immediately carry
over to a fully dynamic algorithm for an approximate MIS for balls in higher dimensions.
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Abstract
Given two sets R and B of at most n points in the plane, we present efficient algorithms to find
a two-line linear classifier that best separates the “red” points in R from the “blue” points in B

and is robust to outliers. More precisely, we find a region WB bounded by two lines, so either a
halfplane, strip, wedge, or double wedge, containing (most of) the blue points B, and few red points.
Our running times vary between optimal O(n log n) and O(n4), depending on the type of region
WB and whether we wish to minimize only red outliers, only blue outliers, or both.

Related Version A full version can be found on arXiv [5]

1 Introduction

Let R and B be two sets of at most n points in the plane. Our goal is to best separate the
“red” points R from the “blue” points B using at most two lines. That is, we wish to find a
region WB bounded by lines ℓ1 and ℓ2 containing (most of) the blue points B, so that the
number kR of points from R in the interior int(WB) of WB and/or the number kB of points
from B in the interior int(WR) of the region WR = R2 \ WB is minimized. We refer to these
sets of red and blue outliers as ER = R ∩ int(WB) and EB = B ∩ int(WR), respectively, and
define E = ER ∪ EB and k = kR + kB .

Region WB is either: (i) a halfplane, (ii) a strip bounded by two parallel lines ℓ1 and ℓ2,
(iii) a wedge, i.e. one of the four regions induced by a pair of intersecting lines ℓ1, ℓ2, or (iv)
a double wedge, i.e. two opposing regions induced by a pair of intersecting lines ℓ1, ℓ2. See
Figure 1. We can reduce the case that WB would consist of three regions to the single-wedge
case, by recoloring the points. For each of these cases for the shape of WB we consider three
problems: allowing only red outliers (kB = 0) and minimizing kR, allowing only blue outliers
(kR = 0) and minimizing kB , or allowing both outliers and minimizing k. We present efficient
algorithms for each of these problems, see Table 1.

Related work. Binary classification is a key problem in computer science. Linear classifiers
such as SVMs [3] compute a hyperplane separating R and B; when R and B are not linearly

double wedgehalfplane

`
`2

`1

strip

`1

`2

wedge

`1

`2

`1

`2

Figure 1 We consider separating R and B by at most two lines. This gives rise to four types of
regions WB ; halfplanes, strips, wedges, and two types of double wedges; hourglasses and bowties.
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This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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region WB minimize kR minimize kB minimize k

halfplane O(n log n) ⋆ O(n log n) ⋆ O((n + k2) log n) [2]
strip Θ(n log n) [8], §3 O(n2 log n) ⋆ O(n2 log n) ⋆

wedge O(n2) [8] O(n2kB O((n2k + nk3)
O(n log n) §4 log n log kB) ⋆ log n log k) ⋆

double (bowtie) wedge O(n2) §5 O(n2 log n) ⋆ O(n4) ⋆

Table 1 An overview of our results. A star ⋆ means this result is shown in the full version.

separable like in Figure 2 one could try using different (non-linear) separators, or allowing
for outliers. Hurtato et al. [6, 7] give O(n log n) algorithms for perfectly separating R and B

using two lines (i.e. a strip, wedge or double wedge) without outliers, which are optimal [1].
Alternatively, Chan [2] presented algorithms for linear programming in constant dimension
that allow for up to k violations, and thus solve hyperplane separation with up to k outliers.

A combination of the above, i.e. using more general separators while giving guarantees
on the number of outliers, seems to be less well studied. Seara [8] showed how to compute a
strip containing all blue points and minimal red points in O(n log n) time, and a wedge with
the same properties in O(n2) time. In this paper, we take some further steps toward the
fundamental problem of computing robust non-linear separators with performance guarantees.

Results. We present efficient algorithms for computing a region WB (strip, wedge, or double
wedge) that minimizes red (kR), blue (kB), or both (k) outliers. Refer to Table 1 for an
overview. In this extended abstract we focus on three entries of Table 1: minimizing kR for
strips (Section 3), wedges (Section 4), and double wedges (Section 5). The other results and
omitted proofs can be found in the full version [5] on arXiv.

Most notably, our optimal Θ(n log n) algorithm for computing a wedge minimizing kR

improves the earlier O(n2) time algorithm from Seara [8]. We also provide the first algorithms
for minimizing kB for strips, wedges, and double wedges, and surprisingly these problems
seem more difficult than their counterpart of minimizing kR.

2 Preliminaries

We assume B ∪ R contains at least three points and is in general position, i.e. no two points
have the same x- or y-coordinate, and no three points are co-linear.

Notation. Let ℓ− and ℓ+ be the two halfplanes bounded by line ℓ, with ℓ− below ℓ (or left
of ℓ if ℓ is vertical). Any pair of lines ℓ1 and ℓ2, with the slope of ℓ1 smaller than that of
ℓ2, subdivides the plane into at most four interior-disjoint regions North(ℓ1, ℓ2) = ℓ+

1 ∩ ℓ+
2 ,

East(ℓ1, ℓ2) = ℓ+
1 ∩ ℓ−

2 , South(ℓ1, ℓ2) = ℓ−
1 ∩ ℓ−

2 and West(ℓ1, ℓ2) = ℓ−
1 ∩ ℓ+

2 . When ℓ1 and ℓ2

`1

`2

perfect

`1

`2

miniming kR

`1

`2

miniming kB

`1

`2

miniming k

Figure 2 When considering outliers, we may allow only red outliers, only blue outliers, or both.
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are clear from the context we may simply write North to mean North(ℓ1, ℓ2) etc. We assign
each of these regions to either B or R, so that WB (= WB(ℓ1, ℓ2)) and WR (= WR(ℓ1, ℓ2))
are the union of some elements of {North, East, South, West}. In case ℓ1 and ℓ2 are parallel,
we assume that ℓ1 lies below ℓ2, and thus WB = East.

Duality. We make frequent use of the standard point-line duality [4], where we map objects
in primal space to objects in a dual space. In particular, a primal point p = (a, b) is mapped
to the dual line p∗ : y = ax − b and a primal line ℓ : y = ax + b is mapped to the dual point
ℓ∗ = (a, −b). If primal point p lies above line ℓ, then dual line p∗ lies below point ℓ∗.

For a set of lines L, we are often interested in the arrangement A(L), i.e. the vertices,
edges, and faces formed by the lines in L. Let U(L) be the upper envelope of L, i.e. the
polygonal chain following the highest line in A(L), and L(L) the lower envelope.

Property of an optimal wedge. It can be shown that, for any (double) wedge classification
problem, there exists an optimum where both lines go through a blue and a red point.
Therefore there exists a somewhat simple O(n4) algorithm for finding (double) wedges
minimizing either kR, kB , or k, which considers all pairs of lines through red and blue points.

3 Strip separation with red outliers

We first consider the case where WB forms a strip, bounded by parallel lines ℓ1 and ℓ2, with
ℓ2 above ℓ1. We want B to be inside the strip, and R outside, and here we show how to
minimize red outliers kR. We do this in the dual, where we want to find two points ℓ∗

1 and
ℓ∗

2 with the same x-coordinate such that vertical segment ℓ∗
1ℓ∗

2 intersects all blue lines and as
few red lines as possible. Note that ℓ∗

1 must be above U(B∗) and ℓ∗
2 must be below L(B∗).

Since shortening a segment can not make it intersect more red lines, we can even assume
they lie exactly on the envelopes.

As U(B∗) and L(B∗) are x-monotone, there is only one degree of freedom for choosing our
segment: its x-coordinate. We parameterize U(B∗) and L(B∗) over R, our one-dimensional
parameter space, such that each point p ∈ R corresponds to the vertical segment ℓ∗

1ℓ∗
2 on the

line x = p. We wish to find a point in this parameter space, i.e. an x-coordinate, whose
corresponding segment minimizes the number of red misclassifications. Let the forbidden
regions of a red line r be those intervals on the parameter space in which corresponding
segments intersect r. We distinguish between four types of red lines, as in Figure 3:

Line a intersects U(B∗) in points a1 and a2, with a1 ≤ a2. Segments with ℓ∗
1 left of a1 or

right of a2 misclassify a, so a produces two forbidden intervals: (−∞, a1) and (a2, ∞).
Line b intersects L(B∗) in points b1 and b2, with b1 ≤ b2. Similar to line a this produces
forbidden intervals (−∞, b1) and (b2, ∞).
Line c intersects L(B∗) in c1 and U(B∗) in c2. Only segments between c1 and c2 misclassify
c. This gives one forbidden interval: (min{c1, c2}, max{c1, c2}).
Line d intersects neither U(B∗) nor L(B∗). All segments misclassify d. This gives one
trivial forbidden region, namely the entire space R.

The above list is exhaustive. To see this, note that the two lines supporting the unbounded
edges of U(B∗) also support the unbounded edges of L(B∗).

Our goal is to find a point that lies in as few of these forbidden regions as possible. We
can compute such a point in O(n log n) time by sorting and scanning. Computing U(B∗) and
L(B∗) takes O(n log n) time. Given a red line r ∈ R∗ we can compute its intersection points
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U(B)

L(B)

a

d
b

c

a1 a2

b1

b2

c1

c2
a1 b1 c1 c2 a2 b2

a
b
c
d

Figure 3 Four types of red lines for strip separation, with restrictions on their parameter space.

with U(B∗) and L(B∗) in O(log n) time using binary search (since U(B∗) and L(B∗) are
convex). Computing the forbidden regions thus takes O(n log n) time in total. We conclude:

▶ Theorem 3.1. Given two sets of n points B, R ⊂ R2, we can construct a strip WB

minimizing the number of red outliers kR in O(n log n) time.

4 Wedge separation with red outliers

We consider the case where the region WB is a single wedge and WR is the other three
wedges. Here we show how to compute an optimal East or West wedge minimizing red
outliers, i.e. we compute two lines ℓ1 and ℓ2 such that every blue point and as few red points
as possible lie above ℓ1 and below ℓ2. In the dual this corresponds to two points ℓ∗

1 and
ℓ∗

2 such that all blue lines and as few red lines as possible lie below ℓ∗
1 and above ℓ∗

2, as in
Figure 4. In the full version, we compute an optimal North or South wedge in a similar way.

U(B∗)

L(B∗)

`∗1

`∗2

a

c

e

b

a1

a2

b1
b2

c2

c1

d

d1

d2

`∗1

`∗2

a1 a2

b1

b2

c1

c2

d2

d1

2

1

1

2

3
z

Figure 4 The arrangement of B∗ ∪ R∗ with its parameter space and forbidden regions.

Clearly ℓ∗
1 must lie above U(B∗), and ℓ∗

2 below L(B∗); as in the strip case, we can even
assume they lie exactly on U(B∗) and L(B∗). Similar to the case of strips we parameterize
U(B∗) and L(B∗) over R2, such that a point (p, q) in this two-dimensional parameter space
corresponds to two dual points ℓ∗

1 and ℓ∗
2, with ℓ∗

1 on U(B∗) at x = p and ℓ∗
2 on L(B∗) at

x = q. See Figure 4. We wish to find a value in our parameter space whose corresponding
segment minimizes the number of red misclassifications. Let the forbidden regions of a
red line r again be those regions in the parameter space in which corresponding segments
misclassify r. We distinguish between five types of red lines, as in Figure 4 (left):

Line a intersects U(B∗) in a1 and a2, with a1 left of a2. Only segments with ℓ∗
1 left of a1

or right of a2 misclassify a. This produces two forbidden regions: (−∞, a1) × (−∞, ∞)
and (a2, ∞) × (−∞, ∞).
Line b intersects L(B∗) in b1 and b2, with b1 left of b2. Symmetric to line a this produces
forbidden regions (−∞, ∞) × (−∞, b1) and (−∞, ∞) × (b2, ∞).
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Line c intersects U(B∗) in c1 and L(B∗) in c2, with c1 left of c2. Only segments with
endpoints after c1 and before c2 misclassify c, producing the region (c1, ∞) × (−∞, c2).
(Segments with endpoints before c1 and after c2 do intersect c, but do not misclassify it)
Line d intersects U(B∗) in d1 and L(B∗) in d2, with d1 right of d2. Symmetric to line c

it produces the forbidden region (−∞, d1) × (d2, ∞).
Line e intersects neither U(B∗) nor L(B∗). All segments misclassify e. This produces
one forbidden region; the entire plane R2.

Our goal is again to find a point that lies in as few of these forbidden regions as possible.
Since all regions are axis-aligned rectangles, we can do so using a simple sweepline algorithm
in O(n log n) time. Constructing U(B∗) and L(B∗), finding the intersections of every red line
r with U(B∗) and L(B∗), determining the type of r (a − e), and constructing its forbidden
regions all take O(n log n) time as well.

▶ Theorem 4.1. Given two sets of n points B, R ⊂ R2, we can construct an East or West
wedge containing all points of B and the fewest points of R in O(n log n) time.

5 Double wedge separation with red outliers

Although the wedge algorithm was a direct extension of the strip algorithm, the double
wedge algorithm uses different techniques, which we briefly review; see the full version for
details. We consider finding a bowtie wedge WB while minimizing red outliers, i.e. all of B

and as little of R as possible lies in the West and East wedge. In the dual this corresponds
to a line segment intersecting all of B∗, and as little of R∗ as possible.

Observe that a segment intersecting all lines of B∗ must have endpoints in antipodal
outer faces of A(B∗), i.e. two opposite outer faces sharing the same two infinite bounding
lines. For all O(n) pairs of antipodal faces, we could apply a very similar algorithm to the
wedge algorithm in Section 4, resulting in O(n · n log n) = O(n2 log n) time.

Alternatively, we construct the entire arrangement A(B∗ ∪ R∗) of all lines explicitly in
O(n2) time (see e.g. [4]). Consider a pair of faces P and Q that are antipodal in A(B∗), and
assume w.l.o.g. they are separated by the x-axis, with P above Q. There are two types of
red lines: splitting lines that intersect both P and Q once, and stabbing lines that intersect
at most one of P and Q, see Figure 5. A red line is a splitting line for exactly one pair of
antipodal faces, while it can be a stabbing line for multiple pairs. Recall that we wish to find
a segment from P to Q intersecting as few red lines as possible. The s splitting lines divide
the boundary of P and Q into s + 1 chains P0..Ps (Q0..Qs). Within one such chain Pi on P

we only need to consider the point pi with the most stabbing lines above it: a segment from
pi to Q will not intersect those lines, since Q is below Pi. Similarly, we only need to consider
point qj on chain Qj with the most stabbing lines below it. Using dynamic programming
we can then find the pair of chains Pi, Qj such that piqj intersects the fewest red lines in
O(n + s2) time. Doing so for all pairs of antipodal faces yields a total running time of O(n2).

▶ Theorem 5.1. Given two sets of n points B, R ⊂ R2, we can construct the bowtie double
wedge WB minimizing the number of red outliers kR in O(n2) time.

Consider the related problem of finding a bowtie wedge while minimizing kB , which we
solve in O(n2 log n) time in the full version. Note that we can not just recolor the points and
use the above O(n2) time algorithm: after recoloring, we would wish to find a blue hourglass
wedge minimizing kR, which is a different problem. Therefore, unfortunately, finding any
double wedge (bowtie or hourglass) while minimizing kR still takes O(n2 log n) time.
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Figure 5 Two antipodal faces P and Q, with two splitting lines r1, r2 and two stabbing lines
r3, r4, and an optimal segment pq from P to Q.
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Abstract
We can label dense sets of feature points by placing the labels along a rectangular boundary around
the illustration and using non-crossing leader lines to connect each label with its feature. Although
boundary labeling is well-studied, semantic constraints on the labels have not been investigated
much. We consider grouping and ordering constraints for one-sided boundary labeling. Grouping
constraints enforce that a subset of the labels must occupy a contiguous region on the boundary, and
ordering constraints define a partial order on the features. While we show that it is weakly NP-hard
to find an admissible labeling for non-uniform labels that can slide along the boundary, we present
polynomial-time algorithms for the case of fixed candidate label positions or uniform-height labels.

Related Version arXiv:2402.12245

1 Introduction

One common guideline when creating labeled illustrations in technical and medical domains
is to “not obscure important details with labels” [8, p. 35]. Therefore, designers tend to
place the labels outside the illustrations, creating an external labeling as in Figure 1a. Short
non-crossing polyline leaders are used to connect labels with the feature points, here called
sites, they describe. Boundary labeling is a restricted setting, where we only allow placing
labels along a rectangular boundary B around the illustration [3]. Initial work placed the
labels on one or two sides of the boundary, usually right and left, but extensions to more sides
are also possible [14, 18]. Different leader styles have been considered [2, 3], but we focus on
so-called po-leaders that consist of two segments: one is parallel and the other orthogonal to
the side of the boundary on which the label is placed [3]. See Figure 1b for an example.

Although extensions of boundary labeling have been considered [1, 11, 15, 16], little work
has been performed to respect semantic constraints, such as those from Figure 1a. Here, the
layers are labeled from inside-out and some labels are grouped together and thus placed next
to each other. The survey of Bekos et al. [4] reports a handful of papers that group or cluster
labels. Many rely on heuristics [17] or group (spatially close) sites together to label them
with a single label [10, 21]. To the best of our knowledge, Niedermann et al. [22] are the first
that support the grouping of labels while ensuring non-crossing leaders. They investigated
contour labeling, a generalization of boundary labeling, and considered the grouping of labels
as a possible extension without analyzing it further. Although grouping labels sees a growing
interest [14, 20], recent results still heavily restrict the possible position of the labels and
only support a limited set of grouping constraints.

∗ This research has been funded by the Vienna Science and Technology Fund (WWTF)
[10.47379/ICT19035] and [10.47379/ICT22029], and received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
Grant Agreement No 101034253.
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Figure 1 Labelings that adhere to semantic constraints. (a) © ScienceFacts.net [6]; (b) created
by our algorithm from Section 2, colors indicate grouping and arrows ordering constraints.

Problem Description. Let S be a set of n sites in R2 in general position, i.e., no two sites
share the same x- or y-coordinate, and enclosed in a bounding box B. For each site si ∈ S,
we have an open rectangle ℓi of height h(ℓi) and some width, which we call the label of the
site. The rectangles describe the bounding box of the (textual) labels, which are usually a
single line of text in a fixed font size. Hence, we often restrict ourselves to uniform-height
labels, but neglect their width. The po-leader λi = (si, pi) connects si with the port pi of ℓi,
which is the place where λi touches ℓi. We define the port for each label ℓ to be at half its
height. In a one-sided boundary labeling L we place for each site s ∈ S a label ℓ such that
p is on, w.l.o.g., the right side of B and connect s with ℓ using λ. If we are given a set of
candidates for the ports P , we say that we have fixed ports, otherwise sliding ports. Let Λ be
the set of all possible leaders. A labeling is called planar if no two labels overlap and there is
no leader-leader or -site crossing. We can access the x- and y-coordinate of a site or port
with x(·) and y(·). Furthermore, we are given a set of constraints C = (G,≼), consisting of a
family of grouping constraints G and a partial order ≼ on the sites. A grouping constraint
∅ ≠ G ⊆ S enforces that the labels for the sites in G appear consecutively on the boundary,
as in Figure 2a, i.e., it is not required that the labels are directly next to each other, as

(a) (b) (c)

Figure 2 (a) Length- and (b) bend-minimal admissible labelings. (c) Planar but non-admissible
length-minimal labeling. Colors indicate grouping and arrows ordering constraints.
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Figure 3 Creating an obstacle using grouping constraints as indicated by colored bands. An
alternative way of forcing the same structure with only ordering constraints is shown with the arrows.

in Figure 2b. An ordering constraint si ≼ sj enforces that we have for the ports pi and
pj y(pi) ≥ y(pj), i.e., the label for sj must not appear above the label for si. We assume
the existence of reflexive and transitive constraints in ≼ and denote with r the number of
constraints in the transitive reduction of (S,≼).

We say that a labeling respects the grouping/ordering constraints if all the grouping/order-
ing constraints are satisfied. Furthermore, we call the grouping/ordering constraints consistent
if there exists a (not necessarily planar) labeling that respects them. A labeling is admissible
if it is planar and respects the constraints. Furthermore, if an admissible labeling exists, we
aim for one that optimizes a quality criterion expressed by a function f : Λ → R+

0 . In this
paper, the optimization function f measures the length of a leader or expresses whether it has
a bend or not. Figure 2 highlights the differences and shows in (c) that an optimal admissible
labeling might be, w.r.t. f , worse than its planar (but non-admissible) counterpart.

In an instance I of the Constrained One-Sided Boundary Labeling problem1

(1-CBL in short), we want to find an admissible one-sided po-labeling L∗ for I (possibly on
a set of m ports P) that minimizes

∑
λ∈L∗ f(λ) or report that no admissible labeling exists.

Computational Complexity of 1-CBL. Fink and Suri reduced the Partition problem to
the problem of finding a planar labeling with non-uniform height labels and sliding ports in
the presence of a single obstacle [11]. We can create with our constraints an obstacle on the
boundary that serves the same purpose. Let (A = {a1, . . . aN }, w : A → N) be an instance of
Partition with

∑
a∈A w(a) = 2A for some A ∈ N2 [13]. We create for each element ai a

site si whose corresponding label has a height of w(ai), and place the sites on a horizontal
line next to each other. To mimic the obstacle, we place five sites in the configuration from
Figure 3. Note that there is no alternative order for the labels of these sites nor room to slide
them around. Hence, these labels must be placed contiguously, i.e., without any free space,
at a fixed position on the boundary, i.e., they form a block. These blocks can be used to
create two A-high free windows on the boundary where we can place the labels for the sites
representing the elements of A in, see Figure 4. Thus, we can form an equivalence between
partitioning the elements of A into two sets and placing the labels for the sites in the upper
or lower window on the boundary. Finally, Figure 3 shows that we can replace the grouping
constraints with ordering constraints, and thus we can prove Theorem 1.1.

1 As we can show for a reasonable extension to two-sided labeling that finding an admissible labeling is
NP-hard even for unit-height labels and fixed ports [9], we consider only one-sided labelings.

2 Otherwise, (A, w) would be a trivial negative instance.
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Figure 4 The placement of the sites in the reduction that shows weakly NP-hardness for 1-CBL.

▶ Theorem 1.1. Deciding if an instance of 1-CBL has an admissible labeling is weakly
NP-hard, even for a constant number of grouping or ordering constraints.

Despite Theorem 1.1, we can solve 1-CBL in polynomial time if we use a pre-defined set
of fixed ports (Section 2) or have uniform-height labels (Section 3).
Due to space constraints, all omitted details and proofs can be found in the full version [9].

2 Fixed Ports

We assume that we are given a set P of m ≥ n ports. Benkert et al. [5] observed that in
a planar labeling L, the leader λL connecting the leftmost site sL ∈ S with some port pL

splits the instance I into two independent sub-instances, I1 and I2, excluding sL and pL.
Therefore, we can describe a sub-instance I of I by two leaders (s1, p1) and (s2, p2) that
bound the sub-instance from above and below, respectively. We denote the sub-instance as
I = (s1, p1, s2, p2) and refer with S(I) (P(I)) to the sites (ports) in I, excluding those used in
the definition of I, i.e., S(I) := {s ∈ S | x(s1) < x(s), x(s2) < x(s), y(p2) < y(s) < y(p1)}
and P(I) := {p ∈ P | y(p2) < y(p) < y(p1)}. Similarly, for a leader λ = (s, p), we say that a
site s′ with x(s) < x(s′) is above λ if y(s′) > y(p) holds and below λ if y(s′) < y(p) holds.
See also Figure 5 for a visualization of these definitions.

Two more observations about admissible labelings can be made: First, λL can never split
sites s, s′ ∈ G with sL /∈ G. Second, λL never splits sites s, s′ ∈ S with s above λL and s′

below λL, for which we have s′ ≼ sL, s′ ≼ s, or sL ≼ s. Now, we could immediately define
a dynamic programming (DP) algorithm that evaluates the induced sub-instances for each
leader that adheres to these observations. However, we would then check every constraint in
each sub-instance and not make use of implicit constraints given by, for example, overlapping
groups. The following data structure makes these implicit constraints explicit.

PQ-A-Graphs. Every labeling L induces a permutation π of the sites by reading the labels
from top to bottom. Let k = |G| and assume k > 0. Let M(S,G) be a n × k binary matrix
with mi,j = 1 iff si ∈ Gj for Gj ∈ G. We call M(S,G) the sites vs. groups matrix, and observe
that L satisfies the constraint Gj iff the ones in the column j of M(S,G) are consecutive
after we order the rows of M(S,G) according to π. If this holds for all columns of M(S,G),
then the matrix has the so-called consecutive ones property (C1P) [12].
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Figure 5 A sub-instance I = (s1, p1, s2, p2) of our DP-algorithm and the used notation.

▶ Lemma 2.1. G are consistent for S iff M(S,G) has the C1P.

Booth and Lueker [7] propose an algorithm to check whether a binary matrix has the
C1P. They use a PQ-Tree to keep track of the allowed row permutations. A PQ-Tree τ ,
for a given set A of elements, is a rooted tree with one leaf for each element of A and two
different types of internal nodes t: P-nodes, that allow to freely permute the children of t,
and Q-nodes, where the children of t can only be inversed [7]. Lemma 2.1 tells us that each
family of consistent grouping constraints can be represented by a PQ-Tree. Note that we can
interpret each subtree of the PQ-Tree as a grouping constraint and call them the canonical
groups. However, not every grouping constraint results in a canonical group.

▶ Definition 2.2 (PQ-A-Graph). Let S be a set of sites, G be a family of consistent grouping
constraints, and ≼ be a partial order on S. The PQ-A-Graph T = (τ , A) consists of the
PQ-Tree τ for G, on whose leaves we embed the arcs A of a directed graph representing ≼.

We denote with Ti the subtree in the underlying PQ-Tree τ rooted at the node ti and with
leaves(Ti) the leaf set. Figure 6 visualizes a PQ-A-Graph and the introduced terminology.
Furthermore, observe that checking on the consistency of C = (G,≼) is equivalent to solving
the Reorder problem on τ and ≼, i.e., asking whether we can re-order leaves(τ) such that
the order induced by reading them from left to right extends the partial order ≼ [19].

▶ Lemma 2.3. We can check whether the constraints C = (G,≼) are consistent for S and, if
so, create the PQ-A-Graph T in O(n + |G| + |≼| +

∑
G∈G |G|) time. T uses O(n + |≼|) space.

The DP-Algorithm. Let I = (s1, p1, s2, p2) be a sub-instance and sL the leftmost site in
S(I). Let T (s1, s2) denote the sub-graph of the PQ-A-Graph T rooted at the lowest common
ancestor of s1 and s2 (in T ). Note that T (s1, s2) contains all the sites in S(I), together
with s1 and s2, and hence represents all constraints relevant for the sub-instance I. Other
constraints either do not affect sites in I or are trivially satisfied. Imagine we want to place
the label ℓL for sL at the port pL ∈ P(I). We have to ensure that λL = (sL, pL) does not
violate planarity w.r.t. the already fixed labeling and that in the resulting sub-instances
there are enough ports for the sites. Let Admissible(I, T , pL) be a procedure that checks
this and, in addition, verifies that pL respects the constraints expressed by T (s1, s2).

To do the latter, we make use of the procedure RespectsConstraints(I, T , λL), which
is defined as follows. Let tL be the leaf for sL in T (s1, s2). There is a unique path from tL

to the root of T (s1, s2), which we traverse bottom up and consider each internal node t on it.

EuroCG’24
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Figure 6 A sample PQ-A-Graph together with the used terminology.

Assume that t has the children t1, . . . , tz in this order from left to right. Let Ti, 1 ≤ i ≤ z,
be the subtree that contains the site sL, rooted at ti. The labels for all sites represented
by leaves(T1), . . . , leaves(Ti−1) will be placed above ℓL in any labeling L of S in which the
children of t are ordered as stated. Therefore, we call these sites above sL (at t). Analogously,
the sites represented by leaves(Ti+1), . . . , leaves(Tz) are below sL (at t). Figure 6 visualizes
this. Note that the sites represented by leaves(Ti) are neither above nor below sL at t.

If t is a P-node, there must exist at least one permutation π of the children of t in which
all the sites in S(I) above sL at t (in π) are above λL (recall Figure 5), and all the sites in
S(I) below sL at t (in the permutation π) are below λL, i.e., the sites are on the correct side
of λL w.r.t. π. To not iterate through all possible permutations, we distribute the children of
t, except ti, into two sets, tabove and tbelow, depending on whether they contain only leaves
for sites that should be above or below sL at t. If neither applies, we return with failure. We
also have to ensure that this complies with the definition of I and the ordering constraints.

If t is a Q-node, we do the same, however, we only have to check which of the two orderings
allowed by the Q-node complies with the position of the leader and whether it adheres to
the definition of I, i.e., labels s1 above s2. RespectsConstraints(I, T , λL) performs the
above checks for each of the O(n) nodes on the path from sL to tr in O(n (n + |≼|)) time.

For a sub-instance I = (s1, p1, s2, p2), we store in a table D the value f(L∗) of an optimal
admissible labeling L∗ on I or ∞ if none exists. If I does not contain a site we set D[I] = 0.
Otherwise, we use the following relation, where the minimum of the empty set is ∞.

D[I] = min
pL∈P(I) where

Admissible(I,T ,pL) is true

(D[(s1, p1, sL, pL)] + D[(sL, pL, s2, p2)]) + f((sL, pL))

Correctness follows from the correctness of the approach from [5] combined with the fact
that we consider only those ports that are admissible for sL. By adding two auxiliary sites
s0, sn+1 and ports p0, pm+1 above and below the sites and ports from I, we can describe I
by the sub-instance I0 = (s0, p0, sn+1, pm+1). Hence, D[I0] will store in the end f(L∗), or
∞, if I does not possess an admissible labeling. We fill the O(n2m2) entries of D top-down
using memoization. The time to evaluate an entry is dominated by the admissibility checks.

▶ Theorem 2.4. 1-CBL, with fixed ports, can be solved in O(n5m3 log m + |G| +
∑

G∈G |G|)
time and O(n2m2) space.

In the full version [9], we discuss an implementation of the algorithm for uniform-height
labels. See Figure 1b for an example computed by this implementation.
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(a) (b)

Figure 7 An instance whose admissibility depends on the position of the ports.

3 Sliding Ports with Uniform-Height Labels

Fixed ports have the limitation that the admissibility of an instance depends on the choice
and position of the ports, as Figure 7 shows. By allowing the labels to slide along a vertical
boundary line, we remove this limitation but require that all labels now have uniform height
h. We would like to use the idea of Fink and Suri [11] and let each site s induce O(n)
ports placed at multiples of h away from s, as in Figure 8a. Then, assuming that there
exists an admissible labeling L, we want to obtain a new one L′ by sliding the labels along
the boundary until each port in L′ is induced by a site. To avoid the need for re-routing
leaders in case of leader-site crossings, as this could violate constraints, we introduce O(n2)
additional ports placed sufficiently close to the induced ones. They guarantee us that there
is a port (vertically) between any two sites, as Figure 8b shows. Hence, while sliding labels,
we can reach a port before hitting a site with a leader, i.e., we never need to re-route leaders.
As we defined O(n2) canonical ports, for which we show in the full version [9] that they are
sufficient for an admissible labeling, we can use our DP-Algorithm to obtain Theorem 3.1.
In the full version [9], we further show that such canonical ports also exist for length- and
bend-minimal labelings.

▶ Theorem 3.1. 1-CBL, with uniform-height labels, can be solved in O(n11 log n + |G| +∑
G∈G |G|) time and O(n6) space.

(a) (b)

h

h

Figure 8 Set of ports (a) induced by the sites as in [11] and (b) extended to our canonical ports.
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Abstract
In this paper, we consider the Weighted Region Problem. In the Weighted Region Problem, the
length of a path is defined as the sum of the weights of the subpaths within each region, where the
weight of a subpath is its Euclidean length multiplied by a weight α ≥ 0 depending on the region.
We study a restricted version of the problem of determining shortest paths through a single weighted
rectangular region. We prove that even this very restricted version of the problem is unsolvable
within the Algebraic Computation Model over the Rational Numbers (ACMQ). On the positive side,
we provide the equations for the shortest paths that are computable within the ACMQ. Additionally,
we provide equations for the bisectors between regions of the Shortest Path Map for a source point
on the boundary of (or inside) the rectangular region.

Related Version A full version of this paper is available at arXiv:2402.12028

1 Introduction

The Weighted Region Problem (WRP) [10] is a well-known geometric problem that, despite
having been studied extensively, is still far from being well understood. Consider a subdivision
of the plane into (usually polygonal) regions. Each region Ri has a weight αi ≥ 0, representing
the cost per unit distance of traveling in that region. Thus, a segment σ, of length |σ|,
between two points in the same region has weighted length αi|σ| when traversing the interior
of Ri, or min{αi, αj}|σ| if it goes along the edge between Ri and Rj . Then, the weighted
length of a path π(s, t) through a subdivision is the sum of the weighted lengths of its
subpaths through each face or edge. The resulting metric is called the Weighted Region
Metric. The WRP entails computing a shortest path between two given points s and t under
this metric. We denote the weighted length of π(s, t) by d(s, t). Figure 1 shows how the
shape of a shortest path changes as the weight of one region varies.

Existing algorithms for the WRP—in its general formulation—are approximate. Since
the seminal work by Mitchell and Papadimitriou [10], with the first (1 + ε)-approximation,
several algorithms have been proposed, with improvements on running times, but always
keeping some dependency on the vertex coordinates sizes and weight ranges. These methods
are usually based on the continuous Dijkstra’s algorithm (e.g., [10]), or on adding Steiner
points (e.g., see [1, 2, 3, 4, 13]). However, rather recently it has been proved that computing
an exact shortest path between two points using the weighted region metric, even if there are
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MCIN/AEI/10.13039/501100011033. G. E. is also funded by an FPU of the Universidad de Alcalá.
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α=0.2 α=1 α=1.2 α=1.8

Figure 1 Examples of shortest paths between two points—shown in orange—for two weighted
regions. The unbounded region has weight 1, the squares have varying weight α.

only three different weights, is an unsolvable problem in the Algebraic Computation Model
over the Rational Numbers (ACMQ) [5]. In the ACMQ one can compute exactly any number
that can be obtained from rational numbers by applying a finite number of operations from
+, −, ×, ÷, and k

√, for any integer k ≥ 2. This provides a theoretical explanation for the lack
of exact algorithms for the WRP, and justifies the study of approximation methods.

This also raises the question of which are the special cases for which the WRP can be
solved exactly. Two natural ways to restrict the problem are by limiting the possible weights,
and by restricting the shape of the regions. For example, computing a shortest path among
polygonal obstacles can be seen as a variant of the WRP with weights in {1, ∞}. The case
for weights in {0, 1, ∞} can be solved in O(n2) time [6]. Other variants that can be solved
exactly correspond to regions shaped as regular k-gons with weight ≥ 2 (since they can be
considered as obstacles), or regions with two weights {1, α} consisting of parallel strips [11].

Our results. In light of the fact that the WRP is unsolvable in the ACMQ for three
different weights, in this work we study the case of two arbitrary weights, that is, weights
in {1, α}. This case is particularly interesting, since an algorithm for weights {1, α} can be
transformed into one for weights in {0, 1, α, ∞} [8]. However, the variant with weights {1, α}
was conjectured to be as hard as the general WRP problem, see the first open problem in [6,
Section 7]. (The results in [5] do not directly apply to weights {0, 1, α, ∞}.)

This paper is organized as follows. First we present some preliminaries in Section 2. In
Section 3 we consider two weights and one rectangular region R, with the source point s on
its boundary or inside. For this setting, we figure out all types of possible optimal paths and
give exact formulas to compute their lengths. In Section 3.3 we focus on the case where s is
outside of R, and prove that in this case the WRP with weights {1, α} is already unsolvable
in the ACMQ. In Section 4 we explore the computation of the shortest path map for s. We
finish with some conclusions in Section 5. Omitted proofs are in the full version of the paper.

2 Shortest paths and their properties

In this section we briefly review some key properties of shortest paths in weighted regions.
First, shortest paths in the weighted region problem will always be piecewise linear,

see [10, Lemma 3.1]. Second, it is known that shortest paths must obey Snell’s law of
refraction. So we can think of a shortest path as a ray of light. We define the angle of
incidence θ as the minimum angle between the incoming ray and the vector perpendicular to
the region boundary. The angle of refraction θ′ is defined as the minimum angle between the
outgoing ray and the normal (see Figure 3). Snell’s law states that whenever the ray goes
from one region Ri to another region Rj , then αi sin θ = αj sin θ′. In addition, whenever
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αi > αj , the angle θc at which αi

αj
sin θc = 1 is called the critical angle. A ray that hits an

edge at an angle of incidence greater than θc, will be totally reflected from the point at which
it hits the boundary. In our problem, a shortest path will never be incident to an edge at an
angle greater than θc. Finally, if the space only contains orthoconvex regions1 with weight at
least

√
2, they can be simply considered obstacles [11]. Thus, since we focus on a rectangular

region R, we assume that its weight is 0 < α <
√

2. However, first we provide some general
properties of shortest paths for arbitrary weighted regions that are interesting on their own.

▶ Lemma 2.1. Let S be a polygonal subdivision for which each region has a weight in the set
{1, α}, with α > 0. A shortest path π(s, t) visits any edge of the subdivision at most once.

Proof. Assume, for the sake of contradiction, that π(s, t) intersects an edge e in at least
two disjoint intervals I1 and I3. Moreover, let p1 ∈ I1 and p3 ∈ I3 be points for which the
subpath π(p1, p3) ⊆ π(s, t) does not intersect e in any points other than p1 and p3. Let p2
be a point on π(p1, p3) between p1 and p3, which thus does not lie on e. Now observe that
there exists a path p1p3 from p1 to p3 of length min{1, α}|p1p3|. Since p2 does not lie on
p1p3, it follows by the triangle inequality that the length of π(p1, p3) is strictly larger than
min{1, α}|p1p3|. Hence, π(s, t) is not a shortest path, and we obtain a contradiction. ◀

▶ Corollary 2.2. Let S be a polygonal subdivision with n vertices, such that the weight of
each region is within the set {1, α}, with α > 0. Any shortest path π(s, t) is a polygonal chain
with at most O(n) vertices.

Proof. Any shortest path is a polygonal chain whose interior vertices all lie on edges of S,
see [10, Proposition 3.8]. By Lemma 2.1, each edge contributes with at most two vertices. ◀

We observe that if the regions use only one of two weights {1, α}, Corollary 2.2 implies
that the time complexity of the algorithm proposed by Mitchell and Papadimitriou [10] can
be improved by a quartic factor to O(n4L), where L is the precision of the instance.

3 Computing a shortest path

We now consider the problem of computing a shortest path π(s, t) from s to t when the
region R is an axis-aligned rectangle of weight α. The exact shape of π(s, t) depends on the
position of s and t with respect to R, and on the value of α.

In Sections 3.1 and 3.2 we consider the case that s lies on the boundary or inside of R,
respectively. We categorize the various types of shortest paths, and show that we can compute
the shortest path of each type, and thus we can compute π(s, t). In Section 3.3, we consider
the case that s and t lie outside R. In this case π(s, t) may have two vertices on the boundary
of R. We show that the coordinates of these vertices cannot be computed exactly within the
ACMQ.

3.1 The source point s lies on the boundary of R

Throughout this section we consider the case where s is restricted to the boundary of R, a
rectangle of unit height with top-left corner at (0, 0). Let s = (sx, 0), sx > 0, be a point
on the top side of R, see Figure 2. In addition, we assume that t is to the left of the line
through s perpendicular to the top side of R. The other cases are symmetric.

1A region is orthoconvex if its intersection with every horizontal and vertical line is connected or
empty [12].
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Figure 2 Path types for s on the boundary of R of weight α < 1 (blue) and 1 < α <
√

2 (orange).

Shortest path types. Lemma 2.1 implies that in this setting, there are only O(1) combina-
torial types of paths that we have to consider. More precisely, we have that:

▶ Observation 3.1. Let s be a point on the top boundary of a rectangle R with weight 0 <

α <
√

2. There are 12 types of shortest paths πi(s, t), shown in Figure 2, up to symmetries.

Length of πi(s, t). When s is on the boundary of R, there is at most one vertex of πi(s, t)
without the critical angle property. This allows us to compute the exact coordinates of the
vertices of πi(s, t). Theorem 3.2 gives the length di(s, t) of the path πi(s, t). The proofs of
the equations, which are based on Snell’s law of refraction, are deferred to the full version.

▶ Theorem 3.2. Let s = (sx, 0) be a point on the boundary of R with weight 0 < α <
√

2. A
shortest path π(s, t) = πi(s, t) from s to a point t = (tx, ty) and its length can be computed in



S. de Berg and G. Esteban and R. I. Silveira and F. Staals 46:5

O(1) time in the ACMQ. In particular, the length d(s, t) = di(s, t) is given by

di(s, t) =





√
(sx − tx)2 + t2

y if i = 1
α(sx − tx) +

√
1 − α2ty if i = 2

αsx +
√

t2
x + t2

y if i = 3

sx +
√

t2
x + t2

y if i = 4
sx −

√
2 − α2tx −

√
α2 − 1ty if i = 5

α
√

s2
x + y2 +

√
t2
x + (ty − y)2 if i = 6√

α2 − 1sx + 1 +
√

t2
x + (ty + 1)2 if i = 7√

α2 − 1(sx + tx) −
√

2 − α2(1 + ty) + 1 if i = 8
α

√
(sx − x)2 + 1 +

√
(tx − x)2 + (ty + 1)2 if i = 9

( and thus t lies
outside R

)
, and

di(s, t) =





sx − tx −
√

α2 − 1ty if i = 10
α

√
(sx − tx)2 + t2

y if i = 11
√

α2 − 1(sx + tx) − ty if i = 12

( and thus t lies
inside R

)
,

in which x is the unique real solution in the interval (tx, sx) to the equation

βx4 − 2β(tx + sx)x3 + [β(s2
x + t2

x + 4sxtx) + α2(1 + ty)2 − 1]x2

− 2[β(txs2
x + t2

xsx) + α2(1 + ty)2sx − tx]x + βt2
xs2

x + α2(1 + ty)2s2
x − t2

x = 0, (1)

where β = α2 − 1, and y is the unique real solution in the interval (ty, 0) to the equation

βy4 − 2tyβy3 + [α2t2
x + βt2

y − s2
x]y2 + 2s2

xtyy − s2
xt2

y = 0.

3.2 The source point s lies inside R

We now consider the case where s is restricted to the interior of the rectangle R.

▶ Observation 3.3. Let s be a point in a rectangle R with weight 0 < α <
√

2. There are 6
types of shortest paths, up to symmetries, namely πi(s, t), for i ∈ {6, 7, 8, 9, 11, 12}.

The types of shortest paths are similar to the ones defined in Observation 3.1, see the
paths in Figure 2 where the top side of R or the region above R is not intersected. As in
Theorem 3.2, we can thus compute the (length of) a shortest path (of each type) exactly,
albeit that the expressions for the length are dependent on the location of s in R. Theorem 3.2
gives exact lengths for all path types when R has height > 1 and s is at distance exactly 1
from the bottom boundary of R.

3.3 The source point s lies outside of R

When both the source and the target point are outside of R, the shortest path can again be
of many different types. In particular, the types in Figure 2 can be generalized to this setting.
There are two special cases where the shortest path bends twice at an angle that is not the
critical angle: it can bend on two opposite sides of the rectangle, or on two incident sides. In
the first case, the angles at both vertices of π(s, t) are equal, and the shortest path can be
computed exactly [11]. For the second case, we show that it is not possible to compute the
coordinates of the vertices of π(s, t) exactly in the ACMQ. Hence, the WRP limited to two
weights {1, α} is not solvable within the ACMQ. Note that this path type can occur in an
even simpler setting, where R is a single quadrant instead of a rectangle.

EuroCG’24



46:6 Exact solutions to the Weighted Region Problem

θ1

θ′1

θ2

θ′2

α > 0

s = (0, 0)

t = (200, 200)

(50, 150)

Figure 3 A shortest path from s to t that bends twice under different angles.

▶ Theorem 3.4. The weighted region problem with weights in the set {1, α}, with 0 < α <
√

2,
cannot be solved exactly within the ACMQ, even if R is a single quadrant.

Proof sketch. We obtain this result by following the approach of De Carufel et al. [5] to
show that the polynomial that represents a solution to the WRP in this situation is not
solvable within the ACMQ. We consider the situation in Figure 3. By applying Snell’s law on
both vertices of π(s, t), and several trigonometric identities, we find the following expression
for u = sin θ1, where θ1 is the angle at which the path leaves s, with respect to the x-axis:

√
α2 − u2

(
3
u

− 1√
1 − u2

+ 1√
1 − α2 + u2

)
= 3.

Note that a solution to this equation would give us the shortest path, as we can use Snell’s law
to find the other angles θ′

1 and θ′
2. By squaring appropriately, this equation can be transformed

into a degree 11 polynomial p(u). Finally, we show that this polynomial is unsolvable within
the ACMQ by applying a general lemma on the unsolvability of polynomials. ◀

4 Computing a Shortest Path Map

To find a shortest path from a source point s to all points at once, one can build a Shortest
Path Map (SPM ), see e.g., [7, 9, 10]. A SPM is a subdivision of the space for a given source s,
where for each cell the paths π(s, t), with t in the cell, have the same type. To compute
the SPM , we consider computing the bisector bi,j = {q | q ∈ R2 ∧ di(s, q) = dj(s, q)} for all
relevant pairs of shortest path types πi, πj , i.e., pairs for which bi,j appears in the shortest
path map. As before, we consider the setting where R is a rectangular region. In Section 4.1,
we first consider the case when s lies on the boundary of R. In Section 4.2, we do the same
for the case s lies inside R. The case that s lies outside R is not interesting, as we cannot
even compute exactly a single shortest path in that case.

4.1 The source point s lies on the boundary of R

The SPM is given by the boundary of R and several bisector curves, expressed as points
(x, bi,j(x)). If α < 1, these curves all lie outside R (the interior of R is a single region
in the SPM ). Bisectors involving π9(s, t) are of a much more complicated form, as might
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be expected from the implicit representation used for d9(s, t) in Theorem 3.2. Therefore,
Lemma 4.1 gives the bisector curves, excluding the ones related to π9(s, t). The proofs are
deferred to the full version.

▶ Lemma 4.1. The SPM for a point s = (sx, 0) on the boundary of R is defined by:

bi,j(x) =





√
1−α2

α (sx − x) if i = 1, j = 2
−

√
1−α2

α x if i = 2, j = 3
0 if i = 3, j = 6

( when α < 1 ) , and

bi,j(x) =





0 if i = 1, j = 4
√

α2−1√
2−α2 x if i = 4, j = 5

√
α2−1√
2−α2 x −

√
α2 − 1sx if i = 5, j = 6

x = 0 if i = 6, j = 7
−1 −

√
2−α2√
α2−1 x if i = 7, j = 8

−
√

α2 − 1(sx − x) if i = 10, j = 11
− (sx+x)+2α

√
sxx√

α2−1 if i = 11, j = 12

( when 1 < α <
√

2 ) .

We conjecture the following on the bisectors involving π9(s, t).

▶ Conjecture. No point on bi,9 \ R, i ∈ {4, . . . , 8}, can be computed exactly within ACMQ.

We tried to prove this conjecture by taking a similar approach as in Theorem 3.4. However,
the solution to Equation (1) already seems to be of high degree. We therefore did not manage
to formulate a point on the bisector as a polynomial equation (not containing roots).

Note that in the more restrictive case where R is a single quadrant and s lies on the bound-
ary, the only types of shortest paths that exist are πi(s, t), for i ∈ {1, 2, 3, 4, 5, 6, 10, 11, 12}.
Thus, we can compute the SPM in the ACMQ (the bisectors are given by the equations in
Lemma 4.1).

4.2 The source point s lies inside R

In this case we have shortest paths of type πi(s, t), for i ∈ {6, 7, 8, 9, 11, 12}. Hence, the
equations of the bisectors of the SPM are given by the sides of R, and bisector b6,9 if α < 1,
and bisectors b6,7, b7,8, b6,9, b7,9, b8,9 and b11,12 if 1 < α <

√
2. See Lemma 4.1.

5 Conclusion

We analyzed the WRP when there is only one weighted rectangle R, and showed how to
obtain the exact shortest path π(s, t) and its length when s lies in or on R. When both s

and t lie outside R the exact solution is unsolvable in ACMQ. We obtain similar results in
the case where R is a single quadrant. For future work, it would be interesting to analyze if
or how we can generalize this to other convex shapes.
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Abstract
Given a set of n points in the Euclidean plane, the k-MinSumRadius problem asks to cover this
point set using k disks with the objective of minimizing the sum of the radii of the disks. A
practically and structurally interesting special case of the k-MinSumRadius problem is that of
small k. For the 2-MinSumRadius problem, a near-quadratic time algorithm with expected running
time O(n2 log2 n log2 log n) was given over 30 years ago [Eppstein ’92].

We present the first improvement of this result, namely, a near-linear time algorithm to compute
the 2-MinSumRadius that runs in expected O(n log2 n log2 log n) time. We generalize this result to
any constant dimension d, for which we give an O(n2−1/(⌈d/2⌉+1)+ε) time algorithm. Additionally,
we give a near-quadratic time algorithm for 3-MinSumRadius in the plane that runs in expected
O(n2 log2 n log2 log n) time.

Related Version Full version: https://arxiv.org/abs/2312.08803

1 Introduction

Clustering seeks to partition a data set in order to obtain a deeper understanding of its
structure. There are different clustering notions that cater to different applications. An
important subclass is geometric clusterings [6]. In their general form, as defined in [6],
geometric clusterings try to partition a set of input points in the plane into k clusters such
that some objective function is minimized. More formally, let f be a symmetric k-ary function
and w a non-negative function over all subsets of input points. The geometric clustering
problem is defined as follows: Given a set P of points in the Euclidean plane and an integer
k, partition P into k sets C1, . . . , Ck such that f(w(C1), . . . , w(Ck)) is minimized. Popular
choices for the weight function w are the radius of the minimum enclosing disk, and the sum
of squared distances from the points to the mean. The function f aggregates the weights of
all clusters, for example using the maximum or the sum.
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Figure 1 The optimal 2-Center clustering (left) compared to the optimal 2-MinSumRadius
clustering (right) for the same point set. In this example 2-MinSumRadius clustering better captures
the structure of the point set than 2-Center clustering.

Arguably the most popular types of clustering in this setting are k-Center clustering
(with f being the maximum, and w being the radius of the minimum enclosing disk) and
k-Means clustering (with f being the sum, and w being the sum of squared distances to
the mean). While geometric clusterings have the advantage that their underlying objective
function can be very intuitive, unfortunately the cluster boundaries might sometimes be
slightly more complex. For example, the disks defining the clusters can have a large overlap
in k-Center clustering (see Figure 1), while in k-Means clustering the boundaries are
defined by the Voronoi diagram on the mean points of the clusters (whose complexity has an
exponential dependency on the dimension). An instance of geometric clustering for which
the cluster boundaries implicitly consist of non-overlapping disks is k-MinSumRadius. In
k-MinSumRadius clustering we want to minimize the sum of radii of the k disks with
which we cover the input point set. In the geometric clustering setting, this means that the
function f is the sum and w is the radius of the minimum enclosing disk. This is the notion
of clustering that we consider in this work.

While k-Center and k-Means are both NP-hard in the Euclidean plane when k is part
of the input [14, 16], the k-MinSumRadius problem can be solved in polynomial time [12]:
O(n881) 1. Although the running time of the known polynomial-time algorithm can likely be
slightly improved using the same techniques, the balanced separators that are used in the
algorithm inevitably lead to a high running time. Thus, we believe that further structural
insights into the problem — especially with respect to separators — are needed to greatly
reduce the exponent of the polynomial running time.

In order to obtain a deeper understanding of the problem and as clustering into a small
number of clusters is practically more relevant, we consider the k-MinSumRadius problem
for small values of k here. The importance of this setting is reflected in the extensive work
that was conducted in the analogous setting for the k-Center and k-Means problem,
especially for the case of two clusters [3, 4, 7, 8, 9, 11, 13, 17, 18] — also called bi-partition.
Bi-partition problems are of interest on their own, but they can additionally be used as a
subroutine in hierarchical clustering methods. Even more interestingly, while near-linear
time algorithms for 2-Center clustering received a lot of attention [7, 11, 8, 17, 18], the
best known algorithm for 2-MinSumRadius still has near-quadratic expected running time
O(n2 log2 n log2 log n) [10], which has seen no improvement in the last 30 years, despite
significant work on related problems.

1 As the radii of minimum enclosing disks can contain square roots, the value of a solution is a sum of
square roots. However, it is not known how to compare two sums of square roots in polynomial time in
the number of elements. The running time merely counts the number of such comparisons.
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Our results

In this work, we break the quadratic barrier for 2-MinSumRadius in the Euclidean plane by
presenting a near-linear time algorithm with expected running time O(n log2 n log2 log n).
Our method actually extends to any constant dimension d ≥ 3, again yielding a subquadratic
algorithm with running time O(n2−1/(⌈d/2⌉+1)+ε). Moreover, we extend our structural
insights to planar 3-MinSumRadius — matching the previously best 2-MinSumRadius
running time — and give an algorithm with expected O(n2 log2 n log2 log n) running, which
is the first non-trivial result on this special case that we are aware of. The running time
for planar 2-MinSumRadius and 3-MinSumRadius can be made deterministic by using
the deterministic algorithm to maintain a minimum enclosing ball [10], which increases the
running times to O(n log4 n) and O(n2 log4 n), respectively.

The main technical contribution leading to these results are structural insights that
simplify the problem significantly. Concretely, we show that the points on the boundary
of the minimum enclosing disk (or ball, in higher dimensions) of the point set, induce a
constant number of directions such that there is a line (or hyperplane) with one of these
directions that separates one cluster from the other clusters in an optimal solution. As
there are only linearly many combinatorially distinct separator lines for each direction, we
have linearly many separators in total that we have to consider. Note that this is the
main difference to the previously best algorithm for planar 2-MinSumRadius [10], which
considered quadratically many separators. We then check all clusterings induced by these
separators using an algorithm from [10] to dynamically maintain a minimum enclosing disk
and, in the k = 3 case, we use our 2-MinSumRadius algorithm as subroutine. For the
higher-dimensional 2-MinSumRadius problem, we similarly use an algorithm to maintain a
minimum enclosing ball in any dimension d ≥ 3 [2]. While our algorithms are interesting in
their own right, we additionally hope to enable a better understanding of the general case by
uncovering this surprisingly simple structure of separators in the cases k ∈ {2, 3}.

Structure of the paper. Due to space limitations, in this paper we focus on presenting
the algorithm and correctness of the planar k = 2 case, in Section 2 and Section 3. We give
a brief overview of the k = 3 case in Section 4. As outlined above, the algorithms for the
other cases than planar k = 2 are similar and rely on an analogous structural result for their
respective case, namely that we can identify a linear number of separators out of which one
separates one of the optimal clusters from the rest of the clusters. The extension to constant
dimensions for the k = 2 case as well as the proof for the k = 3 case — which is significantly
more technical — can be found in the full version [1].

2 Preliminaries

For a set of points Q ⊂ R2, let MED(Q) be the minimum enclosing disk that contains all
points of Q and let r(Q) be the radius of MED(Q).

▶ Definition 2.1 (k-MinSumRadius). Let P be a set of n points in Rd and k be a positive
integer. The k-MinSumRadius problem asks to partition P into k clusters C1, C2, ..., Ck

such that
∑k

i=1 r(Ci) is minimized.

Throughout the paper, let D denote the minimum enclosing disk of the input points of our
k-MinSumRadius instance, i.e., D := MED(P ), and let c be the center of D. We say that
a point set Q defines a disk D′ if MED(Q) = D′. Let p be a point on the boundary of D,

EuroCG’24
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we define p∗ to be the diametrically-opposing point of p on D. The diameter d(p) is then the
segment from p to p∗.

The next lemma states that in an optimal solution clusters are well-separated, in the
sense that their minimum enclosing disks are disjoint.

▶ Lemma 2.2. Given a k-MinSumRadius instance, there exists an optimal solution with
clusters C1, . . . , Ck such that MED(Ci) ∩ MED(Cj) = ∅ for all distinct i, j ∈ [k].

Proof. Consider an arbitrary optimal solution for which there are two clusters Ci, Cj where
MED(Ci) ∩ MED(Cj) ̸= ∅. We replace the clusters Ci, Cj by a single cluster C ′ := Ci ∪ Cj .
Note that this does not increase the total cost, as r(C ′) ≤ r(Ci) + r(Cj). Hence, we obtain
a clustering with one less cluster. We can recursively apply this argument until we either
end up with a single cluster (which trivially satisfies the lemma) or all clusters have pairwise
non-overlapping minimum enclosing disks. ◀

3 Near-Linear Algorithm for 2-MinSumRadius

In this section, we present our algorithm for 2-MinSumRadius for the plane. We generalize
this to higher dimensions in the full version of this paper. For the plane, we prove the
following result:

▶ Theorem 3.1. For a set P of n points in the Euclidean plane, an optimal 2-MinSumRadius
clustering can be computed in expected O(n log2 n log2 log n) or worst-case O(n log4 n) time.

3.1 Algorithm
Our algorithm uses the insight that there exist a linear number of separators, such that one
of them separates the points in cluster C1 from those in cluster C2.

▶ Lemma 3.2. Given a point set P in the Euclidean plane, let C1, C2 be an optimal 2-
MinSumRadius clustering of P . Furthermore, let p1, p2, p3 be three points of P that define
the minimum enclosing disk of P (with potentially p2 = p3). Then there exists a point
q ∈ {p1, p2, p3} and a line ℓ orthogonal to d(q) such that ℓ separates C1 from C2.

We prove this result in Section 3.2. We now explain our algorithm relying on Lemma 3.2.

Algorithm description. Let p1, p2, p3 denote a triple of points in P that define D (possibly
p2 = p3). These points can be computed in O(n) time [15]. We try out every combinatorially
distinct line orthogonal to d(pi) for i ∈ {1, 2, 3} as a separator. We consider the separators
orthogonal to a specific d(pi) in sorted order such that in each step only one point or multiple
collinear points switch sides with respect to the separator. This ensures that the minimum
enclosing disk on one side of the separator is incremental while it is decremental on the other
side. We can therefore use a data structure to dynamically maintain them. We then select
the best solution found using these separators.

Correctness follows directly from Lemma 3.2, hence let us consider the running time.
We can maintain the minimum enclosing disks A and B in expected O(log2 n log2 log n) or
worst-case O(log4 n) amortized time per update [10]. So, checking all n separators requires
expected O(n log2 n log2 log n) or O(n log4 n) worst-case time. As we only have diameters
d(p1), d(p2), and d(p3) to handle, we can compute the optimal solution in the same time.
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(a) Case 1: Two points define D.
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(b) Case 2: At least three points define D.

Figure 2 Visualization of the two cases in the proof for the existence of a separator that is
perpendicular to one of the diameters of p1, p2, p3.

3.2 Linear number of cuts

In this subsection we prove Lemma 3.2, which states that it suffices to only check separators
orthogonal to one of the diameters d(p1), d(p2), or d(p3). From now on, we assume that the
optimal solution consists of two non-empty clusters. If the optimal solution contains only a
single cluster, it must be D. So, only solutions that have sum of radii strictly smaller than
r(D) are relevant for us in the case of two non-empty clusters.

Proof of Lemma 3.2. We consider two different cases, depending on whether the minimum
enclosing disk D of the input points is defined by two or more points.

Case 1: Two points define D. We illustrate this case in Figure 2a. Let p1 and p2 be the
two points that define the minimum enclosing disk. Then, p1 must be diametrically opposing
p2 on D, so d(p1) = d(p2). As we assume that the optimal solution has value less than
r(D), we have that p1 and p2 must belong to different clusters; without loss of generality, let
p1 ∈ C1 and p2 ∈ C2.

Let ℓ be the line tangent to MED(C1) perpendicular to d(p1) furthest in direction −−−→
c − p1

(recall that c is the center of D). If ℓ does not separate MED(C1) and MED(C2), then
the projections of the disks MED(C1) and MED(C2) on d(p1) cover all of the diameter, so
r(C1) + r(C2) ≥ r(D), which is a contradiction. Hence, ℓ separates the clusters as desired.

Case 2: At least three points define D. We illustrate this case in Figure 2b. Let
p1, p2, p3 ∈ P be any three points that jointly define the minimum enclosing disk. In any
optimal solution, two out of these three points must be grouped together in a cluster. Without
loss of generality, assume that p1 and p2 are in the same cluster.

Any disk containing p1 and p2 that is defined by points in D (thus, also has radius at
most r(D)) must contain all of p̄1p2, the smallest of the two arcs on D connecting p1 and p2.
We now add the artificial point p∗

3 to the point set — the diametrically opposing point of
p3. We have that p∗

3 ∈ p̄1p2 as otherwise p1, p2, p3 would lie strictly inside one half of D and
could therefore not define the minimum enclosing disk [5, Lemma 2.2]. Hence, adding p∗

3 to
the point set does not change the optimal solution. Thus, we reduced our problem to Case 1,
where two points define the minimum enclosing disk. ◀
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4 Near-Quadratic Algorithm for 3-MinSumRadius

Due to the space limit, we can only give a very brief description of the k = 3 case here and
we refer to the full version for proofs and more details. Our near-quadratic algorithm for the
3-MinSumRadius problem again relies on the structural insight that there are only linearly
many cuts that need to be considered in order to find one that separates one cluster from
the two other clusters. For the separated cluster we can then simply compute the minimum
enclosing disk, while for the other two clusters we use our near-linear time algorithm for
2-MinSumRadius. Hence, we obtain a near-quadratic time algorithm.

The following is the main structural lemma that our algorithm relies on:

▶ Lemma 4.1. Given a point set P in the Euclidean plane, let C1, C2, C3 be an optimal
3-MinSumRadius clustering of P . Furthermore, let p1, p2, p3 be three points in P that
define the minimum enclosing disk of P (with potentially p2 = p3). Then there exists a point
q ∈ {p1, p2, p3} and a line ℓ orthogonal to d(q) such that ℓ separates the cluster containing q

from the other two clusters.

The proof can be found in the full version. We prove this lemma by a case distinction on
which cluster the points that define the minimum enclosing disk D belong to. We then
either reduce to the case in which the endpoints of one of the diameters lie in different
clusters (similar to the k = 2 case), or we show that non-existence of a separator results in a
contradiction.

We then obtain the following theorem.

▶ Theorem 4.2. For a set P of n points in the Euclidean plane an optimal 3-MinSumRadius
can be computed in expected O(n2 log2 n log2 log n) or worst-case O(n2 log4 n) time.
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Abstract
We prove the following variant of Levi’s Enlargement Lemma: for an arbitrary arrangement A of
x-monotone pseudosegments in the plane and a pair of points a, b with distinct x-coordinates and
not on the same pseudosegment, there exists a simple x-monotone curve with endpoints a, b that
intersects every curve of A at most once. As a consequence, every simple monotone drawing of a
graph can be extended to a simple monotone drawing of a complete graph.

Related Version arXiv:2312.17675

1 Introduction

Given k ≥ 1, a finite set A of simple curves in the plane is called an arrangement of
k-strings if every pair of the curves of A intersects at most k times, and every intersection
point is a proper crossing or a common endpoint. An arrangement of 1-strings is also
called an arrangement of pseudosegments, and each curve in the arrangement is called a
pseudosegment. In this paper, we represent simple curves as subsets of the plane that are
homeomorphic images of a closed interval.

A simple curve γ in the plane is x-monotone, shortly monotone, if γ intersects every line
parallel to the y-axis at most once.

Given an arrangement A of monotone pseudosegments in the plane and a pair of points
a, b with distinct x-coordinates and not on the same pseudosegment, we say that A is (a, b)-
extendable if there exists a monotone curve with endpoints a, b that intersects every curve
of A at most once. We say that A is extendable if it is (a, b)-extendable for all possible
choices of a and b.

Our main result is the following.

▶ Theorem 1.1. Every arrangement of monotone pseudosegments in the plane is extendable.

The proof of Theorem 1.1 can be turned into an algorithm: the new pseudosegment
extending an arrangement A and joining two given points a and b is constructed in at most
|A| steps. Starting with an initial curve from a to b, in each step the curve is locally rerouted
along one pseudosegment of A.

A drawing of a graph in the plane is simple if every pair of edges has at most one common
point, either a common endpoint or a proper crossing. A drawing of a graph is monotone if
every edge is drawn as a monotone curve and no two vertices share the same x-coordinate.
We have the following direct consequence of Theorem 1.1, illustrated in Figure 1.
▶ Corollary 1.2. Every simple monotone drawing of a graph in the plane can be extended to
a simple monotone drawing of the complete graph with the same set of vertices.

∗ Supported by project 23-04949X of the Czech Science Foundation (GAČR) and by the grant
SVV–2023–260699.
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Figure 1 Left: a simple monotone drawing of a graph. Right: an extension of the drawing on
the left to a simple monotone drawing of a complete graph. The added edges are dashed.

Figure 2 An example of an arrangement of three pseudosegments that cannot be extended to
pseudolines forming a pseudoline arrangement.

In the full version of this article we also study the extendability problem for cylindrically
monotone arrangements. We show that extending an arrangement of cylindrically monotone
pseudosegments is not always possible; in fact, the corresponding decision problem is NP-
hard.

We prove Theorem 1.1 in Section 2.

1.1 Related results
A pseudoline in the plane is an image of a Euclidean line under a homeomorphism of the
plane; in other words, a pseudoline is a homeomorphic image of the set R, unbounded in
both directions. An arrangement of pseudolines is a finite set of pseudolines such that every
pair of them has exactly one crossing, and no other common intersection point. Pseudolines
are also often defined in the projective plane, as nonseparating simple closed curves.

Levi’s Enlargement Lemma [9] states that for every arrangement of pseudolines and every
pair of points a, b not on the same pseudoline, one can draw a new pseudoline through a and
b, crossing every curve from the given arrangement exactly once. The lemma has several
alternative proofs in the literature [3, 10].

By a classical result of Goodman [6], [5, Theorem 5.1.4], every arrangement of pseudo-
lines can be transformed by a homeomorphism of the plane into an arrangement of monotone
pseudolines, or a so-called wiring diagram. Therefore, monotone arrangements of pseudoseg-
ments can be considered as a generalization of pseudoline arrangements. On the other hand,
Figure 2 shows an example that not every monotone arrangement of pseudosegments can
be seen as a “restriction” of a pseudoline arrangement, and so Theorem 1.1 does not easily
follow from Levi’s Lemma. See Arroyo, Bensmail and Richter [1, Figure 2] for more ex-
amples. Since a pseudoline (in the projective plane) can be considered as a union of two
pseudosegments, Theorem 1.1 can also be considered as a generalization of “a half” of Levi’s
Lemma.

A simple drawing of the disjoint union of two 2-paths that cannot be extended to a simple
drawing of K6 was constructed by Eggelton [4, Diagram 15(ii)] and later rediscovered by
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the first author [8, Figure 9]. Later a few more examples of non-extendable simple drawings
were constructed [7, Figures 1, 10]. None of these drawings are homeomorphic to monotone
drawings, which follows, for example, from Theorem 1.1.

Arroyo et al. [2] showed that it is NP-hard to decide, given an arrangement A of pseu-
dosegments and a pair of points a, b, whether a and b can be joined by a simple curve
crossing each pseudosegment of A at most once. Our NP-hardness proof in the full version
is a simple adaptation of this result to cylindrically monotone arrangements.

2 Monotone arrangements in the plane

We start with a few definitions and tools for analyzing x-monotone arrangements. Given
a pair of points a, b in the plane, we write a ≺ b if a has a smaller x-coordinate than b.
Clearly, ≺ is a strict linear order on the points of any monotone curve.

We can naturally talk about objects lying “below” and “above” monotone curves. Let a, b

be points such that a ≺ b. For any monotone curve γ we denote by γ[a, b] and γ(a, b) the
subset of γ formed by the points x of γ satisfying a ⪯ x ⪯ b and a ≺ x ≺ b, respectively.
Similarly, for an arrangement B of monotone pseudosegments we denote by B[a, b] the ar-
rangement of pseudosegments where we replace each γ ∈ B by γ[a, b].

By consecutive intersections of two monotone curves with finitely many intersections
we mean consecutive intersections with respect to their x-coordinates. Let α, β be two
monotone curves with finitely many intersections. Let a, b be two consecutive intersections
of α, β such that a ≺ b. Then the only intersections of α[a, b] with β[a, b] are the points a

and b. In this case we say that the curves α and β form a bigon. Furthermore, if α(a, b) lies
above β(a, b) we say that α and β form an α-top, or equivalently, a β-bottom bigon.

The lower envelope low(U) of a set U of curves is the set of all points p of these curves
such that no other point of any curve of U with the same x-coordinate as p is below p. Note
that if U is an arrangement of monotone pseudosegments, then low(U) is a finite union of
connected parts of pseudosegments.

2.1 Proof of Theorem 1.1
Let A be an arrangement of monotone pseudosegments. Let a, b, with a ≺ b, be points that
are not on the same pseudosegment of A. We need to find a monotone curve from a to b

that intersects every curve of A at most once. Since every curve of A is monotone, we can
without loss of generality assume that A = A[a, b].

Let A′ be an arrangement of monotone pseudosegments formed by all pseudosegments
of A together with three new segments τ1, τ2, τ3, defined as follows. The segment τ1 is an
almost vertical segment starting in a and ending in some new point to the right of a and
above all pseudosegments of A. Similarly, τ3 is an almost vertical segment ending in b and
starting in some new point to the left of b and above all pseudosegments of A. Finally, τ2 is
a horizontal segment crossing τ1 and τ3, and lying entirely above all pseudosegments of A;
see Figure 3. In this way, low({τ1, τ2, τ3}) is a monotone curve connecting a and b “from
above”, so that every pseudosegment γ ∈ A intersects it at most twice. Furthermore no
γ ∈ A forms a γ-top bigon with low({τ1, τ2, τ3}) (it can only form a γ-bottom bigon).

In order to find an extending curve we do the following. We find a nonempty subset
U ⊆ A′ of pseudosegments such that the lower envelope of U is a monotone curve connecting
a to b, intersecting every pseudosegment of A′ \ U at most once. Furthermore, we find U so
that no pseudosegment α touches low(U) from below in an inner point of α. After finding
such U , a new pseudosegment connecting a and b can clearly be drawn slightly below the
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a b

τ1

τ2

τ3

Figure 3 An arrangement of monotone pseudosegments with three added segments τ1, τ2, τ3
connecting points a, b “from above”.

lower envelope of U and will indeed intersect every pseudosegment of A′ at most once. Thus,
if such U exists, A′, and consequently A, is (a, b)-extendable.

We find U inductively. We start with U0 = {τ1, τ2, τ3} and always look at the lower enve-
lope of Ui. In the ith step we select an arbitrary pseudosegment γi of A′ \ Ui−1 intersecting
low(Ui−1) at least twice. If there is no such γi then U = Ui−1 and we are done. Otherwise,
we set Ui = Ui−1 ∪ {γi}. The number of pseudosegments is finite, so this process finishes
with a set U such that the lower envelope of U intersects every pseudosegment of A′ \ U at
most once.

Additionally, we prove that the induction preserves the following invariants for every Ui.
(I1) No pseudosegment α of A′ \ Ui forms an α-top bigon with low(Ui).
(I2) No pseudosegment α of A′ \ Ui touches low(Ui) from below in an inner point of α.
(I3) The lower envelope of Ui contains no endpoints of any pseudosegment of A′ except for

the points a and b.
(I4) The lower envelope of Ui is connected and contains a and b. Hence, it is a monotone

curve connecting a to b.
In particular, by (I4), the lower envelope of U is a monotone curve connecting a to b and,
by (I2), no pseudosegment α of A′ \ U touches low(U) from below in an inner point of α.
Since low(U) intersects every pseudosegment of A′ \ U at most once by its construction, A
is (a, b)-extendable by the previous discussion. Thus, it suffices to prove the correctness of
these invariants to finish the proof.

The invariants hold for U0 by the construction of τ1, τ2 and τ3. Suppose all invariants hold
for Ui−1. In particular, low(Ui−1) is a monotone curve connecting a to b by invariant (I4).
We show that all invariants also hold for Ui.

The pseudosegment γi intersects low(Ui−1) at least twice. We show that γi intersects
low(Ui−1) exactly twice. Suppose, for contradiction, that there are three consecutive inter-
sections c, d and e of γi with low(Ui−1) such that c ≺ d ≺ e. Then γi[c, d] with low(Ui−1)[c, d]
forms a bigon and so does γi[d, e] with low(Ui−1)[d, e]. By invariant (I1) both of these bigons
must be low(Ui−1)-top bigons. However, in this case γi touches low(Ui−1) from below in the
point d. That is not possible by invariant (I2). Thus, γi intersects low(Ui−1) exactly twice.
Furthermore, by invariant (I1), γi and low(Ui−1) form a γi-bottom bigon.

Let x and y be the two intersection points of γi and low(Ui−1). Refer to Figure 4. Since
γi and low(Ui−1) form a γi-bottom bigon, the only part of the curve γi that lies below
low(Ui−1) is exactly γi(x, y). Thus, the lower envelope of Ui−1 ∪ {γi} is a monotone curve
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a b

τ1 τ3

γ1

γ2
γ3

γ4

τ2

x y

Figure 4 Induction step in the proof of Theorem 1.1. In the ith step (fourth step in the figure)
we add pseudosegment γi (dashed) intersecting the lower envelope (dotted) of the previous segments
twice. The lower envelope remains a connected curve connecting a with b and not containing any
other endpoints of pseudosegments even after this addition.

γ3

τ2

β

α

a b

τ1 τ3

γ1

γ2

Figure 5 Induction step in the proof of Theorem 1.1. During the selection of U some pseu-
dosegments may touch low(U) from above but never from below. Pseudosegment α touches
low({τ1, τ2, τ3, γ1, γ2, γ3}) from above. On the other hand, β cannot be in the same arrangement of
pseudosegments since it touches γ2.

connecting a and b. Therefore, invariant (I4) holds also for Ui.
Since γi is a pseudosegment, its subset γi(x, y) contains no endpoint of any pseudoseg-

ment of A′. Since low(Ui) \ γi(x, y) ⊆ low(Ui−1) and invariant (I3) holds for Ui−1, invariant
(I3) also holds for Ui.

Now, suppose that invariant (I2) does not hold, that is, there exists some pseudoseg-
ment β of A′ \ Ui that touches low(Ui) from below in an inner point of β. Refer to Figure 5.
By the definition of an arrangement of pseudosegments, the touching point is not an end-
point of any pseudosegment of A′. Thus, β has to touch γi or low(Ui−1) in an inner point
of β, a contradiction. Hence, invariant (I2) also holds for Ui. Note that the analogous state-
ment for touchings from above does not hold, that is, there may exist some pseudosegment
α of A′ \ Ui that both touches low(Ui) from above in an inner point of α and touches none
of γi or low(Ui) in an inner point of α.

Finally, suppose that invariant (I1) does not hold, that is, there exists some pseudoseg-
ment ρ of A′ \ Ui that together with low(Ui) forms a ρ-top bigon. Call s and t the vertices
of this bigon and assume s ≺ t. See Figure 6.

If s and t both lie on γi[x, y], then ρ and γi intersect twice, a contradiction. Otherwise
s or t does not lie on γi[x, y]. Without loss of generality assume that t does not lie on
γi[x, y] and y ≺ t. Then s either lies on low(Ui−1) or below it. In both cases ρ[s, t] intersects
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a

τ2

x y

ρ

s
t

u

b

τ1 τ3

γ1

γ2
γ3

γ4

ρ

ρ

Figure 6 Induction step in the proof of Theorem 1.1. If there was some pseudosegment ρ that
together with the lower envelope (low({τ1, τ2, τ3, γ1, γ2, γ3, γ4}) in the picture) formed a ρ-top bigon,
it would either form a ρ-top bigon with the previous lower envelope or intersect twice the segment
that was added as the last. In the picture, there are three such possible ρ’s.

low(Ui−1) in some point other than t since ρ[s, t] together with low(Ui) forms a ρ-top bigon.
Denote the rightmost intersection of ρ[s, t] and low(Ui−1) other than t by u. Then ρ(u, t)
lies above low(Ui−1) and so ρ[u, t] together with low(Ui) forms a ρ-top bigon, a contradiction
with invariant (I1) for Ui−1. This concludes the proof of Theorem 1.1.
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Abstract
The weak graph distance is a distance measure for immersed graphs. We extend previous NP-
hardness results for deciding this distance. Also, we present variations that we conjecture to be fixed-
parameter tractable under regularity assumptions when parameterized in the number of crossings.

1 Introduction

Embedded and immersed graphs are widely used natural representations for many kinds
of geometric networks. Given multiple models of the same network or representations of
related networks, one is typically interested in comparing the models. In recent years, many
different distance measures for embedded and immersed graphs have been proposed, cf. [2].

Two such distance measures are the strong and weak graph distance proposed by Akitaya
et al. [1], which are based on the strong and weak Fréchet distance for polygonal curves,
respectively. Both distance measures are metrics, cf. [2]. A key advantage of these measures
is that they capture both geometric and topological (dis)similarity. As discussed in [1], first
experiments on reconstructions of real road networks showed promising results.

The strong graph distance is NP-complete to approximate within a 1.10566 ratio even
on plane graphs. The best known exact algorithm due to [1] runs in an XP-like time bound
when parameterized in the number of faces.

For the weak graph distance, there is a quadratic-time decision algorithm on spike-free
(i.e., cycles are embedded in a nice way) plane graphs. Akitaya et al. also showed that when
both graphs are immersed in R2, the weak graph distance is NP-complete to decide.

Hence we are interested in whether (a variant of) the weak graph distance is tractable
on realistic networks, in particular those with few edge crossings. For this, we first extend
the hardness result of [1] in showing that deciding the directed weak graph distance remains
NP-complete even if the source graph is plane. Moreover, we show that deciding the directed
distance is NP-complete for G1, G2 embedded in Rd for d ≥ 3. In both scenarios, constant-
factor approximation is NP-complete as well.

Then we suggest the family of crossing-rigid weak graph distances as alternative distance
measures. Under reasonable regularity assumptions, we conjecture that these measures
admit fixed-parameter tractable algorithms when parameterized in the numbers of crossings.

1.1 The weak graph distance
Here, we introduce relevant notation from [1]. First, we recall the weak Fréchet distance:

▶ Definition 1.1. Let s1, s2 : [0, 1] → R2 be curves. Define their weak Fréchet distance by

δwF (s1, s2) := inf
α,β

max
t∈[0,1]

d(s1(α(t)), s2(β(t))),
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where α, β range over all continuous self-surjections of [0, 1] that keep the endpoints fixed
and d is the standard Euclidean metric.

The weak graph distance is defined for embedded and immersed graphs. We use the terms
embedded and immersed in the topological sense, that is, an embedding is (essentially) a
crossing-free drawing in Rd and an immersion is any drawing that may also contain crossings.
Moreover, we use the term plane graph for embeddings of planar graphs in R2.

In the following, let G1 = (V1, E1) and G2 = (V2, E2) be graphs immersed in R2 using
straight-line immersions. We will slightly abuse notation and refer to the immersions of
graphs, edges and vertices using the same notation as for the abstract graphs.

To define the weak graph distance, we first define graph mappings:

▶ Definition 1.2. A graph mapping s : G1 → G2 is a map that maps
1. each vertex v ∈ V1 to a point s(v) on an edge of G2 and
2. each edge {u, v} ∈ E1 to a simple path from s(u) to s(v) in G2.

The weak graph distance is now defined as the maximum weak Fréchet distance between
an edge and its image under a (globally) optimal graph mapping:

▶ Definition 1.3. For immersed graphs G1, G2, define the directed weak graph distance via

δ⃗wG(G1, G2) := min
s:G1→G2

max
e∈E1

δwF (e, s(e)),

where s ranges over all graph mappings and e and s(e) refer to the corresponding immersions
as curves in R2. The (undirected) weak graph distance between G1 and G2 is defined as

δwG(G1, G2) := max(δ⃗wG(G1, G2), δ⃗wG(G2, G1)).

Lastly, we outline the general decision alg. described in [1]. For that, we define placements:

▶ Definition 1.4. An ε-placement of a vertex v is a connected component (w.r.t. the canon-
ical topologization of G2 as a simplicial complex) of G2 ∩ Bε(v). A weak edge placement of
an edge e = {u, v} ∈ E1 is a path P in G2 that connects placements of u and v, respectively,
such that δwF (e, P ) ≤ ε. A weak ε-placement of G1 is a graph mapping s : G1 → G2 that
maps each edge to a weak ε-placement.

Furthermore, we call a vertex placement Cv weakly valid if each adjacent vertex u has a
placement Cu such that Cv and Cu are connected by a weak ε-placement of {u, v}. Other-
wise, we call the placement weakly invalid.

The general decision algorithm now proceeds as follows:

Algorithm 1 General Decision Algorithm [1]
1: Compute vertex placements.
2: Compute mutual reachability information for vertex placements.
3: Prune invalid placements.
4: Decide if there exists a placement for the whole graph G1.

As described in [1], steps 1-3 can be performed in quadratic time for general immersed
graphs. However, existence of a weakly valid placement for each vertex does not imply
existence of a weak placement of the whole graph, cf. Fig. 1. Thus, step 4 is non-trivial
in general. In [1], it is shown that step 4 is in fact trivial if both graphs are plane and the
embedding of G1 meets the following regularity condition:
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v2

v1

u

Figure 1 Graphs G1 (blue) and G2 (red) such that each vertex of G1 has exactly two weakly
valid placements, but no weak placement for G1 exists.

▶ Definition 1.5. An immersed graph G is called spike-free if each cycle C of G is 2ε-thick
and, for each three consecutive vertices u, v, w ∈ C, the ε-ball around u does not intersect
the ε-tube around the edge {v, w}.

2 Hardness of deciding the weak graph distance

Here, we extend the hardness result from [1] to show that deciding the directed weak graph
distance remains NP-hard even if the source graph is plane. Our proof idea resembles their
original proof idea. However, their reduction is from binary CSP, where we cannot guarantee
planarity of the resulting graphs. Instead, we reduce from 3-colorability of planar graphs.

▶ Theorem 2.1. Deciding whether δ⃗wG(G1, G2) ≤ ε is NP-complete even if G1 is plane.

Proof idea. A more detailed version of this proof will be included in the full version due
to space restrictions. We reduce from planar 3-coloring, which is NP-complete due to [6].
Given a planar graph G = (V, E), we construct an embedding of G on a grid in linear time,
cf. [3]. We construct a graph Gc by placing vertices wv,i in ε-balls around each v ∈ V for
i ∈ {1, 2, 3}. For adjacent vertices u, v in G, Gc has an edge eu,v,i,j connecting wu,i to wv,j

iff i ̸= j and u ≺ v for some fixed linear order ⪯ on V .
By choosing ε sufficiently small, we can achieve that each u ∈ V has exactly three

placements in Gc corresponding to the wu,i. Our idea is that placing u onto the placement
corresponding to wu,i is comparable to coloring u with color i. However, since our distance
measure is based on the weak Fréchet distance, multiple edges might be used to connect
same colored placements of adjacent vertices.

This can be prevented by inserting a vertex in the middle of each edge of G. Denote the
resulting immersed graph by Gs. Then, all edges of G must be placed essentially through
some eu,v,i,j , which exists iff i ̸= j. Thus, a consistent ε-placement of Gs onto Gc must use
globally consistent eu,v,i,j , implying that G is 3-colorable. See Fig. 2 for an illustration. ◀

Starting with 4-regular planar graphs instead, the problem remains NP-complete due to
[4] and we obtain slightly stronger results. Those observations will be included in the full
version due to space restrictions, as well as detailed proofs of the following results:
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Figure 2 Illustration of the reduction in Thm. 2.1 on a single edge {u, v} of the input graph.

▶ Corollary 2.2. It is NP-hard to approximate δ⃗wG(G1, G2) within any constant ratio c ≥ 1
even if G1 is embedded in R2.

Proof idea. In the above construction, place the vertices of Gc within ε
c -balls instead. ◀

▶ Theorem 2.3. The (directed) weak graph distance is NP-hard to approximate within any
constant ratio c ≥ 1 for graphs G1, G2 embedded in Rd for all d ≥ 3.

Proof idea. In a similar construction, embed the vertices of G, Gc on the moment curve.
[5, Lemma 5.4.2] implies planarity. Approximation hardness is analogous to Cor. 2.2. ◀

3 Crossing-rigid weak graph distances

3.1 Definitions and properties
As seen in the previous results, the directed weak graph distance is NP-hard to decide if
we do not restrict the crossings of G2. Although the search space can be shown to have
subexponential size in various cases, it is currently unknown whether there exists an FPT
decision algorithm parameterized in the number of crossings of G2 for the general case.

Hence, we propose modifying the distance measure by requiring crossings to be mapped
onto crossings. This allows us to design FPT algorithms, and also captures the intuition
that if two immersed graphs describe similar networks, they should have similar crossings.

In our notation, a crossing is a tuple (e, p) of an edge e and a point p ∈ R2 in which the
immersion of e crosses the immersion of (at least) one other edge. First, we formalize the
notion of mapping crossings onto crossings:

▶ Definition 3.1. Let s : G1 → G2 be a graph mapping. We say that s is loosely crossing-
rigid if s maps each edge e = {u, v} that has crossings in points p1, . . . , pn to a sequence of
(possibly constant) paths P0, . . . , Pn in G2 such that
1. all initial and terminal points of the Pi are s(u), s(v) or crossings of G2,
2. the Pi visit no crossings except for their initial and terminal points and
3. the concatenated path P0P1 . . . Pn is defined and is a simple path from s(u) to s(v)
s is crossing-rigid if there exists such a sequence such that P0 and Pn are not constant. s is
strictly crossing-rigid if there exists such a sequence such that none of the Pi are constant.

In other words: For edges without crossings, nothing is changed. For an edge e that has
n ≥ 1 crossings, the image of e

under a loosely crossing-rigid graph mapping has at most n crossings,
under a crossing-rigid graph mapping has at least one and at most n crossings,
under a strictly crossing-rigid graph mapping has exactly n crossings.
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Figure 3 Graphs G1 (black) and G2 (blue and grey). The blue part is a valid image for G1
under a crossing-rigid graph mapping. The diagonal grey path may not be an image of an edge of
G1 since it passes 3 crossings (the upper right crossing is passed through two edges).

As such, crossing-rigidity is of purely combinatorial rather than geometric nature.

▶ Definition 3.2. For immersed graphs G1 = (V1, E1) and G2 = (V2, E2), the directed
crossing-rigid weak graph distance is defined as

δ⃗crwG(G1, G2) = inf
s : G1→G2

max
e∈E1

δwF (e, s(e))

where s ranges over all crossing-rigid graph mappings s : G1 → G2 and e and s(e) are
interpreted as the corresponding polygonal curves.

The directed loosely crossing-rigid weak graph distance δ⃗l
crwG(G1, G2) and the directed

strictly crossing-rigid weak graph distance δ⃗s
crwG(G1, G2) are defined analogous.

Respective undirected versions δcrwG, δl
crwG, δs

crwG can be defined as in Def. 1.3.

Note that when G1 has crossings and G2 is plane, there exist no (strictly) crossing-
rigid graph mappings and as such, δ⃗crwG(G1, G2) = δ⃗s

crwG(G1, G2) = ∞. Moreover, since
placements are no longer compact, we might have δ⃗crwG(G1, G2) = ε (analogous for the
loosely or strictly crossing-rigid versions) even if no ε-placement exists.

▶ Observation 3.3. Without further restrictions, the above distance measures have several
counterintuitive properties:
1. s may map crossing edges e1 and e2 such that s(e1) does not cross s(e2). Even if s(e1)

and s(e2) cross, they need not cross in the corresponding crossings from Def. 3.1.
2. The implicit mapping (e, p) 7→ (e′, p′) of crossings of G1 onto crossings of G2 need not

be one-to-one even for the strict distance.
3. A crossing p of an edge e may be mapped onto an edge crossing p′ such that d(p, p′) > ε.
See Figs. 3 and 4 for illustrations.

However, our FPT approach is to assign a crossing of G2 to each crossing of G1 and for
a fixed assignment, the above properties may be decided efficiently. Thus, we may require
the mappings to not have any subset of the above properties without impacting tractability.

▶ Lemma 3.4. Let G1, G2 be graphs immersed in R2. It holds that

δ⃗wG(G1, G2) ≤ δ⃗l
crwG(G1, G2) ≤ δ⃗crwG(G1, G2) ≤ δ⃗s

crwG(G1, G2). (1)

If G1 and G2 are plane, δ⃗wG(G1, G2) = δ⃗l
crwG(G1, G2) = δ⃗crwG(G1, G2) = δ⃗s

crwG(G1, G2).

▶ Remark. None of the ratios between the terms of eq. 1 are bounded.
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δ⃗crwG(G1, G2) = δ⃗lcrwG(G1, G2)

δ⃗scrwG(G1, G2)

Figure 4 Graphs G1 (black) and G2 (blue and red). For the (loosely) crossing-rigid distance, G1
can be mapped onto the blue edges. For the strict distance, the vertical edge needs to be mapped
onto the red vertical edge, resulting in a larger distance.

3.2 Decision algorithm
Note that we have to amend the definitions in Def. 1.4: Placements of a vertex v are now
connected components of G2\C(G2) within Bε(v), where C(G2) is the set of points in R2

in which G2 has crossings. Edge placements now have to adhere to Def. 3.1. We propose
the following algorithmic approach for the crossing-rigid distances:

Algorithm 2 Decision algorithm for the existence of a crossing-rigid weak ε-placement
1: If not given, compute where the immersion of G1 resp. G2 has crossings.
2: Compute vertex placements.
3: for each valid assignment of crossings of G2 to crossings of G1
4: Compute reachability information for vertex placements under current assignment.
5: Prune invalid placements.
6: if there exists a placement for the whole graph G1 then return true.
7: return false.

The definition of “validity” of an assignment in step 3 depends on whether we consider
the loosely crossing-rigid, crossing-rigid or strictly crossing-rigid distance. Less assignments
will be valid if we demand that the graph mapping does not have some of the properties
from Obs. 3.3. There are at most (k2 + 1)k1 such assignments. Restricting the assignments
in the sense of Def. 3.1 or Obs. 3.3 takes polynomial time per assignment.

Steps 1, 2, 4 and 5 can be performed in polynomial time. Regarding step 6, we conjecture:

▶ Conjecture 3.5. For the crossing-rigid and strictly crossing-rigid weak graph distance,
step 6 can be performed in polynomial time if G1 is spike-free. For the loosely crossing-rigid
weak graph distance, step 6 can be performed in polynomial time if G1 satisfies some slightly
stronger regularity condition.

Essentially, the idea is to have a similar situation to the plane case from [1, Lemma 7] for
edges without crossings. For edges with crossings, after assigning crossings, all consistent
weakly valid placements of the incident vertices are mutually reachable.

Verifying the above conjecture and developing a computation algorithm are natural next
steps. Additionally, as mentioned above, it is currently unknown whether the weak graph
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distance admits an FPT algorithm when parameterized in the respective number of crossings,
which is also an interesting question. Lastly, more experimental work would give insight into
the use of our distance measures for comparing realistic networks.
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Abstract
A k-transmitter g in a polygon P , with n vertices, k-sees a point p ∈ P if the line segment gp

intersects P ’s boundary at most k times. In the k-Transmitter Watchman Route Problem we aim to
minimize the length of a k-transmitter watchman route along which every point in the polygon—or
a discrete set of points in the interior of the polygon—is k-seen. We show that the k-Transmitter
Watchman Route Problem for a discrete set of points is NP-hard for histograms, uni-monotone
polygons, and star-shaped polygons given a fixed starting point. For histograms and uni-monotone
polygons it is also NP-hard without a fixed starting point. Moreover, none of these versions can be
approximated to within a factor c · log n, for any constant c > 0.

1 Introduction

k-transmitters were introduced as a generalization of the classical illumination problems [1].
Guards are replaced by modems, also called k-transmitters, who send a signal that can pass
through up to k walls.

In the watchman route problem (WRP), introduced by Chin and Ntafos [3], instead of
placing several stationary guards, we are given one mobile watchman who moves within the
given environment, and want to compute a shortest watchman route such that all points in the
environment are seen from some point on the route. This problem has shown to be solvable
in polynomial time both with [3, 4, 10] and without [2, 9] a fixed starting point. Several
different variations of the WRP have been considered, for example for polygons with and
without holes [7], for lines and line segments [5], and using a k-transmitter as a watchman [8].
Nilsson and Schmidt proved NP-hardness for the k-transmitter watchman route problem for a
discrete set of points within a simple polygon and provided a polylogarithmic approximation
algorithm for that case [8]. In this paper, we show that it is also NP-hard for certain classes
of simple polygons, namely histograms, uni-monotone, and star-shaped polygons, given a
fixed starting point. Extending this, we also show NP-hardness without a fixed starting point
for histograms and uni-monotone polygons.

∗ A. B., B. J. N. and C. S. are supported by grant 2021-03810 (Illuminate: provably good algorithms
for guarding problems) and B. J. N. and C. S. are supported by grant 2018-04001 (New paradigms for
autonomous unmanned air traffic management) from the Swedish Research Council (Vetenskapsrådet).
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2 Notation and Preliminaries

Let P be a simple polygon having n vertices. P is called a histogram if it is rectilinear
and has one horizontal edge (a base) that is equally long as the sum of lengths of all other
horizontal edges. A k-transmitter is a modem that can see through up to k walls. Our goal
is to see a set of points in the interior of P with one mobile k-transmitters. We say that
point p k-sees point q (and p and q are k-visible to each other) if the segment between p and
q intersects the polygon boundary at most k times. For a point p ∈ P the k-visibility region
of p is the set of all points in P that p k-sees.

k-Transmitter Watchman Route Problem with Starting Point (k-TrWRP(S, P, s)). Given
a polygon P with n vertices, an integer k ≥ 2, a starting point s in P , and a set of interior
points S in P , find a minimum length watchman route that starts at s and lies within P

such that all points in S are k-visible from the route.

k-Transmitter Watchman Route Problem (k-TrWRP(S, P )). Given a polygon P with
n vertices, an integer k ≥ 2 and a set of interior points S in P , find a minimum length
watchman route that lies within P such that all points in S are k-visible from the route.

Since both the watchman and the points that need to be seen lie in the interior of P , it
is sufficient to consider only even values for k. We therefore assume that k is even.

In Section 3, we prove that k-TrWRP(S, P, s) is NP-hard for histograms by providing a
reduction from Set Cover. We then extend this reduction to uni-monotone and star-shaped
polygons.

Set Cover Problem. Given a universe U and a family R of subsets of U , find a subfamily
C ⊆ R that contains all elements of U and is of minimum cardinality.

Feige [6] showed that Set Cover cannot be approximated to within a factor (1−o(1)) ln |U|
in polynomial time. Thus, there exists no polynomial time algorithm that approximates
k-TrWRP(S, P, s) for histograms, uni-monotone polygons or star-shaped polygons, and
k-TrWRP(S, P ) for histograms and uni-monotone polygons, within approximation ratio of
c log |S| for any c > 0. Nevertheless, we can apply the approximation algorithm presented in
[8] to a histogram, uni-monotone or star-shaped polygon P with n vertices. This algorithm
has an approximation factor of O(log2(|S| · n) log log(|S| · n) log(|S| + 1)).

3 NP-Hardness for Histograms: Reduction from Set Cover

▶ Theorem 3.1. For any k ≥ 2, k-TrWRP(S, P, s) is NP-hard for histograms and cannot be
approximated within a factor c log n, for any c > 0.

Proof. We provide a reduction from Set Cover. Let (U , R) be an instance of the Set Cover
Problem. We construct a bipartite graph G with V (G) = U ∪ R and E(G) = {(u, R) | u ∈
U , R ∈ R, u ∈ R}.

Given an integer k, we construct a histogram P such that k-visibility between points
encodes the edges of the graph G: it contains a set of points S = U , where point u ∈ U is
k-visible from a region R ∈ R if and only if (u, R) ∈ E(G).

The points u1, . . . , u|U| ∈ U are placed in the top of “towers”, so-called defensive towers,
that lie in the right part of P . Similarly, the regions R1, . . . , R|R| ∈ R, in the following also
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called observation regions, are placed from left to right in this order, in watch towers that
lie close to the starting point s and to the left of the defensive towers. To ensure that the
points in U are far to reach from s we place a long corridor between the two sets of towers.
We call the part to the left of this corridor the observational part of P , and the part to the
right of the corridor the defensive part of P . See Figure 1 for an example.

The horizontal boundary edges between the towers are all collinear. The longest line
segment in P that contains all of these edges defines the so-called supporting line. We place
the starting point s on the left end of the supporting line.

The watch towers are high enough such that walking up each of them is expensive.
Moreover, we need to ensure that every point u ∈ U is k-visible from the observation regions
whose corresponding subsets contain u. Therefore, we place the points and regions on
different heights, such that the watch towers have decreasing height from left to right, and
the defensive towers have increasing height. This means that R1 will be in the highest tower
in the observational part of P , and u|U| will be in the highest tower in the defensive part of
P . Let h be the height of the watch tower containing R1, and let the height of the watch
towers differ by ε1 ≪ h only. Furthermore, let the width of the watch towers be w < ε2,
and denote the difference of the x-coordinates of R1 an R|R| by ℓ. We choose the horizontal
distance of the watch towers such that ℓ is significantly smaller than h, ℓ ≪ h. The height
of the defensive towers is adapted to the height of the watch towers to ensure k-visibility
between observation regions and points in U .

s

Figure 1 Construction of a histogram for k = 2. The regions R1, . . . , R|R| are marked in orange.
The points in U , which lie in the defensive part of P , are colored blue. The continuous black line
segments represent the edges of the graph G: the lines of k-visibility between the observation points
and the points U . If (u, R) /∈ E(G), then u is not k-visible from R. This is indicated by a dashed
orange line segment. The red horizontal line segment in the bottom of P is the supporting line.

Let the length of corridor between the watch towers and the towers containing the points
in U be L ≫ (h · |R| · |U| · k + ℓ) log n. Thus, walking through the corridor to reach the right
part of P (and hence see the defensive points from their proximity) is much more expensive
than climbing up every watch tower.

Since a point u ∈ U shall only be k-seen from an observation region R if (u, R) ∈ E(G),
and from its proximity, we need to block the k-visibility from every other point that lies
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within a feasible walking distance from s. To do this, we add battlements to the defensive
towers (see Figure 2). Consider the visibility cone from a point u to an observation region R,
meaning the cone that arises when connecting u with every point in R by a straight line. For
the sake of simplicity, let each observation region be a square of height w, and assume the
visibility cone to be just a straight line. Then, between every two such lines emanating from
u, we add k/2 battlements. We also add k/2 battlements in front of the tower, which stretch
from the supporting line up to the first line of visibility, and—in case (u, R1) /∈ E(G)—we
add k/2 battlements after the uppermost line of visibility, which intersect the line of visibility
between u and R1. Every battlement is sufficiently close to the next line of visibility, but
will not touch it. For an example of this construction, see Figure 2.

u

Figure 2 Adding battlements in front of a tower to block k-visibility. The lines suggest the line
segment between u and the points corresponding to subsets in R, where the continuous lines indicate
(u, R) ∈ E(G), and dashed lines indicate (u, R) /∈ E(G), for a region R representing a subset.

▶ Observation 3.1.1. The only points in the left part of the histogram P that k-see a point
u ∈ U are exactly those that lie in the regions whose corresponding subsets contain u (that
is, those R ∈ R : (u, R) ∈ E(G)).

Since the watch towers are rather high, we obtain the shortest watchman route by climbing
only few of the watch towers. More precisely, the watchman will visit exactly those regions
in R that correspond to a minimum set cover of U .

It remains to show that we can compute the histogram in polynomial time. To be more
precise, this means that the histogram needs to have integer coordinates. The ratio between
the distance of an observational point to its closest battlement and the total width of the
polygon is at most 1

/
O

(
|R| + k · |U| · |R|

)
= 1

/
O

(
k · |U| · |R|

)
. We can construct the

horizontal battlement edges using integer coordinates if we have O(k · |R|) integral y-levels
for each battlement. To achieve this, it is sufficient for the polygon to fit in a square of size
O

(
k2 · |U| · |R|2

)
, hence we can restrict the construction to use coordinate values from 0

to O
(
k2 · |U| · |R|2

)
.

From the construction shown above, we conclude that our reduction is gap preserving, and
thus, assuming P ̸= NP, the problem cannot be polynomially approximated within a factor of
c log n, for any constant c > 0, where n is the total number of vertices. To see this, note that
we can assume that |R| = |U|α, for some sufficiently large positive constant α, see also [6].
The number of vertices is bounded by 4 · |R| + 4k · |U| + 4 < n ≤ 4 · |R| + 4k · |R| · |U| + 4.
Hence, Ω(n1/(2α+1)) ∋ |U| ∈ O(n1/α) and since |S| = |U|, the bound follows. ◀
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We can substitute the starting point by the k-visibility region of a point u′ and set
S = U ∪ {u′}: We add k/2 towers of height ≫ h to the left of all watch towers, and one more
tower of almost the same height to the left of these, in which we locate u′, see Figure 3. All
points in the k-visibility region of u′ have a smaller x-coordinate than the leftmost watch
tower. We then need to visit this region to k-see u′. Because of the length of the corridor,
we again cannot afford to visit the defensive part of P . Thus, we have:

▶ Corollary 3.2. For any k ≥ 2, k-TrWRP(S, P ) is NP-hard for histograms and cannot be
approximated within a factor c log n, for any c > 0.

u′

Figure 3 A modification of the histogram for k = 2: We add two more towers to the left of the
watch towers and place u′ in the leftmost tower. The 2-visibility region of u′ is colored light orange.

A polygon P is called x-monotone if any vertical line intersects the boundary of P

in at most two connected components. The boundary of an x-monotone polygon can be
decomposed into two chains, splitting it at the (lowest) leftmost point and the (lowest)
rightmost point of the boundary. An x-monotone polygon is called uni-monotone if either
the upper or the lower chain is a horizontal segment. Clearly, a histogram is uni-monotone,
hence, Theorem 3.1 and Corollary 3.2 yield:

▶ Corollary 3.3. For any k ≥ 2, k-TrWRP(S, P, s) and k-TrWRP(S, P ) are NP-hard for
uni-monotone polygons and cannot be approximated within a factor c log n, for any c > 0.

4 NP-Hardness for Star-Shaped Polygons

A polygon P is star-shaped if it contains a region (possibly a single point), called the kernel,
from which every point in P is 0-seen. Given the histogram from the proof of Theorem 3.1,
we can modify it into a star-shaped polygon for which the k-visibility properties again encode
the bipartite graph G.

First, we stretch the towers such that they all “point” towards a common viewpoint—
the kernel of P , which lies very far below the supporting line—preserving the k-visibility

EuroCG’24
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s

Figure 4 Sketch of a star-shaped polygon that evolves from slanting the histogram constructed
previously. Note that the kernel is far below the supporting line.

properties. Moreover, we replace the base edge by two almost vertical edges that are slightly
tilted towards the kernel and place the starting point s onto the left end of the supporting
line. See Figure 4 for a sketch of this transformation.

To guarantee that the shortest watchman route will not be the direct path from s to the
kernel of P , we ensure that the kernel is way too far away from s by choosing the angles
along which the base edges and the towers are tilted accordingly. The construction can be
made using integer coordinates inside a bounding box of polynomial range, similarly as in
the proof of Theorem 3.1, yielding:

▶ Theorem 4.1. For any k ≥ 2, k-TrWRP(S, P, s) is NP-hard for star-shaped polygons and
cannot be approximated within a factor c log n, for any c > 0.

Without a fixed starting point, k-TrWRP(S, P ) clearly is easy to solve as then the shortest
watchman route will be a route of length 0 somewhere in the kernel of P .

5 Conclusion

We establish NP-hardness of k-TrWRP(S, P, s) for histograms, uni-monotone polygons, and
star-shaped polygons, as well as NP-hardness of k-TrWRP(S, P ) for histogram and uni-
monotone polygons. This is rather surprisingly, since these polygon classes seem to be fairly
simple. The hardness reduction from Set Cover moreover yields inapproximability within
a logarithmic factor in polynomial time. It would be of interest whether this result can be
adapted to more polygon classes, like x-y-monotone polygons for example.

Acknowledgments. We want to thank Valentin Polishchuk for all the constructive discus-
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Perz, as well as the anonymous reviewers, who helped us to improve the results.
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Abstract
A polyiamond is a polygon composed of unit equilateral triangles, and a generalized deltahedron
is a convex polyhedron whose every face is a convex polyiamond. We study a variant where one
face may be an exception. For a convex polygon P , if there is a convex polyhedron that has P

as one face and all the other faces are convex polyiamonds, then we say that P can be domed.
Our main result is a complete characterization of which equiangular n-gons can be domed: only if
n ∈ {3, 4, 5, 6, 8, 10, 12}, and only with some conditions on the integer edge lengths.

1 Introduction

In the study of what can be built with equilateral triangles, the most well-known result is
that there are exactly eight convex deltahedra—polyhedra where every face is an equilateral
triangle—with n = 4, 5, 6, 7, 8, 9, 10, 12 vertices. See references in [3] or Wikipedia.1 What if
coplanar triangles are allowed? In the plane, the polygons built of equilateral triangles are
the polyiamonds. Convex polyiamonds have 3, 4, 5, or 6 vertices. The convex polyhedra
with polyiamond faces are the “non-strictly convex deltahedra”, or generalized deltahedra,
following the nomenclature of Bezdek [3]. See the above cited Wikipedia article for some
examples. There are an infinite number of generalized deltahedra, though the number of
combinatorial types is finite since they have at most 12 vertices. There is no published
characterization, though a forthcoming one is mentioned in [3].

Our goal (only partially achieved) is to characterize when a convex polygon can be
“domed” with a convex surface composed of equilateral triangles. For a convex polygon P ,
if there is a convex polyhedron that has P as one face and all the other faces are convex
polyiamonds, then we say that P can be deltahedrally domed, or just domed for short.
Here the deltahedral dome (dome for short), denoted by D, is the part of the polyhedron
excluding face P , and P is called the base of the dome. Note that P itself may or may not
be a polyiamond.

We assume that all the equilateral triangles have unit edge length, so P must be an
integer polygon (with integer side lengths). Here is a simple example:

∗ J.T. was supported by the Center for Foundations of Modern Computer Science (Charles University
project UNCE/SCI/004) and by project PRIMUS/24/SCI/012 from Charles University.

1 https://en.wikipedia.org/wiki/Deltahedron
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I Lemma 1.1. Every integer rectangle can be domed.2

Figure 1 “Roof” dome over a 3× 1 rectangle.

1.1 Main Theorem
I Theorem 1.2. (a) The only equiangular polygons that can be domed have n vertices,
where n ∈ {3, 4, 5, 6, 8, 10, 12}; for each such n, any regular integer n-gon can be domed.
(b) Moreover, for n = 3, 4, 5, 6 every equiangular integer polygon can be domed, and for
n = 8, 10, 12, an equiangular integer n-gon can be domed iff the odd edge lengths are equal
and the even edge lengths are those of an equiangular n

2 -gon.

For small n, edge-length conditions for an equiangular integer polygon are known [2]:
for n = 4 these are rectangles; for n = 5 there is only the regular pentagon; and for n = 6
the edge lengths must be integers a, b, c, a′, b′, c′ with a − a′ = b′ − b = c − c′ (a 6-sided
polyiamond).

Part (a) of Theorem 1.2 is proved in Sections 2 and 3. We have established several
results beyond the main theorem (for example, that all polyiamonds, equiangular or not, are
domeable, and that there is no domeable polygon with 25 or more vertices)—see Section 4.

1.2 Glazyrin and Pak
The source of our work derives from a paper by Glazyrin and Pak: “Domes over Curves” [4],
which answers a question posed by Richard Kenyon in 2005.3 In [4], a “curve” P is a closed
polygonal chain in R3, and a dome is a PL-surface composed of unit equilateral triangles
whose boundary is ∂P . Then they say that P can be spanned. We note the following two
differences with our definitions:

(1) Our P is a 2D convex polygon; theirs is a 3D possibly self-intersecting polygonal chain.
(2) Our dome D is embedded (non-self-intersecting) and convex. Their PL-surface is (in

general) nonconvex, immersed, and self-intersecting.

Under their conditions, they show that certain nonplanar rhombi cannot be spanned, which
answers Kenyon’s question in the negative.4 More interesting for our purposes, they prove

2 Due to space limitations, several proofs appear only in the full version of this paper.
3 https://gauss.math.yale.edu/~rwk25/openprobs/.
4 Recent work [1] extends the Glazyrin-Pak negative result to show that “generic” integer polygons
cannot be spanned.
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that every planar regular polygon can be spanned (their Theorem 1.4). In contrast, our
Theorem 1.2 says that the regular 7-, 9-, and 11-gons cannot be domed, nor can any regular
n-gon for n > 12. And here “regular” can be strengthened to “equiangular.” Compared to
their results, our conditions constrain the geometry and limit what can be domed.

2 Domed Regular Polygons

We prove one part of Theorem 1.2(a) by exhibiting domes over regular integer n-gons, for
n ∈ {3, 4, 5, 6, 8, 10, 12}. We will use P̄n to denote a regular integer n-gon.

3, 4, 5 : P̄n for n = 3, 4, 5 can each be domed by a pyramid: Fig. 2.
6 : Hexagonal antiprism: Fig. 3(a).
8 : A slice through a gyroelongated square diprism: Fig. 3(b).
10 : A slice through an icosahedron: Fig. 3(c).
12 : A slice through a hexagonal antiprism: Fig. 3(d).

A few remarks. The pyramid pattern for n = 3, 4, 5 cannot be extended to P̄6, for that
would result in a doubly-covered hexagon, not a dome by our definition. For n = 8, 10, 12,
we show P̄n as a slice of a convex polyhedron, with the dome the upper half of the surface.
But we have established that not every doming of an equiangular polygon derives from a
slice.

Figure 2 Pyramids over P̄n, n = 3, 4, 5.

Figures 2 and 3 show one way to dome each regular polygon P̄n, but there are other
solutions. For example, P̄5 can be domed by a low slice through the icosahedron as shown in
Fig. 4(a). And again, these figures illustrate regular polygons, special cases of equiangular
polygons. To give a hint of the further possibilities, Fig. 4(b) shows an equiangular decagon
P10 whose edge lengths alternate 1 and 3.

3 Proof of Theorem 1.2(a): Restrictions on n

In this section we complete the proof of the first half of Theorem 1.2: The only equiangular
n-gons that can be domed have n ∈ {3, 4, 5, 6, 8, 10, 12}. For a dome over an equiangular
n-gon, n ≥ 6, we use the following steps:

(1) Each base vertex has three incident dome triangles.
(2) Curvature constraints imply that the number of (non-base) dome vertices is at most 6.

EuroCG’24
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(a) n = 6 (b) n = 8

(c) n = 10 (d) n = 12

Figure 3 Examples of P̄n domes for n = 6, 8, 10, 12.
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(a) n = 5 (b) n = 10

Figure 4 (a) A different dome over P̄5. (b) Equiangular decagon with edge lengths alternating
1, 3.

(3) Of the n dome faces incident to base edges, at least half tilt toward the outside of the
base and have a “private” dome vertex. Furthermore, for n odd we strengthen this to
all dome faces incident to base edges.

(4) Thus, since there are at most 6 dome vertices, n ≤ 12, and for n odd, there are no
solutions for n ≥ 6.

Note that the base angle β of an equiangular n-gon is n−2
n 180◦ so if n ≥ 6, then every

base angle is ≥ 120◦. This weaker assumption on a domeable convex n-gon is enough for
most of our argument.

I Lemma 3.1. If a base vertex bi has base angle βi ≥ 120◦, then it is incident to three dome
vertices.

Proof. Base vertex bi cannot be incident to just one or two triangles, otherwise the total
face angle is ≤ 120◦, which is not enough to span βi. Vertex bi cannot be incident to four
triangles, because βi + 240◦ ≥ 360◦, and similarly for five (or more) triangles. J

From this we can analyze the base curvature:

I Lemma 3.2. If every base vertex bi is incident to three dome triangles, then the sum of
the curvatures at the base vertices is 2π.

Proof. Let βi be the angle of P at vertex bi. Then the curvature at bi is ωi = 2π− (βi +π),
where the final π term follows from the assumption that bi is incident to three triangles.
Recalling that

∑
i βi = π(n− 2) for any simple polygon, we have:

∑

i

ωi =
∑

i

(π − βi) = nπ −
∑

i

βi = nπ − π(n− 2) = 2π.

J

I Lemma 3.3. If D is a dome over a convex polygon P that has all angles ≥ 120◦, then D
has at most 6 dome vertices.
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Proof. Let V3, V4, V5 be the number of (non-base) dome vertices with 3, 4, 5 incident trian-
gles, respectively. By the Gauss-Bonnet theorem, the total curvature of a convex polyhedron
is 4π. The curvature of a Vk vertex is 2π − k π3 . By Lemmas 3.1 and 3.2 (this is where we
use the assumption that all base angles are ≥ 120◦) the curvature at the base vertices of
any dome over P is 2π. Thus, in units of π:

V3 + 2
3V4 + 1

3V5 = 2 .

Therefore the number of dome vertices of D is V3 + V4 + V5 ≤ 3V3 + 2V4 + V5 = 6. J

3.1 Face Normals and Private Dome Vertices
It remains to show step (3): that, of the n dome faces incident to base edges, at least half
of them [and for odd n, all of them] tilt toward the outside of the base and each have a
“private” dome vertex. We say that a dome vertex v is private if there is a unique dome
face incident to v and to a base edge.

Orient the dome with the base in the horizontal xy-plane. A dome triangle/face has an
upward normal if its normal has a positive z-component, and a downward normal if its
normal has a negative z-component. (This formalizes “tilting towards the outside”).

I Lemma 3.4 (±Normals). Consider a base vertex bi with base angle ≥ 120◦. Suppose the
three dome triangles incident to bi are t1, t2, t3 where t1 and t3 are incident to the base edges
at bi (possibly t2 is coplanar with t1 or with t3, but not both). Then t2 has an upward normal
and at least one of t1, t3 has a downward normal.

Lemma 3.4 is proved in the full version of this paper using the Gauss map and spherical
trigonometry.

− −

+(a) 

(b) 
−+

+

t2

bi

t3 t1

Figure 5 Overhead view of three triangles incident to base vertex bi. Triangles with upward
normals pink, downward normals blue. (a) Both t1 and t3 downward. (b) Only t1 downward.

I Observation 3.5. In Lemma 3.4, if t1 has a downward normal, then it cannot be coplanar
with t2 (which has an upward normal), and thus the dome face containing t1 has a face angle
of 60◦ at the base vertex bi.

I Lemma 3.6. If P is a domeable convex n-gon with all angles ≥ 120◦, then n ≤ 12.
Furthermore, there is no domeable equiangular n-gon for odd n ≥ 6.
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Proof. For the second statement in the lemma, note that an equiangular n-gon, n ≥ 6 has
all angles ≥ 120◦. So consider an n-gon P with all angles ≥ 120◦, and suppose P has a
dome D. By Lemma 3.3, D has at most 6 dome vertices. We will prove that n ≤ 12, and
derive a contradiction for odd n ≥ 6.

Consider the n faces of D incident to a base edge. Let d be the number of those faces
with downward normals. By Observation 3.5, a downward pointing face f incident to base
edge e has 60◦ face angles at the the endpoints of e, so it must include a dome vertex whose
projection to the xy-plane lies in the equilateral xy-triangle on edge e. See Fig. 5 and Fig. 6.
Such a dome vertex is unique to base edge e so we call it a “private” dome vertex. Thus
there are at least d private vertices. Since D has at most 6 dome vertices, we have d ≤ 6.

60º

Pn

e
f −

Figure 6 Projection of downward face f lies within an equilateral triangle outside base edge e.
Here Pn = P7.

Now Lemma 3.4 implies that d ≥ n
2 . Thus

n
2 ≤ d ≤ 6 so n ≤ 12. Furthermore:

I Lemma 3.7. For any dome over an equiangular n-gon with odd n ≥ 6, all the dome faces
incident to base edges have downward normals, i.e., d ≥ n.

Therefore there is no domeable equiangular n-gon with odd n ≥ 6, since we would need
n ≤ d ≤ 6. J

Proof outline for Lemma 3.7. Each base vertex bi has four incident faces and thus, consid-
ered in isolation, has only one degree of freedom for the dihedral angles of incident edges.
Let δi be the dihedral angle of D at base edge ei = bibi+1. Because bi and bi+1 share edge
ei and have the same face angles, we can show that δi−1 = δi+1. Since n is odd, this implies
that all the δi’s are equal. Lemma 3.4 implies that at least one δi is > 90◦, so they all
are. J

4 Further Results and Open Questions

We have characterized equiangular domeable polygons. Many open problems remain. Here
are a few.

(1) Is there any convex n-gon with n > 12 that can be domed? A rough bound is n ≤ 55:
every dome vertex has curvature at least π

3 so there are at most 11 dome vertices; every
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base vertex must be adjacent to a dome vertex and dome vertices have degree at most 5.
We can prove the stronger bound n ≤ 24.

(2) Is there any convex 7-gon that can be domed? We have constructed 9- and 11-gons
(non-equiangular) that can be domed. See Fig. 7.

(3) Is there any non-equilateral triangle that can be domed? Glazarin and Pak conjectured [4]
that, even under their looser conditions, an isosceles triangle with edge lengths 2, 2, 1
cannot be spanned.

Top Bottom
Figure 7 The top (red) is a polyiamond of 13 equilateral triangles. The base (blue) is a 9-gon

with base angles 120◦ and 150◦.
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Abstract
We consider variants of the clustered planarity problem for level-planar drawings. So far, only convex
clusters have been studied in this setting. We introduce two new variants that both insist on a
level-planar drawing of the input graph but relax the requirements on the shape of the clusters.
In unrestricted Clustered Level Planarity (uCLP) we only require that they are bounded by
simple closed curves that enclose exactly the vertices of the cluster and cross each edge of the graph
at most once. The problem y-monotone Clustered Level Planarity (y-CLP) requires that
additionally it must be possible to augment each cluster with edges that do not cross the cluster
boundaries so that it becomes connected while the graph remains level-planar, thereby mimicking a
classic characterization of clustered planarity in the level-planar setting.

We give a polynomial-time algorithm for uCLP if the input graph is biconnected and has a
single source. By contrast, we show that y-CLP is hard under the same restrictions and it remains
NP-hard even if the number of levels is bounded by a constant and there is only a single non-trivial
cluster.

Related Version full version including missing proofs: arXiv:2402.13153

1 Introduction

A level graph (G, γ) is a graph G = (V, E) and a function γ : V → {1, 2, . . . , k} with k ∈ N
that assigns vertices to levels such that no two adjacent vertices are assigned to the same
level. A level planar drawing of a level graph (G, γ) is a crossing-free drawing of G that maps
each vertex v to a point on the line y = γ(v) and each edge to a y-monotone curve between
its endpoints. A level graph is level planar if it has a level planar drawing. Level planarity
can be tested in linear time [11].

Let G = (V, E) be a graph. A clustering T of G is a rooted tree whose leaves are the
vertices V . Each inner node µ of T represents a cluster, which encompasses all leaves Vµ

of the subtree rooted at µ. The pair (G, T ) is called a clustered graph. A clustered planar
drawing of a clustered graph (G, T ) is a planar drawing of G that also maps every cluster µ

to a region Rµ that is enclosed by a simple closed curve such that (i) Rµ contains exactly the
vertices Vµ, (ii) no two region boundaries intersect, and (iii) no edge intersects the boundary
of a cluster region more than once. The combination of (i) and (iii) implies that an edge may
intersect a cluster boundary if and only if precisely one of its endpoints lies inside the cluster.
A clustered graph is clustered planar if it has a clustered planar drawing. The problem of
testing this property and finding such drawings is called Clustered Planarity. In a
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1

2

(a)

1

2

3

(b)

Figure 1 (a) A drawing that is level planar and clustered planar and thus cl-planar, but not
convex cl-planar or y-cl-planar. (b) A drawing that is y-cl-planar (with the augmentation edge in
E′ shown dashed in red) and thus also cl-planar, but not convex cl-planar.

recent breakthrough, Fulek and Tóth gave the first efficient algorithm for this problem [9],
which was soon after improved to a quadratic-time solution [2].

In this paper, we seek to explore the combination of the two concepts of level planarity
and clustered planarity. Namely, our input is a clustered level graph (cl-graph), which is a
tuple (G, γ, T ) such that (G, γ) is a level graph and (G, T ) is a clustered graph. We insist
on a level-planar drawing of G. However, it is not immediately clear which conditions the
cluster boundaries should fulfill. Forster and Bachmaier [8] proposed the problem variant
Convex Clustered Level Planarity (short cCLP), which requires to draw the clusters
as convex regions1. They showed that cCLP can be solved in linear time if the graph is
proper (i.e., all edges connect vertices on adjacent levels) and the clusters are level-connected
(i.e., each cluster contains an edge between any pair of adjacent levels it spans). Angelini et
al. [1] showed that testing cCLP is NP-complete, but can be tested in quadratic time if the
input graph is proper, thereby dropping the requirement of level-connectedness.

In this paper we consider two new variants that relax the conditions on the drawing
of the cluster. In unrestricted Clustered Level Planarity (short uCLP) we keep the
conditions (i)–(iii) as stated above, i.e., the shapes of clusters are not restricted by the levels.
Our second variant y-monotone Clustered Level Planarity (short y-CLP) is based
on the characterization that a planar drawing G of a graph G is clustered planar w.r.t. to a
clustering T if and only if it is possible to insert a set of augmentation edges into G in a planar
way such that each cluster becomes connected and no cycle formed by vertices of a cluster µ

encloses a vertex not in µ in its interior [5]. In analogy to this, we define a level-planar
drawing to be y-cl-planar if it satisfies these conditions but additionally the augmentation
edges can be added as y-monotone curves. Figure 1 shows that cCLP, uCLP, y-CLP are
indeed different problems. We are not aware of work that concerns uCLP or y-CLP.

We show that uCLP can be solved in polynomial time if the input graph is biconnected
and has a single source, i.e., a vertex that does not have neighbors on a lower level. On the
other hand we show that y-CLP is NP-complete under the same conditions and also if the
number of levels is 5 and there is only a single non-trivial cluster, i.e., that not contains
all vertices.

1 they only considered this convex setting and used the name CLP instead of cCLP
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2 Single-Source Biconnected (unrestricted) Clustered Level Planarity

We show that uCLP can be solved efficiently if G is a biconnected graph with a single source.
To this end, we combine the polynomial-time solution for Clustered Planarity [2] with a
combinatorial description of all level-planar drawings of a biconnected single-source graph [4].

Note that whether a drawing of G is clustered planar depends only on its combinatorial
embedding, rather than the precise drawing. Thus, we call an embedding E of G clustered
planar if the corresponding drawings are. We call an embedding E of G level planar if G

admits a level-planar drawing with embedding E . To solve uCLP for an instance (G, γ, T ),
we need to find an embedding of G that is both cluster planar and level planar.

We first introduce yet another type of constraints called synchronized fixed-vertex con-
straints (sfv-constraints for short). For a graph G = (V, E) an sfv-constraint is a set Q of
pairs (v, σv), where v ∈ V and σv is a fixed cyclic order of the edges incident to v, called its
default rotation. An embedding E of G satisfies the constraint Q if for each pair (v, σv) ∈ Q

the rotation of v in E is its default rotation or if for each pair (v, σv) ∈ Q the rotation of v

in E is the reverse of its default rotation. Given a set Q of sfv-constraints, we say that an
embedding of G satisfies Q if it satisfies each Q ∈ Q.

We use sfv-constraints to bridge from level-planarity to usual planarity. To this end,
we introduce a slightly generalized version of Clustered Planarity, where we seek a
clustered-planar embedding that additionally satisfies a given set Q of sfv-constraints. This
problem is called Sync CP. The point is that the algorithm of Bläsius et al. [2] reduces
Clustered Planarity to the intermediate problem Synchronized Planarity, which
includes the option to directly express sfv-constraints. The reduction that shows the following
lemma can be found in the full version of this paper at arXiv:2402.13153 together with all
further missing proofs.

▶ Lemma 2.1. Sync CP can be solved in O(n3) time.

We now turn to the second ingredient. Let (G, γ) be a biconnected single-source level-
planar graph and let Γ be an arbitrary level-planar embedding of G. Brückner and Rutter [4]
showed that there exists a data structure, called LP-tree, very similar to the famous SPQR-
tree, that represents precisely the level-planar embeddings of G; see fig. 2 for an example.
Like the SPQR-tree, the embeddings decisions for the LP-tree are made by (i) arbitrarily
reordering parallel subgraphs between a pair of vertices and (ii) flipping the embeddings of
some disjoint and otherwise rigid structures. Hence, the possible orderings of the edges around
each vertex v of G in any level-planar embedding can be described by a PQ-tree [3, 7] Tv,
called level PQ-tree that is straightforwardly derived from the LP-tree; it contains one
P-node uv,µ for each parallel structure µ in which v occurs and one Q-node uv,ρ for each
rigid structure ρ, in which v occurs; see fig. 2a. The level-planar embedding Γ is used as
reference to determine a default rotation σv,ρ for each Q-node uv,ρ.

If an embedding E of G is level-planar, the rotation of each vertex v is necessarily
represented by its level PQ-tree Tv. It further holds that all Q-nodes uv,ρ with v ∈ V that
stem from the same rigid structure either all have their default orientation or all its reversal.
An embedding where the last condition holds for each rigid structure is called ρ-consistent.

▶ Lemma 2.2. An embedding E is level-planar if and only if the rotation of each vertex v is
represented by its level PQ-tree Tv and moreover E is ρ-consistent.

For a biconnected single-source level-planar graph G with level-planar embedding Γ, we
derive a new graph G+ and a set Q of synchronized fixed-vertex constraints. We replace
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Tw

Tv

(a)

w
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v
v

ρ

(b)
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v

Tw
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(c)

Figure 2 (a) A level graph G with two level PQ-trees Tw and Tv derived from (b) its LP-tree.
P-nodes are represented by black disks, Q-nodes as white double disks. (c) The graph after replacing
w, v by Tw, Tv; the orange arrow indicates the sfv-constraint due to ρ.
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each vertex v of G by a tree isomorphic to its level PQ-tree Tv; see Figure 2c. In order to
enforce ρ-consistency, we additionally create for each rigid structure ρ of the LP-tree an
sfv-constraint Qρ = {(uv,ρ, σv,ρ) | v occurs in the rigid structure ρ}. Let Q denote the set of
these constraints for all rigid structures. Clearly, we can obtain a planar embedding of G by
taking a planar embedding of G+ that satisfies Q and contracting each tree Tv back into
a single vertex. The embeddings we can obtain in this way are precisely those where the
rotation of each vertex v is represented by its level PQ-tree Tv and that are ρ-consistent.

Finally, it is time to connect clusters and level planarity. To this end, consider a
clustering T on G. We naturally obtain a corresponding clustering T + of G+ by placing
each vertex of G+ into the cluster of the vertex of G it replaces.

▶ Lemma 2.3. (G, γ, T ) admits a planar embedding that is level-planar and clustered-planar
if and only if (G+, T +) admits a clustered-planar embedding that satisfies Q.

Altogether, this reduces the problem uCLP of biconnected single-source graphs to Sync
CP, which can be solved efficiently by Lemma 2.1.

▶ Theorem 2.4. uCLP can be solved in O(n3) time for biconnected single-source level
graphs.

3 Hardness of y-monotone Clustered Level Planarity

It is easy to see that y-CLP lies in NP by guessing and verifying the augmentation edges and
an embedding. We show that it is NP-hard even for inputs with very restricted properties.

▶ Theorem 3.1. y-monotone Clustered Level Planarity is NP-complete, even if the
input is a biconnected graph with just one source.

Proof Sketch. We reduce from the NP-complete problem Planar Monotone 3-SAT [6],
which asks for the satisfiablity of 3-SAT formulas whose incidence graph has a drawing
where all variables lie on a vertical line ℓ, each clause contains only positive or only negative
literals, and the positive and negative clauses lie on opposing sides of ℓ; see Figure 3a.

Given such a drawing for a formula ϕ, we first reorient the clauses horizontally above
the variables as illustrated in Figure 3b. From this drawing, we construct an equivalent
instance of y-CLP as illustrated in Figure 3c. The variables and literals are represented by
triconnected pillars (a (3 × k)-grid for suitable k) that extend vertically towards the clause
gadgets. The horizontal flip of a pillar represents its truth value. To synchronize pillars of the
same variable, we use wedges that enclose a vertex of a disconnected cluster and, due to the
required y-monotonicity for cluster connections, prohibit corresponding wedges of adjacent
pillars to face each other, as such a connection would have to bypass both wedges. Using
two clusters per variable, we can thus ensure consistent flips for all variables; see Figure 3c.

Using a similar approach with wedges, we can construct a clause gadget that allows
all assignments for its literals except when all three literals are false; see Figure 3c for
the structure of the gadget. As shown in Figure 4, there exists one configuration for the
literal pillars of a clause where no valid embedding is possible, as the cluster of the gadget
cannot connect with only y-monotone curves. Figure 5 shows valid embeddings for all other
configurations. This way, we can construct in polynomial time an equivalent instance of
y-CLP where the graph is biconnected and only has a single source. ◀

Our second reduction is from 3-Partition, whose input is a multiset A = {a1, . . . , a3m}
positive integers and a bound B ∈ N+ with B/4 < ai < B/2 and

∑
a∈A a = m · B.
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Figure 3 (a) An instance of Planar Monotone 3-SAT. (b) The modified incidence graph.
(c) The structure of the corresponding y-CLP instance. Highlighted are a clause gadget (top right)
and the gadget for propagating variable assignments (bottom right).
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Figure 4 Neither flip of X ′ admits a valid embedding of the clause gadget if all literals are false.
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Figure 5 The seven variable assignments for which the clause gadget admits a valid embedding.
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Figure 6 (a) A receiver (bold) with a marked vertex r (box), and a second receiver (non-bold)
chained to the first one. (b) A 3-plug. (c) A bucket of size 7, filled with two 2-plugs and a 3-plug.
Every marked bucket vertex can be connected to a pin with a y-monotone curve.

The question is whether A can be partitioned into m sets A1, A2, . . . , Am, such that for
every j ∈ {1, . . . , m} it is

∑
a∈Aj

a = B. 3-Partition is strongly NP-complete, i.e., it
remains NP-complete even if B is polynomial in m [10].

▶ Theorem 3.2. y-monotone Clustered Level Planarity is NP-complete, even if the
input contains only one non-trivial cluster, the number of levels is at most 5, and all vertices
have a fixed rotation.

Proof Sketch. Let (m, A, B) be an instance of 3-Partition. We construct an instance of
uCLP with a single non-trivial cluster µ. The main idea is to build m buckets (the structure
in Figure 6c) by chaining B receivers (the structure in Figure 6a, each of which contains a
connector vertex r that belongs to µ), and closing the sides of each bucket with two paths
(also called walls). Note that each of the B connector vertices of a bucket must be connected
to the rest of µ due to the paths of length 2 attached to the vertices marked as t in the
receiver; see Figure 6a. For every a ∈ A, we generate an a-plug; the structure in Figure 6b).
The leaves of a plug are called pins and these are the only vertices that can link the connector
vertices to the remainder of cluster µ. Given a plug and a bucket, either all of the vertices of
the plug are drawn between the two bucket walls, or none of them. Thus, we can model a
solution A1, . . . , Am with the m buckets, and a drawing assigns a ∈ A to Ai if and only if the
corresponding a-plug is in the i-th bucket. Since every pin can join at most one connector
vertex, there are at least B pins inside a bucket in a valid drawing. Since there are m buckets
and a total of m · B pins, the instance is valid if and only if we can distribute the plugs
in such a way that there are precisely B pins per bucket, which corresponds directly to a
solution of (m, A, B). ◀

4 Conclusion

We have introduced the problems unrestricted Clustered Level Planarity and y-mono-
tone Clustered Level Planarity, gave an polynomial-time algorithm for unrestricted
Clustered Level Planarity if restricted to biconnected single-source graphs, and showed
that y-monotone Clustered Level Planarity is NP-complete under very restricted
conditions.
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We conclude by providing some open questions. On the one hand, these are inspired by
the restrictions imposed by our algorithm. The LP-trees we use in Theorem 2.4 only exist
for biconnected single-source instances and it is unlikely that this concept can be extended
to multiple sources [4, Section 5]. Is it possible to extend our algorithm to non-biconnected
graphs? More generally, what is the complexity of unrestricted Clustered Level Pla-
narity? On the other hand, the NP-hardness results on y-monotone Clustered Level
Planarity and (non-proper) Convex Clustered Level Planarity [1] raise the question
whether these problems are FPT with respect to natural parameters.
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Abstract
We describe optimal robust algorithms for finding a triangle and the unweighted girth in a unit disk
graph, as well as finding a triangle in a transmission graph. In the robust setting, the input is not
given as a set of sites in the plane, but rather as an abstract graph. The input may or may not be
realizable as a unit disk graph or a transmission graph. If the graph is realizable, the algorithm
is guaranteed to give the correct answer. If not, the algorithm will either give a correct answer or
correctly state that the input is not of the required type.

1 Introduction

Suppose we are given a set S ⊆ R2 of n sites in the plane, where each site s ∈ S has an
associated radius rs > 0. The disk graph D(S) on S is defined as D(S) = (S, E), where
E = {st | ∥st∥ ≤ rs + rt}, with ∥st∥ being the Euclidean distance between the sites s and t.
If all associated radii are 1, D(S) is called a unit disk graph. The transmission graph on S is
the directed graph with vertex set S and a directed edge st from site s to site t if and only if
∥st∥ ≤ rs, i.e., if and only if the t lies inside the disk of radius rs centered at s. If all radii
are equal, the edges st and ts are always either both present or both absent, for any two
sites s, t ∈ S, and the resulting transmission graph is equivalent to a unit disk graph. Thus,
for transmission graphs, the interesting case is that the associated radii are not all the same.

There is a large body of literature on (unit) disk graphs, see, e.g., [3,5,8,12,13]. Transmis-
sion graphs are not as widely studied, but recently they have received some attention [13,14].
Even though disk graphs and transmission graphs may have up to Ω(n2) edges, they can
be described succinctly with O(n) numbers, namely the coordinates of the sites and the
associated radii. Thus, the underlying geometry often makes it possible to find efficient
algorithms whose running time depends only on n.

In the setting where a unit disk graph or a transmission graph is given as an abstract
graph, not much is known. One possible explanation is that the problem of deciding whether
an abstract graph is a (unit) disk graph or a transmission graph is ∃R-hard [11, 15]. In
fact, Kang and Müller [11] show that there are unit disk graphs whose coordinates need an
exponential number of bits in their representation, so even if it is known that the input is a
unit disk graph, it is not clear that a realization of the graph can be efficiently computed.
As transmission graphs with unit radii are equivalent to unit disk graphs, the result carries
over to transmission graphs.

Raghavan and Spinrad [19] introduced a notion of robust algorithms in restricted domains.
A restricted domain is a subset of the possible inputs. In our case, it will be the domain of
unit disk graphs or transmission graphs as a subdomain of all abstract graphs. Contrary
to the promise setting, in which the algorithm only gives guarantees for inputs from the
restricted domain, the output in the robust setting must always be useful. If the input comes
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from the restricted domain, the algorithm must always return a correct result. If the input is
not from the restricted domain, the algorithm may either return a correct result, or correctly
state that the input does not meet the requirement. Raghavan and Spinrad [19] give a robust
polynomial-time algorithm for the Clique-problem in unit disk graphs.

The problem of finding a triangle or of computing the girth (the shortest unweighted
cycle) in a graph is a basic algorithmic question in graph theory. The best know algorithm
for general graphs uses matrix multiplication and runs in either O(nω) or O(n2ω/(ω+1)) time,
where ω ≤ 2.371552 is the matrix multiplication constant [2,7,10,20]. The best combinatorial
algorithm needs O

(
n3/2Ω( 7

√
log n)

)
time [1, 21].

For special graph classes, better results are known. In the case of planar graphs, Itai and
Rodeh [10], and, independently, Papadimitriou and Yannakakis [17] show that a triangle
can be found in O(n) time, if it exists. Chang and Lu [4] give an O(n) time algorithm for
computing the unweighted girth in an undirected planar graph. Kaplan et al. [13] show that
in the geometric setting, finding a triangle and computing the unweighted girth can be done
in O(n log n) time for general disk graphs and in O(n log n) expected time for transmission
graphs. They also give algorithms with the same expected running time, for finding the
smallest weighted triangle in disk graphs and transmission graphs, as well as for computing
the weighted girth of a disk graph. In the geometric setting, there are Ω(n log n) lower
bounds for finding (short) triangles and computing the (weighted) girth in the algebraic
decision tree model [16,18].

In this paper, we show that there are O(n) time algorithms for finding a triangle and
computing the girth in unit disk graph, in the robust setting. Furthermore, we extend the
ideas to an algorithm for finding a triangle in a transmission graph in O(n + m) time. The
running times for the algorithms in the unit disk graph setting can be sublinear in the input
size, as the input in the robust setting consists of a representation of all vertices and edges.
In particular, the result is better than the Ω(n log n) lower bound for the geometric setting,
because this lower bound stems from the difficulty of finding the edges of the graph. The
running time for transmission graphs is linear in the input size, and it is significantly faster
than the currently fastest algorithm for general graphs [11].

2 Preliminaries

We assume that the input is an abstract unweighted graph G = (V, E), given as an adjacency
list. For an undirected graph, given a vertex v, we denote by N(v) the set of vertices that are
adjacent to v, and by deg(v) = |N(v)| the degree of v. In the adjacency list representation, a
set of k neighbors of v can be reported in O(k) time, and testing if two vertices u and v are
adjacent takes O(min(deg(v), deg(u))) time. For a directed graph, let Nin(v) and Nout(v)
be the vertices connected by an incoming or outgoing edge to a vertex v, respectively. Let
Nbi = Nin ∩ Nout be the vertices connected by both an incoming and an outgoing edge. We
call an edge (u, v) such that u ∈ Nbi(v) a bidirected edge.

▶ Definition 2.1 (Raghavan and Spinrad [19]). A robust algorithm for a problem P on a
domain C solves P correctly, if the input is from C. If the input is not in C, the algorithm
may either produce a correct answer for P or report that the input is not in C.

3 Unit disk graphs

Our algorithms make use two key properties. Both properties are well known. For complete-
ness, we include proofs for the variants we use.
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Figure 1 Left: The disk defined by v is marked in solid red. There are two sites in the shaded
sector. The diameter of the sector is 2, so u0 and u1 are connected by an edge.
Right: The mutual distance between the ui is maximized on the vertices of a regular polygon. The
side length of each equilateral triangle is 2, and thus the desired edges exist.

▶ Lemma 3.1. Let G = (V, E) be a graph that is realizable as an unit disk graph, and let
v ∈ V be a vertex with deg(v) > 5. Then, the subgraph induced by v and any six adjacent
vertices contains a triangle.

Proof. Consider a realization of the unit disk graph in the plane. We identify the vertices
with the corresponding sites. Let u0, . . . , u5 ∈ N(v) be any six neighbors of v, labelled in
clockwise order around v.

Let αi = ∢uivui+1, i = 0, . . . 5, be the angles between the consecutive neighbors with
respect to v, where the indices are taken modulo 6. Note that

∑5
i=0 αi = 2π, and suppose

that α0 is a minimum angle in this sequence.
First, suppose that α0 < π/3. Then, there is a cone with opening angle π/3 and apex v

that contains the sites u0 and u1. Since u0 and u1 are adjacent to v, we have ∥u0v∥ ≤ 2 and
∥u1v∥ ≤ 2, so u0 and u1 both lie inside a circular sector with angle π/3, apex v, and radius
2. This circular sector has diameter 2. Thus, all points in it, in particular u0 and u1, have
mutual distance at most 2. If follows that u0 and u1 are connected by an edge, closing a
triangle, see Figure 1, left.

Second, suppose that α0 ≥ π/3. Then, since α0 is minimum and since the αi sum to 2π,
it follows that αi = π/3, for i = 0, . . . , 5, so the ui lie on six concentric, uniformly spaced
rays that emanate from v. In this case, the maximum possible mutual distance between the
ui’s is achieved when the sites constitute the corners of a regular hexagon with center v and
∥uiv∥ = 2, for i = 0, . . . , 5. This hexagon decomposes into six equilateral triangles of side
length 2, and thus the unit disk graph contains all consecutive edges {ui, ui+1}, closing a
triangle, see Figure 1, right. ◀

▶ Lemma 3.2. If a (unit) disk graph does not contain a triangle, it is planar.

Proof. Given the geometric representation of a unit disk graph, the natural embedding of
this unit disk graph into the plane is by connecting the sites that represent the vertices by
line segment. Evans et al. [6], as well as Kaplan et al. [13] show that if this embedding is not
plane, there has to be a triangle in the unit disk graph. Conversely, this implies that if there
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is no triangle in the graph, the natural embedding is crossing free, directly implying that the
graph is planar. ◀

3.1 Finding a Triangle
▶ Theorem 3.3. There is a robust algorithm to find a triangle in a disk graph in O(n) time.

Proof. The algorithm works as follows. If there is no vertex v with deg(v) > 5, then we
check explicitly for every vertex whether two of its neighbors are adjacent. If so, we have
found a triangle. If not, there is none. As all degrees are constant, this takes O(1) time per
vertex, for a total of O(n) time.

Now, assume there is a vertex v with deg(v) > 5. Let N ′(v) be a set of any seven
neighbors of v. For every pair of neighbors u, w from N ′(v), explicitly check if there is an
edge between u and w. If an edge is found, report the triangle u, v, w. Otherwise, report
that the input is not a unit disk graph. This step takes O(n) time to identify v and then at
most O(n) time to check the adjacencies for each of the O(1) vertices in N ′(v), summing
up to O(n) total time. Note that in the case that not all degrees are at most five, only one
vertex is considered in detail.

To see that the algorithm is correct, we consider all possible cases. If the maximum degree
of the graph is at most 5, all vertices and their neighbors are explicitly checked. So if there
is a triangle in the graph, the algorithm will find it and correctly report it. Furthermore,
no triangles can be missed. Otherwise, there is a vertex v with degree larger than 5. If the
input is a disk graph, Lemma 3.1 guarantees that there is a triangle in N ′(v). The algorithm
explicitly searches for such edge between vertices of N(v′). If such an edge is found, the
triangle is correctly reported. In the other case, Lemma 3.1 implies that the input is not a
unit disk graph, as reported by the algorithm. ◀

3.2 Computing the Girth
▶ Theorem 3.4. There is a robust algorithm to compute the girth of a graph in the domain
of unit disk graphs that runs in O(n) time.

Proof. First, run the algorithm from Theorem 3.3 on the input. If the algorithm determines
that the input graph is not a unit disk graph, report this and finish. If the algorithm found
a triangle, the girth of the graph is three and can be reported.

If the algorithm from Theorem 3.3 did not find a triangle and did not report that the
graph is not a unit disk graph, we use a linear time planarity testing algorithm on the graph,
e.g., the algorithm described by Hopcroft and Tarjan [9]. If the graph is not planar, report
that it is not a unit disk graph. In the other case, the algorithm for computing the girth in a
planar graph by Chang and Lu [4] can be used to compute the girth of the graph in O(n)
time.

By combining the running times for each step, the overall running time follows. Correctness
follows from Lemma 3.2 and the correctness of the algorithm by Chang and Lu. ◀

4 Finding a directed triangle in a transmission graph

The following key lemma needed for the robust algorithm for transmission graphs was
previously shown by Klost [16].

▶ Lemma 4.1. If G is a transmission graph and v is a vertex with |Nbi(v)| > 6, then G

contains a triangle.
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▶ Lemma 4.2. The sets Nbi(v), for all v ∈ V can be found in O(n + m) time.

Proof. We assume that the adjacency list representation has the following standard form:
on the top level, there is an array that can be indexed by the vertices in V . Each entry
points to the head and the tail of a linked list. This linked list contains all vertices u such
that (v, u) ∈ E, in no particular order. Note that the order of the array directly induces a
total order ⪯ on V .

We compute adjacency list representations L⊤
⪯ and L⪯ of the transposed graph G⊤ and

the original graph G, with the additional property that linked list are sorted according to
⪯. For this, we initialize a new array and traverse the original adjacency list representation
of G, by considering the vertices according to ⪯. For every edge (v, u) that is encountered,
we append v to the linked list of u, in O(1) time. As the source vertices v are traversed
according to ⪯, this gives the desired representation L⊤

⪯ of G⊤, in time O(n + m). After
that, we can obtain the representation L⪯ of G by the same procedure, using L⊤

⪯ as the
initial adjacency list. Finally, to identify the sets Nbi(v), for each v ∈ V , it suffices to merge
the associated lists L⪯ and L⊤

⪯, in total time O(n + m). ◀

▶ Observation 4.3. In every directed cycle C in a transmission graph, there is least one
vertex v with Nbi(v) ̸= ∅.

Proof. Let v be the site with the smallest radius on C and let u be the successor of v on C.
Then the edge (v, u) exists by definition. Furthermore, the existence of this edge directly
implies that ∥uv∥ ≤ rv ≤ ru and thus (u, v) is also an edge of the transmission graph. ◀

▶ Theorem 4.4. There is a robust algorithm that finds a directed triangle in a transmission
graph in O(n + m) time.

Proof. Preprocess the input as described in the proof of Lemma 4.2 in O(n + m) time, such
that the set Nbi(v) is known for every vertex v. This also gives the representations L⪯ and
L⊤

⪯ which can be used to compute a subgraph Guni of G by removing all bidirected edges.
We consider two cases. In the first case, all vertices have |Nbi(v)| ≤ 6. Test in O(n + m)

time if Guni is acyclic. If yes, report that G is not a transmission graph. If not, consider
for each vertex v the edges (u, v) with u ∈ Nbi(v) explicitly and check if there is a vertex
w in Nin(v) ∩ Nout(u) ̸= ∅. If yes, report the triangle vuw. If no triangle was found after
considering all vertices, report that G does not have a triangle. This step take O(n + m)
overall time as the adjacency list of every vertex is traversed a constant number of times. By
Observation 4.3, the first check makes sure that no triangles without bidirected edges are
missed, as in this case Guni is not acyclic, and it is correctly reported that the graph is not a
transmission graph. In the second step, all possible triangles with at least one bidirected
edge are explicitly checked.

In the second case, let v be a vertex with |Nbi(v)| > 6. Find a set of 7 vertices from this
set and explicitly check if any pair of them closes a triangle. If there is no triangle, then
report that the input is not a transmission graph. Otherwise, report the triangle. This again
takes O(n + m) time. The correctness follows directly from Lemma 4.1. ◀

5 Conclusion

We showed that there are robust sublinear algorithms for finding a triangle and computing
the girth in unit disk graph as well as a linear time algorithm for finding a triangle in a
transmission graph. Extending the arguments to general disk graphs seems to be hard, as
the properties given in Lemma 3.1 and Lemma 4.1 do not easily carry over to general disk
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graphs. It would be interesting to see if there are properties of transmission graphs that
allow a sublinear running time similar to the unit disk graph case.
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Abstract
We show that each set of n ⩾ 2 points in the plane in general position has a straight-line matching
with at least (5n + 1)/27 edges whose segments form a connected set, while for some point sets the
best one can achieve is ⌈ n−1

3 ⌉.

1 Introduction

Consider a set P of n points in the plane in general position, meaning that no three points
of P are collinear. A (straight line) matching M for P is a set of segments with endpoints
in P such that no two segments share an endpoint. A matching M for P is connected (via
their crossings) if the union of the segments of M forms a connected set. Equivalently, a
matching is connected when the intersection graph of its segments is connected. The size of
the matching M is the number of edges (or segments) in M . In this paper, we study the
following problem.

▶ Question 1.1 (Connected Matching). Find for each n the largest value f(n) with the
following property: each set of n points in general position in the plane has a connected
matching with f(n) edges.

We provide upper and lower bounds for the function f(n). Our upper bounds are
constructive and lead to effective algorithms to compute the connected matching. In this
short version we focus on our constructions. Missing details and proofs of the algorithmic
claims will appear in the full paper, where we also consider a colored version of the problem.

The problem can be seen as a variant of the problem on crossing families of Aronov et
al. [3], where one wants to find as many segments as possible with endpoints in P such
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funded in part by the European Union (ERC, KARST, project number 101071836). Views and opinions
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that any pair of segments crosses in their interior. While in our setting we are asking for a
connected subgraph in the intersection graph of the segments, the crossing families problem
asks that the intersection graph is a complete graph. The best lower bound, showing an
almost linear lower bound for crossing families, has been a recent breakthrough by Pach,
Rubin and Tardos [5]. Aichholzer et al. [2] have the currently best upper bound.

2 Balanced separation with a short path

In this section we provide a structural result about splitting the convex hull of a point set
with a single edge or with a 2-edge path in such a way that both sides contain a large fraction
of the point set. A very similar result can be found in Ábrego and Fernández-Merchant [1,
Lemma 2]. We include a proof because their bound has a small error1, our approach is
different in the treatment of the triangular case (Theorem 2.1), and we discuss the algorithmic
counterpart, a part that is not considered in [1] and that forces us to rework a proof.

We first consider the case when the convex hull is a triangle and the partition can be
with different number of points. This will be a tool for the general case. See Figure 1.
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Figure 1 Statement in Theorem 2.1.

▶ Theorem 2.1. Assume that we have a triangle with vertices p0, p1 and p2 and in its
interior there is a set P of m ⩾ 1 points such that P ∪ {p0, p1, p2} is in general position. For
any integer weights w0, w1, w2 such 0 ⩽ w0, w1, w2 < m and ℓ := w0 + w1 + w2 > 2m − 3,
there exist at least ℓ − 2m + 3 > 0 points q ∈ P such that, for each i ∈ {0, 1, 2}, the triangle
△(piqpi+1) contains at most wi+2 points of P in its interior, where all indices are modulo 3.

We can find ℓ − 2m + 3 points with this property in linear time.

Proof. In this proof, all indices are modulo 3. For i ∈ {0, 1, 2}, consider a ray ri that starts
at pi−1 and goes through pi. We rotate ri around pi−1 in the direction towards pi+1 until
we pass ri over m − wi − 1 points of P . See Figure 2, left, to visualize the case i = 1. For
any of the points q ∈ P we did not scan over, the triangle △(pi−1qpi+1) contains at most wi

points of P in its interior; note that q is not in the interior of △(pi−1qpi+1).
Some points of P may be scanned more than once, but in total we scan at most 3m −

w1 −w2 −w3 −3 = 3m− ℓ−3 points. So there are at least m− (3m− ℓ−3) = ℓ−2m+ 3 > 0
points remaining, and each of them satisfies the desired property. ◀

As a special case we state the following corollary, which might be of its own interest.

1 Lemma 2 in [1] is not correct for n = 4.
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Figure 2 Left: rotating r1 until we pass over m − w1 − 1 points. Right: the part of the triangle
that is not shadowed contains at least ℓ − 2m + 3 points.

▶ Corollary 2.2. Let ∆ be a triangle with a set P of m ⩾ 1 points in its interior. Then there
is a point of P that splits ∆ into three triangles, such that none of these parts contains more
than ⌈(2m − 2)/3⌉ points of P in its interior.

This result resembles the classical Centerpoint theorem [4, Section 1.4], which tells that
for each set P of n points in the plane there exists a so-called centerpoint q with the property
that each open halfplane that does not contain q has at most 2n/3 of the points of P inside.
However, the centerpoint does not need to be a point of P , and for some point sets it cannot
be an element of P .

Denote by CH(P ) the convex hull of P . A point p ∈ P is extremal for P if it lies on the
boundary of CH(P ). A k-separating path for P is a plane path π spanned by vertices of P

and connecting two different extremal points of P such that CH(P ) \ π has two parts, each
containing at least k points; the points on the path are counted in no part. See Figure 3.
The length of such a path is its number of edges.

Figure 3 Left: 5-separating path of length 1. Right: 7-separating path of length 2.

▶ Theorem 2.3. Let P be a set of n ⩾ 2 points in general position in the plane. There exists
a ⌈ n−4

3 ⌉-separating path for P of length 1 or 2 and it can be found in time linear in n.

Proof sketch. For n ⩽ 4 the statement is trivially true. So for the reminder of the proof
assume that n ⩾ 5. Let us set r = ⌈(2(n − 3) − 2)/3⌉ = ⌈(2n − 8)/3⌉. The intuition is that r

is the bound of Corollary 2.2 for n − 3 ⩾ 1 points; in our current setting, n is also counting
the vertices of the triangle. We also set k = ⌈(n − 4)/3⌉ ⩾ 1 as n ⩾ 5.

Choose an extremal point q0 ∈ P with the smallest y-coordinate. Let q1, . . . , qn−1 be the
points P \ {q0} sorted increasingly by the angle q0qi makes with the horizontal rightward ray
from q0. See Figure 4, left.
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Figure 4 Proof of Theorem 2.3.

If between qk and qn−k there is some extremal point qj for P , which implies that
k < j < n − k, then the segment q0qj is a k-separating path of length 1 and we are done. See
Figure 4, right. Otherwise, the rays q0qk and q0qn−k intersect the same edge e of CH(P ).
Let qaqb be the edge e, with a < b. This means a ⩽ k < n − k ⩽ b and the triangle △(q0qaqb)
has exactly b − a − 1 points in its interior. See Figure 5, left.
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Figure 5 Continuation of the proof of Theorem 2.3.

We want to apply Theorem 2.1 to △(q0qaqb) and the m = b−a−1 ⩾ (n+1)/3 ⩾ 1 points
of P in its interior. To this end, set p0 = q0, p1 = qa, p2 = qb, w0 = r, w1 = r − (n − b − 1),
and w2 = r − (a − 1). See Figure 5, right. After checking that indeed w0 + w1 + w2 > 2m − 3,
which we skip, Theorem 2.1 implies the existence of a point q ∈ P in the interior of
△(p0p1p2) = △(q0qaqb) that splits it into three triangular pieces such that the interior of
the triangle △(pi−1qpi+1) has at most wi points of P (for i = 0, 1, 2 and indices modulo 3).

We split CH(P ) into three parts A0, A1, A2 by removing the segments qq0 = qp0, qqa = qp1
and qqb = qp2. See Figure 5, right. The points q, q0, qa, qb belong to no part, while all the
other points of P belong to exactly one part. From the choices of weights wi, each part
contains at most r points of P . Any part among A0, A1, A2 with most points has at least
⌈(n − 4)/3⌉ = k points and its boundary defines a k-separating path of length 2. ◀

3 Upper bound

Consider n points split into three sets A0, A1, A2 of size ∼ n
3 , where each Ai lies on its own

slightly curved blade of a three-bladed windmill; see Figure 6. We use indices modulo three
in the discussion. We can form such a configuration so that each line determined by two
points of Ai separates Ai+1 from Ai+2, and no segment connecting one point of Ai with
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one point of Ai+1 crosses any segment connecting two points of Ai+1. Hence, the set of all
segments is separated into three parts where each part consists of segments connecting two
points of Ai or one point of Ai and one point of Ai+1, and segments from different parts do
not cross. Clearly, the size of the largest matching spanning Ai ∪ Ai+1, if their sizes differ by
at most one, is min{|Ai|, |Ai+1|}, and the largest of those values over i ∈ {0, 1, 2} gives the
largest connected matching. Treating carefully the modulus of n, we get for each n ⩾ 1 a
point set where the maximum connected matching has size ⌈ n−1

3 ⌉.

n
3

n
3

n
3

A0

A1A2

Figure 6 Upper bound for connected matchings.

4 Lower bound

We first consider the following special setting, depicted in Figure 7, left.

u v

A

B

u v

A

B

r

q
p0

p2

p1

u v

A

B
b points

a points

Figure 7 Left: Situation in Lemma 4.1. Right: edges added to the matching when A has four
points not in convex position.

▶ Lemma 4.1. Assume that we have a horizontal segment uv, a set A of a points above the
line supporting uv, and a set B of b ⩽ a points below the line supporting uv such that, for all
(a, b) ∈ A × B, the segment ab intersects uv, and A ∪ B ∪ {u, v} consists of a + b + 2 points
in general position. Then, A ∪ B ∪ {u, v} has a connected matching of size at least

m(a, b) :=





1 + b if b ⩽ a ⩽ 2b + 3,

(a + 3b + 2)/5, if 2b + 3 ⩽ a ⩽ 7b + 3,

1 + 2b, if a ⩾ 7b + 3.
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Such a connected matching can be computed in O(1 + a log a) time.

Proof sketch. We first make two easy observations that will come in handy:

(a) A matching of B onto A with b edges together with the edge uv to “connect” them is
a connected matching of size b + 1. We want to improve upon this when the sides are
unbalanced, in particular when a is larger than 2b ± O(1).

(b) If A has a large subset A′ in convex position, then we can get a connected matching of
size ⌊ |A′|

2 ⌋, for example by connecting “antipodal” points along the boundary of CH(A′).

We construct a connected matching M iteratively as follows. At the start we add uv

to M . While |A| > |B| > 0 and A has four points p0, p1, p2, q such that q is in the interior
of △(p0p1p2), we take an arbitrary point r ∈ B, add the edge qr to M , and to M the edge
pp′ of △(p0p1p2) crossed by qr. See Figure 7, right. Note that {pp′, uv, qr} is a connected
matching. Then we remove p, p′, q from A, and r from B. With each repetition of this
operation, we increase the size of the matching by two, remove three points from A, and
remove a point from B. We repeat this operation until B is empty, |A| ⩽ |B|, or A is in
convex position, whatever happens first. Let k be the number of repetitions of this operation,
let A′ and B′ be the subsets of A and B, respectively, that remain at the end. Therefore, M

is a connected matching with 1 + 2k edges, A′ has a − 3k points, and B′ has b − k points.
We now consider the different conditions that hold at the end:

If we finish because B′ is empty, then k = b and the matching M has 1 + 2b edges.
If we finish because |A′| ⩽ |B′|, we match the remaining points of A′ to B′ arbitrarily
and add those edges |A′| to M ; since they cross uv, M keeps being a connected matching.
Using that the cardinality of A decreases at steps of size 3 and the cardinality of B

decreases at steps of size 1, it is possible to show that the size of the connected matching
M is in this case 1 + ⌊(a + b)/2⌋.
If we finish because A′ does not have any 4 points with the desired condition, the key
observation is to note that A′ is in convex position. (This is also true if |A′| ⩽ 3.) We
consider two connected matchings and take the best of both.
The first matching is obtained by adding to M a matching between all the vertices of B′

and any subset of A′ with |B′| points. The second matching, which we denote by M ′, is
obtained by taking a connected matching of the points A′; they are in convex position.
A comparison between M and M ′ shows that the larger one has size at least





1 + b if b ⩽ a ⩽ 2b + 3,

(a + 3b + 2)/5, if 2b + 3 ⩽ a ⩽ 7b + 3,

(a − 3b − 1)/2, if a ⩾ 7b + 3.

Since we have given a construction that can finish with 3 different conditions, one has to
show that in each scenario m(a, b) is a lower bound on the size of the connected matching.
We skip this computation. ◀

Note that the bound m(a, b) of Lemma 4.1 is monotone increasing in a and in b, also
when we take a and b as real values (with b ⩽ a always.) Moreover, when a + b is kept
constant, m(a, b) is larger for larger b. This means that m(a, b) ⩽ m(a − 1, b + 1), if b ⩽ a − 2.

▶ Theorem 4.2. Let P be a set of n ⩾ 2 points in general position in the plane. Then P has
a connected matching set of size at least (5n + 1)/27 and it can be computed in O(n log n)
time.
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Proof sketch. By Theorem 2.3 we know that there is a ⌈ n−4
3 ⌉-separating path P of length 1

or 2 for P . Let A and B be the sets of points of P on each side of π, such that |A| ⩾ |B|. Note
that the vertices of π do not go to any of the sides, which means that n−3 ⩽ |A|+ |B| ⩽ n−2
and

⌈
n−4

3
⌉
⩽ |B| ⩽ |A|. Each edge connecting a point of A to a point of B crosses π.

If π consists of a single edge e, then we match all points of B to points of A arbitrarily,
and include e also in the matching. Since all these edges intersect e, they form a connected
matching of size 1 + |B| ⩾ ⌈ n−1

3 ⌉ ⩾ 5n+1
27 . (This last inequality holds for n ⩾ 2.)

For the remainder of this proof we assume that π has length two, and denote its edges
by e1 and e2. We build a maximal matching M1 from B1 ⊆ B to A1 ⊆ A with edges that
cross e1. This means that |A1| = |B1| and there is no point in A \ A1 that can be connected
to a point in B \ B1 by crossing e1. Set A2 = A \ A1 and B2 = B \ B1. Each segment
connecting a point in A2 to a point of B2 must cross e2 because it does not cross e1. We
make an arbitrary matching M2 connecting each point of B2 to points of A2; this can be
done because |B2| = |B| − |M1| ⩽ |A| − |M1| = |A2|. We add e1 to M1 and e2 to M2 so that
M1 and M2 become connected matchings with |M1| + |M2| = 2 + |B|.

If M1 or M2 has size at least 5n+1
27 , then we are done. Therefore, we restrict our attention

to the case when |M1|, |M2| ⩽ 5n+1
27 . Since |A1| = |B1| = |M1| − 1 ⩽ 5n−26

27 , we have

|B2| = |B| − |B1| ⩾
⌈

n − 4
3

⌉
− 5n − 26

27 ⩾ 4n − 10
27 .

We apply Lemma 4.1 to the segment e2 with A2 and B2 to get a connected matching,
where a = |A2| and b = |B2|. Using properties of the lower bound m(a, b) of Lemma 4.1, we
can see that a worst-case lower bound is obtained evaluating m(a, b) at the values a = 13n−19

27
and b = 4n−10

27 . With these values one obtains the lower bound (5n + 1)/27. ◀
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Abstract
A clique-based separator of a graph is a (balanced) separator consisting of cliques, and its size is
measured as the total number of cliques it contains. Clique-based separators were introduced by
De Berg et al. [3], who showed that the intersection graph of a set D of convex fat objects in the
plane admits a separator of size O(

√
n). We extend this result by showing that for any well-behaved

shortest-path metric d defined on a path-connected and closed subset F ⊂ R2, a set of geodesic disks
with respect to that metric admits a separator consisting of O(n4/5) cliques.

1 Introduction

The Planar Separator Theorem states that any planar graph with n nodes has a balanced
separator of size O(

√
n). In other words, for any planar graph G = (V, E) there exists a

subset S ⊂ V of size O(
√

n) with the following property: V \ S can be split into subsets A

and B with |A| ⩽ 2n/3 and |B| ⩽ 2n/3 such that there are no edges between A and B. This
fundamental result was first proved in 1979 by Lipton and Tarjan [9] and has been refined
in several ways, see e.g. [5, 6]. It has proved to be extremely useful for obtaining efficient
divide-and-conquer algorithms for a large variety of problems on planar graphs.

In this paper we are interested in geometric intersection graphs in the plane. These
are graphs whose node set corresponds to a set D of objects in the plane and that have
an edge between two nodes iff the corresponding objects intersect. We will denote this
intersection graph by G×(D). (Unit) disk graphs and string graphs—where the set D consists
of (unit) disks and curves, respectively—are among the most popular types of intersection
graphs. Unit disk graphs in particular have been studied extensively, because they serve
as a model for wireless communication networks. It is well known that disk graphs are
generalizations of planar graphs, because by the Circle Packing Theorem (also known as
the Koebe–Andreev–Thurston Theorem) every planar graph is the intersection graph of a
set of disks with disjoint interiors [10]. It is therefore natural to try to extend the Planar
Separator Theorem to intersection graphs. A direct generalization is clearly impossible,
however, since intersection graphs can contain arbitrarily large cliques. There are ways to
still obtain separator theorems for intersection graphs. One can, for example, allow the size
of the separator to depend on m, the number of edges, instead of on the number of vertices.
It’s known that any string graph admits a separator of size O(

√
m) [7].

Recently, De Berg et al. [3] introduced clique-based separators. A clique-based separator
is a (balanced) separator consisting of cliques, and its size is not measured as the total
number of nodes of the cliques but as the total number of cliques it contains. De Berg et al.
showed that the intersection graph of a set D of convex fat objects in the plane admits a
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
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separator consisting of O(
√

n) cliques. Clique-based separators are useful because cliques
can be handled efficiently for many problems. De Berg et al. used their separators to solve
many classic graph problems, including Independent Set, Dominating Set and more.

De Berg et al. [4] proved clique-based separator theorems for various other classes of
objects, including map graphs and intersection graphs of pseudo-disks. They also showed that
intersection graphs of geodesic disks inside a simple polygon—that is, geodesic disks induced
by the standard shortest-path metric inside the polygon—admit a clique-based separator
consisting of O(n2/3) cliques. They left the case of geodesic disks in a polygon with holes
as an open problem. We note that string graphs, which subsume the class of intersection
graphs of geodesic disks, do not admit clique-based separators of sublinear size, since string
graphs can contain arbitrarily large bipartite cliques.

Our results. We show that intersection graphs of geodesic disks in a polygon with holes
admit a clique-based separator consisting of a sublinear number of cliques. Our result is
actually much more general, as it shows that for any well-behaved shortest-path metric d

defined on a path-connected and closed subset F ⊂ R2, a set D of geodesic disks with
respect to that metric admits a separator consisting of O(n4/5) cliques. Roughly speaking,
we call a metric well-behaved if any two shortest paths under that metric meet at finitely
many connected components, and any two disjoint components have some minimum positive
clearance between them. This includes the shortest-path metric defined by a set of (possibly
curved) obstacles in the plane, the shortest-path metric defined on a terrain, and the shortest-
path metric among weighted regions in the plane. (The formal requirements on a well-behaved
shortest-path metric can be found in the full version of the paper.) Note that we do not
require shortest paths to be unique, nor do we put a bound on the number of intersections
between the boundaries of two geodesic disks, nor do we require the metric space to have
bounded doubling dimension.

The idea of our new approach is as follows. Recall that the ply of D is defined as the
maximum number of objects from D with a common intersection. We first reduce the ply
of the set D by removing all cliques of size Ω(n1/5), thus obtaining a set D∗ of ply O(n1/5).
(The removed cliques will eventually be added to the separator. A similar preprocessing step
was used in [4] to handle pseudo-disks.) The remaining arrangement can still be arbitrarily
complex, however. To overcome this, we ignore the arrangement induced by the disks, and
instead focus on the realization of the graph G×(D∗) obtained by drawing a shortest path
πij between the centers of any two intersecting disks Di, Dj ∈ D∗. We then prove that the
number of edges of G×(D∗) must be O(n8/5); otherwise there will be an intersection point of
two shortest paths πij , πkℓ that has large ply, which is not possible due to the preprocessing
step. Since the number of edges of G×(D∗) is O(n8/5) we can use the separator result on
string graphs to obtain a separator of size O(

√
n8/5) = O(n4/5). Adding the cliques that

were removed in the preprocessing step then yields a separator consisting of O(n4/5) cliques.
In the full version we show how to improve the bound to O(n3/4+ε) using a bootstrapping
scheme. In this EuroCG paper, however, we only prove the weaker bound of O(n4/5).

Clique-based separators give sub-exponential algorithms for Maximum Independent Set,
Feedback Vertex Set, and q-Coloring for constant q [4]. When using our clique-based
separator, the running times for Maximum Independent Set and Feedback Vertex Set
are inferior to what is known for string graphs. For q-Coloring with q ⩾ 4 this is not the
case, since it does not admit a sub-exponential algorithm, assuming eth [2]. Our clique-based
separator, however, yields an algorithm for geodesic disks running in 2O(n4/5) time, if the
boundaries of the disks Di can be computed in polynomial time. In the full version we also
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show how to obtain an efficient distance-oracle for intersection graphs of geodesic disks.

2 A clique-based separator for geodesic disks in R2

Let d be a metric defined on a closed path-connected subset F ⊂ R2, and let D =
{D1, . . . , Dn} be a set of geodesic disks in F , with respect to the metric d. Thus each
disk Di is defined as Di := {q ∈ F : d(q, pi) ⩽ ri}, where pi ∈ F is the center of Di an ri ⩾ 0
is its radius. Let D0 := D and let G×(D0) denote the intersection graph of D0. We denote
the set of edges of G×(D0) by E and define m := |E|.

2.1 Constructing the separator
We proceed in three steps: in a preprocessing step we reduce the ply of the set of disks we
work with, in the second step we prove that if the ply is sublinear then the number of edges
in the intersection graph is subquadratic, and in the third step we construct the separator.

Step 1: Reducing the ply. For a point p ∈ F , let D0(p) := {Di ∈ D0 : p ∈ Di} be the
set of disks from D0 containing p—note that D0(p) forms a clique in G×(D0)—and define
ply(p) := |D0(p)| to be the ply of p with respect to D0. The ply of the set D0 is defined as
ply(D0) := max{p ∈ F : ply(p)}.

We reduce the ply of D0 in the following greedy manner. Let α be a fixed constant with
0 < α < 1. In the basic construction we will use α = 1/5, but in our bootstrapping scheme
we will work with other values as well. We check whether there exists a point p such that
|D0(p)| ⩾ 1

4 nα. If so, we remove D0(p) from D0 and add it as a clique to S. We repeat this
process until ply(D0) < 1

4 nα. Thus in the first step at most 4n1−α cliques are added to S.
To avoid confusion with our initial set D0, we denote the set of disks remaining at the

end of Step 1 by D1 and we denote the set of edges of G×(D1) by E1.

Step 2: Bounding the size of E1. To bound the size of E1, we draw a shortest path πij

between the centers pi, pj of every two intersecting disks Di, Dj ∈ D1, thus obtaining a
geometric realization of the graph G×(D1). Slightly abusing notation, we will not distinguish
between an edge (Di, Dj) in G×(D1) and its geometric realization πij . Let Π(D1) := {πij :
(Di, Dj) ∈ E1} be the resulting set of paths. To focus on the main idea behind our proof we
will assume that Π(D1) is a proper path set: a set of paths such that any two paths πij , πkℓ

have at most two points in common, each intersection point is either a shared endpoint or a
proper crossing, and no proper crossing coincides with another proper crossing or with an
endpoint. The proof also works without this assumption, given that the metric we are working
with is well-behaved. We defer this discussion to the full version. We need the following
result about the number of crossings in dense graphs, known as the Crossing Lemma [1, 8].
The term planar drawing here refers to a drawing where no edge interior passes through a
vertex and all intersections are proper crossings. Thus it applies to a proper path set.

▶ Lemma 2.1 (Crossing Lemma). There exists a constant c > 0, such that every planar
drawing of a graph with n vertices and m ⩾ 4n edges contains at least c m3

n2 crossings.

Using the Crossing Lemma we will show that |E1| = O(n 3+α
2 ), as follows. If |E1| = O(n 3+α

2 )
does not hold, then by the Crossing Lemma there must be many crossings between the
edges πij ∈ E1. We will show show that this implies that there is a crossing of ply greater
than 1

4 nα, thus contradicting that ply(D1) < 1
4 nα. We now make this idea precise.
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Figure 1 (i) A labeling of a crossing x ∈ X . (ii) The crossing y is assigned to Di four times.

▶ Lemma 2.2. Let G×(D1) = (D1, E1) be the intersection graph of a set D1 of disks such
that ply(D1) < 1

4 nα. Then |E1| ⩽
√

4
c · n

3+α
2 , where c is the constant appearing in the

Crossing Lemma.

Proof. Consider the proper path set Π(D1) and let X be the set of crossings between the
paths in Π(D1). Assume for a contradiction that |E1| >

√
4
c · n

3+α
2 . We will show that then

there has to exist a crossing x ∈ X of ply at least nα

4 , which contradicts that ply(D1) < 1
4 nα.

We start by giving a lower bound on the total ply of all crossings in the drawing. To
this end, we split each edge πij ∈ E1 in two half-edges as follows. For two points x, y ∈ πij ,
let πij [x, y] denote the subpath of πij between x and y. Recall that pi is the center of
disk Di. We now pick an arbitrary point mij ∈ πij ∩ (Di ∩ Dj) and split πij at mij into a
half-edge πij [pi, mij ] connecting pi to mij and a half-edge πij [pj , mij ] connecting pj to mij .
For brevity, we will denote these two half-edges by hij and hji, respectively. Clearly each
half-edge has length at most the radius of the disk it lies in, and so hij ⊂ Di and hji ⊂ Dj .
We denote the resulting set of half-edges by E1.

We label each crossing x ∈ X with an unordered pair of integers {λ1(x), λ2(x)}, defined
as follows: if x is the crossing between the half-edges hij , hkℓ, then λ1(x) is the number of
crossings contained in πij [x, mij ] and λ2(x) is the number of crossings contained in πkℓ[x, mkℓ];
see Fig. 1(i). This labeling is useful to obtain a rough bound on the total ply of all crossings,
because of the following observation, which immediately follows from the triangle inequality.

Observation 1. Consider a crossing x = hij ∩ hkℓ. If d(x, mkℓ) ⩽ d(x, mij) then all
crossings y ∈ πkℓ[x, mkℓ] are contained in Di, and otherwise all crossings y ∈ πij [x, mij ]
are contained in Dk.

Let K :=
∑

x∈X ply(x) denote the total ply of all crossings. The following claim bounds K

in terms of the labels {λ1(x), λ2(x)}.

Claim 1. K > 1
2|D1|

∑
x∈X min{λ1(x), λ2(x)}.

Proof. Define K(Di) :=
∣∣{x ∈ X : x ∈ Di}

∣∣ to be the contribution of Di to the total
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ply K, and note that

K =
∑

x∈X
ply(x) =

∑

x∈X

∣∣{Di ∈ D1 : x ∈ Di}
∣∣ =

∑

Di∈D1

∣∣{x ∈ X : x ∈ Di}
∣∣ =

∑

Di∈D1

K(Di).

Now consider a crossing x = hij ∩ hkℓ. If d(x, mkℓ) ⩽ d(x, mij) then we assign x to Di,
and otherwise we assign x to Dk. Let X (Di) be the set of crossings assigned to Di.
By Observation 1 and the definition of the label {λ1(x), λ2(x)}, the disk Di contains
at least min{λ1(x), λ2(x)} crossings y ∈ πkℓ[x, mkℓ]. Thus, summing over all crossings
x ∈ X (Di) ∩ hij and all half-edges hij incident to Di, we find that

K(Di) ⩾
1

2 deg(Di)
∑

hij

∑

x∈X (Di)∩hij

min{λ1(x), λ2(x)} >
1

2|D1|
∑

x∈X (Di)

min{λ1(x), λ2(x)},

where deg(Di) denotes the degree of Di in G×(D1). The factor 1
2 deg(Di) arises be-

cause a crossing y ∈ hkℓ can be counted up to 2 deg(Di) times in the expression∑
x∈X (Di) min{λ1(x), λ2(x)}, namely at most twice for every half-edge incident to Di;

see Fig. 1(ii). (Twice, because a pair of paths in a proper path set may cross twice.)
Since each crossing is assigned to exactly one set X (Di), we obtain

K =
∑

Di∈D1

K(Di) >
∑

Di∈D


 1

2|D1|
∑

x∈X (Di)

min{λ1(x), λ2(x)}


 = 1

2|D1|
∑

x∈X
min{λ1(x), λ2(x)}.

◁

From the Crossing Lemma and our initial assumption that |E1| >
√

4
c · n

3+α
2 , we have that

|X | ⩾ c
|E1|3

n2 > 4|E1|n1+α = 2|E1|n1+α. (1)

In order to get a rough bound for
∑

x∈X min{λ1(x), λ2(x)}, we will ignore crossings with
small labels, while ensuring that we don’t ignore too many crossings in total. More precisely,
for every half-edge hij , we disregard its first n1+α crossings, starting from the one closest
to mij . We let X ∗ denote the set of remaining crossings. Note that |X ∗| ⩾ |X | − |E1|n1+α,
and min{λ1(x), λ2(x)} ⩾ n1+α for every x ∈ X ∗. Therefore

K >
1

2|D1|
∑

x∈X ∗

min{λ1(x), λ2(x)} = 1
2|D1| · |X ∗| · n1+α ⩾

(
|X | − |E1|n1+α

)
n1+α

2|D1| ⩾ |X |
4 nα.

This means that there exists a crossing x ∈ X of ply at least 1
4 nα, which contradicts the

condition of the lemma and thus finishes the proof. ◀

Step 3: Applying the separator theorem for string graphs. Lee’s separator theorem for
string graphs [7] states that any string graph on m edges admits a balanced separator of size
O(

√
m). It is well known that any intersection graph of path-connected sets in the plane

is a string graph. Hence, we can apply Lee’s result to G×(D1) which has O(n 3+α
2 ) edges.

Thus, G×(D1) has a separator of size O(n 3+α
4 ). By adding the vertices of this separator as

singletons to our separator S then, together with the cliques added in Step 1, we obtain
a separator consisting of O(n 3+α

4 + n1−α) cliques. Picking α = 1/5, and anticipating the
extension to the case where Π(D1) is not a proper path set, we obtain the following result.
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▶ Theorem 2.3. Let d be a well-behaved shortest-path metric on a closed and path-connected
subset F ⊂ R2 and let D be a set of n geodesic disks with respect to the metric d. Then
G×(D) has a balanced clique-based separator consisting of O(n4/5) cliques.

De Berg et al. [4] showed that if a class of graphs admits a clique-based separator consisting
of S(n) cliques, and the separator can be constructed in polynomial time, then one can
solve q-Coloring in 2O(S(n)) time. Note that if we can compute the boundaries ∂Di in
polynomial time,1 then we can also compute our separator in polynomial time. Indeed, we
can then compute G×(D) and the arrangement of the disk boundaries in polynomial time,
which allows us to do Step 1 (reducing the ply) in polynomial time. Since a separator for
string graphs can be computed in polynomial time [7], this is easily seen to imply that the
separator construction runs in polynomial time. Thus we obtain the following result.

▶ Corollary 2.4. Let d be a shortest-path metric on a connected subset F ⊂ R2 and let D be
a set of n geodesic disks with respect to the metric d, where d is such that the boundaries ∂Di

of the disks in D can be computed in polynomial time. Let q ⩾ 1 and ε > 0 be fixed constants.
Then q-Coloring can be solved in 2O(n

4
5 ) time on G×(D).
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Abstract
We introduce the k-Plane Insertion into Plane drawing (k-PIP) problem: given a plane drawing
of a planar graph G and a set of edges F , insert the edges in F into the drawing such that the
resulting drawing is k-plane. In this paper, we focus on the 1-PIP scenario. We present a linear-
time algorithm for the case that G is a triangulation, while proving NP-completeness for the case
that G is biconnected and F forms a path or a matching.

1 Introduction

Inserting edges into planar graphs is a long-studied problem in Graph Drawing. Most
commonly, the goal is to find a way to insert the edges while minimizing the number of
crossings and maintaining the planarity of the prescribed subgraph. This problem is a core
step in the planarization method to find graph drawings with few crossings [22]. Gutwenger
et al. [15] have studied the case of a single edge. For multiple edges the picture is more
complicated. In case the edges are all incident to one vertex previously not present in the
graph, the problem can again be solved in polynomial time [7]. However, the problem is NP-
hard even when the given drawing is fixed and its corresponding graph biconnected [23, 25].
Assuming a fixed drawing, Hamm and Hliněný presented an FPT-algorithm parameterized
by the number of crossings [16]. Finally, Chimani and Hliněný [8] gave an FPT-algorithm for
the fixed and variable embedding settings with the number of inserted edges as a parameter.

In this paper, we take a slightly different viewpoint and do not restrict the overall number
of created crossings, but instead their structure. Moreover, we focus on the case when the
drawing of the given planar graph is fixed. Then our goal is, given a plane drawing Γ and
a set F of edges with its endpoints being vertices of this graph, to find a k-plane drawing
containing Γ as a subdrawing plus the edges of F . Here, a k-plane drawing of a graph is
one in which no edge is crossed more than k times. The class of k-planar graphs, which are
those admitting a k-plane drawing, is widely studied in Graph Drawing [10, 17].
▶ Problem 1 (k-Plane Insertion into Plane drawing (k-PIP)). Given a plane drawing Γ of a
graph G = (V, E) and a set of edges F with endpoints in V , find a k-plane drawing of the
graph (V, E ∪ F ) that contains Γ as a subdrawing.

Our results. In this paper, we focus on 1-PIP. Note that we may assume that a solution
to an instance of 1-PIP is a simple 1-plane drawing, i.e., no two edges share more than
one point, since in a 1-plane drawing simplicity only affects the crossings of adjacent edges.
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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In Section 2, we present an O(|V |) algorithm for the case that G is a triangulation. To
accomplish this, we first reduce the number of possible ways one edge can be inserted into
the given drawing to at most two per edge in F and then use a 2-SAT formulation to
compute a solution if possible. In Section 3, we show that 1-PIP is NP-complete even if G

is biconnected and the edges in F form a path or a matching.

Related work. k-PIP is related to the problem of extending a partial drawing of a graph to a
drawing of the full graph. Usually, the goal in such problems is to maintain certain properties
of the given drawing. For example, in works by Angelini et al. [1], Eiben et al. [13, 12],
Ganian et al. [14], or Arroyo et al. [3] the input is a plane, 1-plane, k-plane, or simple
drawing, respectively, and the desired extension must maintain the property of being plane,
1-plane, k-plane, or simple. Restrictions of the drawing such as it being straight-line [24],
level-planar [4], upward [20], or orthogonal [2] have been explored. Other results consider
the number of bends [6] or assume that the partially drawn subgraph is a cycle [5, 21].

2 Extending a triangulation

We assume standard notation and concepts from graph theory; compare, e.g., [11]. Given
an instance (G, Γ, F ) of 1-PIP, an edge e ∈ F might be inserted into Γ in different ways.
Note that e cannot be inserted without crossings in a triangulation. An option for e is an
edge γ of G such that e can be inserted into Γ crossing only γ. Note that in a triangulation,
a pair of faces uniquely defines an edge γ that must be crossed if e is inserted into said pair
of faces. Thus, with the term option we might also refer to a pair of faces. An option for e

is safe if, in case the instance admits a solution, there is one solution in which e is inserted
according to this option. Two options for two edges e and e′ of F clash if inserting e and e′

according to these options violates 1-planarity. Examples of safe options are those of edges
with a single option and an option without clashes. An immediate solution can be found if
each edge in F has a non-clashing option. However, it is not sufficient for each edge in F

to have a safe option in order to find a solution, e.g. in the case that two single options are
clashing. Finally, observe that in a triangulation, each edge of Γ can only be an option for
one edge of F and clashes with at most four other options.

▶ Theorem 2.1. Given a plane drawing Γ of a triangulation G = (V, E) and a set of edges
F with endpoints in V , 1-PIP on (G, Γ, F ) can be solved in time O(|V |).
Proof. The idea is to preprocess the instance until we are left with a set of edges F ′ ⊆ F

with two options each. The resulting instance can then be solved using a 2SAT formula.
Begin by computing all options for every e ∈ F . Since Γ is a plane drawing, we can get the
triangles incident to each v ∈ V in cyclic order and also the options for edges in F incident
to v. This way, we get the overall O(|V |) options for edges in F in O(|V |) time. For an edge
(u, v) ∈ F , u, v ∈ V , with two or more options we say that two options are consecutive if
the corresponding faces are consecutive in the cyclic order around u (or v); see the options
for (u, v) in Fig. 1(c) for an illustration. We say a set of options is cyclically consecutive if
the corresponding edges induce a cycle in G; see the options for (u, v) in Fig. 1(d).

Whenever an edge e has no option left, we stop and output no and if e has exactly one
option left, we insert it into Γ. Every time we insert an edge, we need to remove at most
four options of other edges plus all the options of the just inserted edge. Consider an edge
e = (u, v) ∈ F , u, v ∈ V , that has three or more options. We consider four cases.

(a) There are at least three options for e such that no two of them are consecutive. Given
one of these three options, say σi, we claim that it is either safe or never possible in a
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v v v v

w w w w

(a) (b) (c) (d)

xy z

Figure 1 Cases with three or more options in a triangulation.

solution; see Fig. 1(a). If σi is not clashing with any other option, it is safe and we add it.
Otherwise, let w and x be the two endpoints of σi. Option σi can only be clashing with
two options for edges in F incident to w and two options for edges in F incident to x.
Moreover, any option for those edges clashes with σi. To see this, consider w.l.o.g. such
an edge in F incident to w (illustrated in red in Fig. 1(a)). The other options for e define
a non-empty region in which this edge cannot be drawn (see red region in Fig. 1(a)),
restricting its options to options that clash with σi.

(b) There are at least three options for e, and one of them, σi, is not consecutive to any of
the other two; see Fig. 1(b). As in Case (a), σi is either safe or never possible.

(c) There are at least four consecutive non-cyclic options for e; see Fig. 1(c). Let σi be one
of the central options. As in the previous cases, σi is either safe or never possible.

(d) There are three consecutive or four cyclically consecutive options for e; see Fig. 1(d).
Consider the middle option σi (or any option if there were four). If it is safe, we just
add it. Else, let w and x be the endpoints of σi and y, z the other endpoints of options
for e. Assume, w.l.o.g., that σi clashes with an option of an edge ew incident to w and
to vertex y. For σi to be a possible option in a solution, ew must have an option that
does not clash with it. There is only one possibility, and it implies that v, y, z or u, y, z

form a triangle. Assume, w.l.o.g., the former, so (y, z) is an edge in Γ. Let ⋄ be the set
of vertices {u, v, w, x, y, z} and G⋄ the octahedron subgraph of G induced by ⋄.
Edges in F with exactly one endpoint in ⋄ \ {u} have at most one option. Thus, we can
insert them first and see whether we are still in Case (d). Edges incident to u and to
a vertex not in ⋄ cannot clash with any option of an edge between vertices in ⋄. Thus,
we can solve the constant-size subinstance consisting of inserting such edges into G⋄
independently, taking into account the single-option edges that we might have inserted.

Once each edge has exactly two options we create a 2SAT formula containing one variable
per option and clauses that ensure exactly one option per edge in F ′ and exclude clashes.
This formula has size O(|V |) and is satisfiable iff the original instance has a solution. ◀

3 Inserting a path or a matching is NP-complete

We prove NP-hardness by reduction from Planar Monotone 3-SAT; the membership of
the problem in NP is straightforward. Let ϕ be a Boolean formula in CNF with variables
V = {x1, . . . , xn} and clauses C = {c1, . . . , cm}. Each clause has at most three literals and
is either positive (all literals are positive) or negative (all literals are negative). Furthermore,
there is a rectilinear representation Γϕ of the variable-clause incidence graph of ϕ, such
that all variables and clauses are depicted as axis-aligned rectangles connected via vertical
segments and all variables are positioned on the x-axis, all positive clauses lie above and all
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negative clauses lie below the x-axis; see Fig. 2 for an example. This problem is known to
be NP-complete [9, 19].

3

2

1

0

−1

−2

−3

Layer

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x2 ∨ x3

x1 ∨ x3 ∨ x4

¬x3 ∨ ¬x4

¬x2 ∨ ¬x3 ∨ ¬x4
¬x2 ∨ ¬x3 ∨ ¬x4

¬x1 ∨ ¬x2 ∨ ¬x4

¬x1 ∨ ¬x2

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x2 ∨ x3

x1 ∨ x3 ∨ x4

¬x3 ∨ ¬x4

¬x2 ∨ ¬x3 ∨ ¬x4
¬x2 ∨ ¬x3 ∨ ¬x4

¬x1 ∨ ¬x2 ∨ ¬x4

¬x1 ∨ ¬x2

Figure 2 Rectilinear representation of the variable-clause incidence graph of a Planar
Monotone 3-SAT instance.

In the following, starting from Γϕ, we construct a graph G = (V, E), its plane drawing
Γ, and the edge set F , which will be inserted into Γ in a specific way. We start with the case
of F forming a path (see Theorem 3.4) and describe the changes to our construction for F

being a matching afterwards (see Corollary 3.5). The bars in Γϕ can be layered decreasingly
from top to bottom. We set the layer of the variables as layer zero and denote by L(c) the
layer of clause c; see Fig. 2. We denote by H the graph K4 missing one arbitrary edge and
create chains of copies of H, that are connected via their degree 2 vertices, such that the
chord is drawn inside the C4 cycle of H. This provides the structure for routing the path F

in the drawing. We say that an edge e ∈ F is ℓ-spanning if there are ℓ chords of H in the
chain between its endpoints.

The variable gadget. We replace each bar of a variable x in Γϕ by a variable gadget
which consists of a H-chain of 4a + 1 copies where a is the maximum over the number of
positive and negative occurrences of x in ϕ. Let u1, . . . , u4a+2 be the vertices where the H

copies are joined from left- to rightmost copy. Moreover, we mark for i ∈ {0, . . . , a − 1}
the vertices u3+4i as variable endpoints (c.f. the squares in Fig. 3). Each such vertex gets
two additional incident edges, called literal edges, which are going to connect the variable
gadgets to adjacent layers and encode the truth-value of the respective variables. We call a
literal edge exiting its variable endpoint upwards (downwards) positive (negative).

For each i ∈ {0, . . . a − 1}, we define the path F to pass through u1+4i, u4+4i, u3+4i,
u6+4i, u5+4i, except for a−1 where we omit the last vertex; cf. red path in Fig. 3. Then, for
a variable gadget its edges in F consist of an alternation of 3-spanning and 1-spanning edges.
By 1-planarity and simplicity, F cannot cross the H-chain. We refer to the 3-spanning edges
that cross literal edges as blocking 3-spanners and the others as forcing 3-spanners.

For the remainder, we depict literal edges representing the value true in blue and the
ones representing false in orange, while the edges in F are colored in red; c.f. Figs. 3 to 6.
The proofs of statements marked with a (⋆) are available in the long version on arXiv [18].

▶ Lemma 3.1 (⋆). Let v be a variable gadget described as above, then in any 1-planar
drawing containing it, its literal edges, and the edges Fv ⊆ F incident to vertices in v either
all negative or all positive literal edges are crossed.
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¬xj ¬xj ¬xj

xj xj xj

xj = false

¬xi

xi

xi = true

Figure 3 Drawing of the variable gadget.

xj xk xℓ xj xk xℓ xj xk xℓ

Figure 4 Drawing of the clause gadget.

If the negative literal edges are crossed, we think of the variable corresponding to the
gadget as set to true and false otherwise. We connect the variable gadgets by adding one
copy of H with a 1-spanning edge added to F in between them; see Fig. 5.

The clause gadget. We describe the construction only for the positive clauses, as the
construction for the negative ones is symmetric. The clause gadget is depicted in Fig. 4. It
consists of a chain of two copies of H, followed by two edges, followed by two more copies
of H. We mark the middle vertices of each of the two copies and the two edges as variable
endpoints and add one additional edge to them, their literal edge. Assume that all literal
edges are drawn on the same side as shown in Fig. 4 and add edges to F as shown in red.

▶ Lemma 3.2 (⋆). Let c be a clause gadget drawn as describe above, then in any 1-planar
drawing containing c, its literal edges, and the edges Fc ⊆ F incident to vertices of c, at
least one literal edge has to be crossed by an edge in Fc.

Propagating the variable state. In order to ensure that there is no interaction between
the path F and other parts of the drawing, we insert H-chains with 1-spanning edges added
to F on every layer of Γϕ and insert the clause gadgets into the respective layers as shown
in Fig. 5. We create further variable endpoints on the layers i > 0, in order to propagate
the state of the variable gadgets to clauses in higher layers. For each pair of corresponding
variable endpoints of a variable gadget and clause gadget, we create a variable endpoint at a
merged vertex in the H-chain in each layer i with 0 < i < L(c) and prescribe F to span the
two neighboring copies of H. Further, we connect every two consecutive variable endpoints
on layer j and j + 1 with 0 ≤ j < L(c) via a literal edge, as illustrated in Fig. 5.

▶ Lemma 3.3 (⋆). Let P = e1, . . . , eL(c) be a path of literal edges such that e1 is incident
to a variable endpoint of variable gadget v and eL(c) to one clause gadget c, if e1 is crossed
in v, then eL(c) is crossed by an edge of F incident to vertices on layer L(c) − 1.

Note that if the first edge of P is not crossed in the variable gadget, this does not imply
that its last edge is uncrossed in layer L(c)−1. In fact, this is possible when multiple literals
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x1 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x3

x2 ∨ x3

¬x1 ∨ ¬x2 ¬x3 ∨ ¬x4

¬x2 ∨ ¬x3 ∨ ¬x4

¬x1 ∨ ¬x2 ∨ ¬x4

Figure 5 Solution (in red) of the 1-PIP instance coming from the graph given in Fig. 2.

evaluate to true for a clause gadget; e.g. the top- and leftmost orange edge in Fig. 5. If a
variable is not contained in the same number of negative and positive clauses we ensure the
alternating pattern of F on layer zero by connecting the remaining variable endpoints to
ones on layer one, e.g., see x1 in Fig. 5. Lastly, the subpath of F on every layer is joined to
the one of the previous layer in an alternating fashion by an H-chain and 1-spanning edges.

▶ Theorem 3.4 (⋆). 1-PIP is NP-complete even if G is biconnected and F forms a path.

We can use the same construction but replacing the alternating connections between the
layers by edges to prove NP-hardness also for the case that F is a matching; see Fig. 6.

▶ Corollary 3.5. 1-PIP is NP-complete even if G is biconnected and F forms a matching.
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x1 ∨ x3 ∨ x4
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Figure 6 1-PIP instance where F is a matching reduced from the graph given in Fig. 2

EuroCG’24



56:8 On k-Plane Insertion into Plane Drawings

4 Conclusion

We introduced the k-PIP problem and showed that it is NP-complete even when the given
graph is biconnected and the inserted edges form a path or matching. We also presented
a linear-time algorithm when the given graph is triangulated. This naturally raises the
question if the triconnected case of k-PIP is polynomial-time solvable or NP-complete.
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Abstract
We show that given a triangulation T of a set P of n points in the plane, the Delaunay triangulation
DT (P ) of P can be built in O(n + k log4 k) time, where k is the number of edges of DT (P ) not
present in T . We also show that several problems about convex polygons can be solved in O(log k)
time, when the vertices of the polygons are given in an array and we are given a pointer to vertices
that in the array are at distance at most k from the vertices defining the solution.

1 Introduction

We give algorithms for some fundamental geometric problems under the so-called ‘predictions’
paradigm; see Mitzenmacher and Vassilvitskii [9] for an overview. Given a problem Π and a
prediction P for a solution of an instance of Π, we would like to devise an algorithm that
computes a solution S in time at most f(n, d(P, S)), where n the size of the instance and
d is an appropriate measure of how close the prediction is to the actual solution. Roughly
speaking, we would like f to be such that when d is small (good prediction) the running
time is better than the best known time complexity, and when d is large (bad prediction)
the running time approaches that of the best known algorithms, or at least it does not get
much worse. A usual example here is binary search in a sorted array with a given starting
position; the binary search can be done in O(1 + log k) steps using exponential search, where
k is the distance in the array between the starting and the final position of the search.

Our purpose is to initiate the study of problems in Computational Geometry under
the lens of algorithms with predictions. As an example, consider the classical problem of
computing the closest pair in a set P of n points in Rd, where d is constant. Assume that the
prediction is a pair of points (p, q) ∈ P 2, p ̸= q. We can then decompose the space into cube
cells of diagonal length |pq| and assign each point of P to the cube cell that contains it. If δ∗

is the distance of the closest pair, then inside each cube cell there are at most O((|pq|/δ∗)d)
points. We then iterate over the points in P and, for each point pi ∈ P , check the distance
from pi to the points that are in the O(1) cube cells that may have some point at distance
at most |pq| from pi. In total, it takes O(n · (|pq|/δ∗)d) time, assuming the floor function is
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Figure 1 Problems considered in Section 2. In all cases the vertices defining the optimum are
marked with red squares.

available. When the prediction is good, i.e., |pq|/δ∗ is constant, the running time will be
linear. As the prediction deteriorates, the running time may become quadratic and it is
better to turn to other algorithms.

A geometric result that falls in this paradigm is the data structure of Iacono and
Langerman [8] for point location in the plane. They consider the problem of storing a plane
triangulation for point location with a finger: preprocess the triangulation such that, for a
given point p and a finger to a triangle ∆ of the triangulation, we can locate the triangle ∆p

containing p in O(log d(∆, ∆p)) time, where d is a distance-like metric in the subdivision.
In this paper, we provide the following results:

Several problems for convex polygons described by an array of vertices and with some
vertices as prediction can be solved in O(1 + log k), where k is the distance in the array
of the prediction to the vertices describing the solution.
Given a triangulation T of a planar n-point set in the plane, we can compute its Delaunay
triangulation in O(n + k log4 k) time, where k is the number of non-Delaunay edges in T .
Computing the Delaunay triangulation of P from a given triangulation of P requires
Ω(n log n) operations.

2 Convex polygons

We reconsider early computational geometry problems on convex polygons given by an array
under the lens of predictions. Here, predictions are indices of the array that, in the case of a
good prediction, are close to the indices of the elements that define the solution object.

Let P and Q be two polygons with m and n vertices respectively, described by the arrays
P [0, . . . , m − 1] and Q[0, . . . , n − 1] containing their vertices in counterclockwise order. For
any two indices 0 ⩽ i, j ⩽ m − 1 for P , let dm(i, j) = min{|i − j|, |i + m − j|, |i − j − m|} be
their cyclic distance. The cyclic distance dn(·, ·) for Q is defined similarly.
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P [i− ℓ]

P [i+ ℓ]

P

P [i]

P [i− ℓ]

P [i+ ℓ]

P̃ (i; ℓ)P [i]

Figure 2 The polygon P̃ (i, ℓ).

We consider the following problems with predictions; see Figure 1. In all cases we use k to
measure the distance between the prediction and the vertices defining the optimal solution.

Extreme point: Given P and a direction d, find a extremal vertex of P in the direction
d. The prediction is an index i and the measure is

k = min{dm(i, i∗) | P [i∗] extreme point of P in direction d}.

Tangent through a point: Given P and a point q external to P , find the tangents
from q to P . The prediction is two indices i1 and i2 and the measure is

k = min{dm(i1, i∗
1) + dm(i2, i∗

2) | qP [i∗
1] and qP [i∗

2] define the tangents from q to P}.

Line intersection: Given P and a line ℓ, find the intersections of ℓ with the boundary
of P . The prediction is two indices i1 and i2 and the measure is

k = min{dm(i1, i∗
1)+dm(i2, i∗

2) | i∗
1 ̸= i∗

2, ℓ intersects P [i∗
1]P [i∗

1 + 1] and P [i∗
2]P [i∗

2 + 1]}.

Common tangents: Given P and Q that are disjoint, find the common exterior/interior
tangents of P and Q. For the exterior tangents, the prediction is two indices i1, i2 ∈
{0, . . . , m − 1} and two indices j1, j2 ∈ {0, . . . , n − 1} and the measure is

k = min{
∑

t=1,2
(dm(it, i∗

t ) + dn(jt, j∗
t )) |P [i∗

1]Q[j∗
1 ] and P [i∗

2]Q[j∗
2 ] define

the exterior tangents of P and Q}.

For the interior tangents the definition is similar.
Distance: Given P and Q, find the minimum distance between P and Q. The prediction
is two indices i1 ∈ {0, . . . , m − 1} and j1 ∈ {0, . . . , n − 1} and the measure is

k = min{dm(i1, i∗
1)+dn(j1, j∗

1 ) | the distance between P [i∗
1]P [i∗

1 + 1] and
Q[j∗

1 ]Q[j∗
1 + 1] defines the distance between P and Q}.

▶ Theorem 2.1. Extreme point, Tangent through a point, Line intersection,
Common tangents and Distance with predictions can be solved in O(log k) time.

Proof sketch. The idea is to perform a doubly exponential search on the indices. For index
i and value ℓ, let P̃ (i; ℓ) be the portion of the polygon with vertices P [i − ℓ, . . . , i + ℓ], where
indices are taken cyclically; see Figure 2. Let P̃ (i1, i2; ℓ) be the polygon obtained by joining
P̃ (i1; ℓ) and P̃ (i2; ℓ). Each of P̃ (i1; ℓ) and P̃ (i1, i2; ℓ) have at most O(ℓ) vertices.
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f
t

Figure 3 Left: NG(f) are shaded for the face f , and the points V (NG(f)) are marked with
squares. Right: V (NG(t)) are marked with squares for the shaded triangle t.

We start with ℓ = 2 and use the standard algorithm for the subpolygons P̃ (i1; ℓ) or
P̃ (i1, i2; ℓ), and/or Q̃(j1; ℓ) or Q̃(j1, j2; ℓ), depending on the problem [2, 6, 7, 10]. We get a
candidate solution for the subpolygons in O(log ℓ) time, which we can test for optimality for
the whole P and Q in constant time. If it is optimal, we have finished, otherwise we square the
value of ℓ and repeat. The values of ℓ follow the sequence 22i for i = 0, 1, 2, . . . , ⌈log2 log2 k⌉
and therefore the total running time is

∑⌈log2 log2 k⌉
i=0 O

(
log(22i)

)
= O(log k). ◀

3 Delaunay triangulation

A plane straight-line graph, shortened to PSLG, is a planar embedding of a graph where all
edges are drawn as straight-line edges. A triangulation of a planar point set P is a connected
PSLG such that: (i) its vertex set is precisely P , (ii) all its bounded faces are triangles, and
(iii) the unbounded face is the complement of the convex hull CH(P ). We remark that a
triangle with an extra vertex inside, possibly isolated, is not a triangular face of a PSLG.

Let P be a set of n points in the plane. For simplicity, we assume that the points in P are
in general position, i.e., no four points are co-circular and no three points are collinear. For a
triangle t, let C(t) be its circumcircle, and for {p, q, r} ∈

(
P
3
)
, let C(p, q, r) = C(△(p, q, r)).

The Delaunay triangulation of P , denoted by DT (P ), can be defined as follows: for any
three distinct points p, q, r ∈ P , the triangle △(p, q, r) belongs to DT (P ) if and only if the
circle C(p, q, r) has no point of P in its interior. The Delaunay triangulation of a point set
in general position is unique. We assume familiarity with DT (P ); see [4, Chapter 9].

Let G be a PSLG and f be a face of G. Let NG(f) be the set of neighbor faces of f in
the dual graph of G and V (NG(f)) be the vertex set of the faces of NG(f). Any isolated
vertices in the interior of a face of NG(f) belong also to V (NG(f)); see Figure 3.

A standard property of DT (P ) is that it can be tested locally: a triangulation T of
P is DT (P ) if and only if, for each triangle t = △(pi, pj , pk) of T it holds that no point
p ∈ V (NG(t)) is in the interior of the circle C(pi, pj , pk). We will need the following extension
to identify subgraphs of DT (P ). See Figure 3, right, for the hypothesis.

▶ Lemma 3.1. Let G be a PSLG with vertex set P and such that each edge of G is on the
boundary of CH(P ) or adjacent to a triangular face. Assume that, for each triangle t of G,
all the points of V (NG(t)) are outside C(t). Then each edge of G is an edge of DT (P ).

Our algorithm will identify and delete an appropriate subset of the edges of a given
triangulation of P . For this, we will need the following bounds.
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▶ Lemma 3.2. Let T be a triangulation of P and let E′ be a subset of E(T ) with k edges.
Remove from T the edges of E′ and then remove also all edges that have bounded, non-
triangular faces on both sides. In total, we remove O(k) edges.

We will use the following data structures that readily follow from Chan [1]. For the
circles, one uses the lift to the paraboloid and point-plane duality in R3.

▶ Lemma 3.3. We can maintain a dynamic set P of n points in the plane such that:

insertion or deletion of a point takes O(log4 n) amortized time;
for a query circle C, we can detect whether some point of P is inside C in O(log2 n) time.

We can maintain a dynamic set C of n circles in the plane such that:

insertion or deletion of a circle takes O(log4 n) amortized time;
for a query point p, we can detect whether some circle of C contains p in O(log2 n) time.

We next show our main result, where we assume that the prediction is an arbitrary PSLG.

▶ Theorem 3.4. Assume that we have a set P of n points in general position in the plane
and we are given a PSLG G with vertex set P . Let k be the (unknown) number of edges of
DT (P ) that are not in G. In O(n + k log4 k) time we can compute DT (P ).

Proof sketch. The first step is identifying a subset E′ of O(k) edges of G in O(n + k log4 k)
time such that all edges of G − E′ are from the Delaunay triangulation DT (P ). The subset
E′ may contain also some edges of DT (P ); thus, we compute a superset of the “wrong” edges.
The criteria to identify E′ is that G−E′ should satisfy the assumptions of Lemma 3.1. There
are two basic ideas that are being used for this:

Test circumcircles of triangular faces to see whether they contain some point of a neighbor
face. The same triangle may have to be checked multiple times because its neighbor faces
may change, and we employ data structures to do this efficiently.
If an edge is on the boundary of two non-triangular faces, we have no triangle to test the
edge. Then, we just add the edge to E′; by Lemma 3.2, this can happen O(k) times.

For any subgraph G′ of G, let F⩾4(G′) be the faces of G′ that are non-triangular and
bounded. At the start, F⩾4(G) has O(k) vertices and edges; even if G would be a subgraph
of DT (P ), we still have to add k edges to G to obtain DT (P ).

We start with E′ = ∅ and the PSLG G′ = G, and maintain the invariant that G = G′ +E′.
Thus, E′ is the set of edges that are being removed. Let Q be the set of points that lie in the
faces of F⩾4(G′). We maintain Q in the first data structure of Lemma 3.3. We also maintain
the set τ of triangles that share an edge with a face of F⩾4(G′). For each triangle of τ , its
circumcircle is stored in the second data structure of Lemma 3.3.

We iterate over the triangles t of G′ and check whether C(t) contains some point of
V (NG′(t)). The adjacent triangles are checked explicitly, while the adjacent non-triangular
faces are checked by querying Q with C(t). If C(t) contains some point of V (NG′(t)), we
delete all edges of t from G′ and add them to E′. This makes a new non-triangular face of
G′. We have to update Q, τ and the data structures that store them; there are O(1) new
elements. The circumcircles of the old triangles of τ may contain some new point of Q, and
the new triangles of τ (adjacent to the new face of G′) have to be retested. See Figure 4.
This can be done efficiently using O(1) queries and editions in the data structures. More
precisely, for each of the O(1) new triangles in τ we check whether they contain some point
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t
t′

f

t′

f

Figure 4 When we check t, we decide to delete E(t) because C(t) contains some point of V (f) ⊆ Q.
The point marked with an empty square becomes a new point of Q that is in the interior of C(t′).

of Q, and for each of the O(1) new points in Q we check whether it is contained in some
circumcircle of {C(t′) | t′ ∈ τ}.

For each triangle we delete, at least one of its edges is not in DT (P ). Therefore, we
delete at most 3k edges. Each triangle that is deleted triggers O(1) additional operations in
the data structures of Lemma 3.3 storing Q and τ and triggers that O(1) new triangles of τ

have to be tested again. Finally, we remove from the final G′ all the edges that have on both
sides non-triangular faces, and add them to E′. This does not change the set Q nor τ , and
therefore we keep having that, for each triangle t of G′, C(t) contains no point of V (NG′(t)).
Because of Lemma 3.2, we have deleted O(3k) = O(k) additional edges.

We have obtained E′ ⊆ E(G) such that |E′| = O(k) and Lemma 3.1 applies to G − E′.
Thus all edges of G − E′ are edges of DT (P ). We then compute the constrained Delaunay
triangulation for the faces of G − E′ using the algorithm of Chew [3] in O(k log k) time. ◀

▶ Corollary 3.5. Assume that we have a set P of n points in general position in the plane
and we are given a triangulation T of P . Let k be the (unknown) number of edges of T that
are not in DT (P ). In O(n + k log4 k) time we can compute DT (P ).

Finally we can easily show the following lower bound.

▶ Theorem 3.6. Computing DT (P ) for a set P of n points in the plane from a triangulation
of P takes Ω(n log n) time in the decision tree model of computation.

4 Conclusions

We conjecture that the Delaunay triangulation DT (P ) can be computed from any other
triangulation T of P in O(n + k log k) time, where k is the number of edges of DT (P ) that
are not in T .
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Abstract
For every k ≥ 2, we describe how to construct a polygon P and a set G of points in P , such that P

is k-guarded by G (i.e., every point in P is visible to at least k points in G) and for every 2-coloring
of G (i.e., for every bipartition of G) at least one of the colors does not guard P . This answers an
open question posed by Morin [10].

1 Introduction

The art gallery problem, introduced by Klee [11] in 1973, is a well-known and extensively
studied classical problem in the field of Computational Geometry. Given a simple polygon
P (without holes) in the plane, the objective is to find a set G of points in P , called guards,
such that every point p ∈ P is visible to at least one guard g ∈ G; that is, the line segment pg

does not pass outside P . Chvátal [6] showed that ⌊n/3⌋ guards suffice to guard any n-vertex
simple polygon P , and that there exist polygons that require ⌊n/3⌋ guards. Fisk [7] later
gave a simplified proof (one of the Proofs from THE BOOK [2]) using a 3-coloring argument.
The optimization problem of finding a set G of points of minimum cardinality that guards
a given simple polygon P is NP-hard [8], and was recently shown to be ∃R-complete [1].

To introduce robustness and redundancy to the model, the art gallery problem general-
izes to the k-guarding problem, in which each point in the input polygon P must be visible to
at least k guards. Belleville et al. [3] examined a variant of k-guarding, in which guards are
placed at the interior of the edges of P . Salleh [12] studied k-guarding with the constraint
that guards are placed on the vertices of P , called k-vertex guarding. Salleh showed that
⌊2n/3⌋ guards are sometimes necessary when k = 2, and ⌊3n/4⌋ guards are sometimes nec-
essary when k = 3 (see also [9]). Bereg [4] showed that Fisk’s coloring argument can be used
to prove these bounds. The k-guarding problem has also been studied from an algorithmic
perspective; Busto et al. [5] gave a polynomial-time O(k log log OPTk(P ))-approximation
algorithm for the k-guarding problem, where OPTk(P ) is the optimal number of guards. As
observed by Busto et al., if guards must be placed at different vertices of P , then there exist
simple polygons that cannot be k-vertex guarded for k ≥ 4 because some points in P are
seen by fewer than k vertices. In k-guarding, this problem is naturally resolved by placing
multiple guards arbitrarily close to each other.

During the open problem session at WADS 2023, Morin [10] asked whether there exists
a positive integer k such that for all polygons P and all sets G of points that k-guard P ,
there exists a bipartition of G (equivalently, a 2-coloring of G) that gives two sets that each
guard (1-guard) P . Morin presented counter-examples for k = 2 and k = 3 for which no
such bipartition exists (see Figure 1) and asked whether this property generalizes to higher

∗ This work was funded in part by the Natural Sciences and Engineering Council of Canada (NSERC).
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p

u

v

Figure 1 Examples for k = 2 and k = 3 [10]. The polygon P on the left is 2-guarded by
the set G of three guards (red and blue points). Any 2-coloring of G partitions G either into 3 and
0, or 1 and 2. In both cases, at least one of the three convex vertices of P is not seen by any guard
of the color with fewer guards. In this example, the blue guard, whose visibility region is shaded
blue, cannot see the vertex p [10]. The polygon P ′ on the right is 3-guarded by the set G′ of five
guards (red points). There are

(5
3

)
= 10 subsets of G′ of cardinality three. Observe that each of

these 10 subsets uniquely 3-guards exactly one of the 10 convex vertices of P ′. E.g., the vertex v

is 3-guarded by the three guards that are not consecutive on the boundary of P ′ in the visibility
region shaded green, whereas the vertex u is 3-guarded by the three guards that are consecutive
on the boundary of P ′ in the visibility region shaded blue. Any 2-coloring of G will result in one
color class containing at most two guards. Consequently, some convex vertex of P is visible only
by guards of the same color [10].

values of k. We answer this question in this paper. Observe that for any set G1 that guards
P , k copies of G1 k-guard P and can be partitioned into k sets (and, therefore, into two sets)
that each guard P . Consequently, Morin’s question asks whether every set G that k-guards
P can be partitioned into two sets that each guard P .

We formally define k-guarding as considered in this paper.

▶ Definition 1.1 (k-guarding). Given a simple polygon P , an integer k ≥ 1, and a set G of
points (guards) in P , P is k-guarded by G if for all p ∈ P , there exists G′ ⊆ G, such that
|G′| = k and for all g ∈ G′, the line segment gp does not pass outside P . That is, every
point in P is visible to at least k guards in G.

We say that the set of guards G is 2-colorable if there exists a bipartition of G that
partitions G into two sets such that each 1-guards P . The notions of k-guardability and 2-
colorability characterize the degree to which a set G of guards sees the polygon P . Intuitively,
a larger value of k should increase the probability that a set G of guards that k-guards a
polygon is 2-colorable. We show that it is not the case in general. For every k ≥ 2, we
describe (see Section 2) how to construct a polygon P and a set G of guards, such that G

k-guards P , but G is not 2-colorable.
Before presenting details of our construction, we first introduce some helpful definitions.

▶ Definition 1.2. A k-ary tree is a tree in which every non-leaf vertex has exactly k children.

▶ Definition 1.3. Given a simple polygon P and a set G of guards in P , a region R ⊆ P is
uniquely guarded by G′ ⊆ G if every point in R is visible (relative to P ) to every guard in
G′, and there exists a point in R that is not visible (relative to P ) to any guard in G \ G′.



Durocher et al. 58:3

p

Figure 2 Proof idea. Our construction embeds a set G of guards in a polygon Pk, where G

forms a perfect k-ary tree Tk of height k − 1. Every path from root to leaf in Tk is a set of k guards
in G that has an associated uniquely guarded region in Pk. Similarly, every set of siblings in Tk is a
set of k guards in G that has an associated uniquely guarded region in Pk. Consequently, every set
of siblings must include at least one node of each color. Therefore, there exists a monochromatic
path from the root node to some leaf node. In this example, k = 4 and the path from the root to
node p is monochromatic.

▶ Definition 1.4. For a simple polygon P , a set G of guards in P , and a region R ⊆ P

uniquely guarded by G′ ⊆ G, we call a point in R that is only visible to G′ a witness point,
and a region composed of witness points a witness region.

2 Guards of a k-Guarded Polygon Are Not Always 2-Colorable

In this section, we prove our main result. The key idea is sketched in Figure 2, then proved
formally in Lemma 2.1 and Theorem 2.2.

▶ Lemma 2.1. For any k ≥ 1, there exists a polygon Pk and a set G of guards in Pk that
form a perfect k-ary tree Tk of height k − 1 such that:

1. The polygon Pk is k-guarded by G.
2. For every root-to-leaf path in Tk, the points of G on that path uniquely guard some region

of Pk.
3. For each internal node of Tk, its children uniquely guard some region of Pk.

Proof. We will prove existence of a polygon, Πk, defined below, that satisfies Properties 1–3
above. Consider a polygon Πh with a set of guards G arranged in Πh as a perfect k-ary tree
of height h − 1 (guards in each level are aligned horizontally, see Figure 4a) such that:

A The polygon Πh is h-guarded by G.
B For every root-to-leaf path gvr

gv (i.e. the path from the root vr with the guard gvr
to

the leaf v with the guard gv in the tree), the points (guards) of G on that path uniquely
guard a convex region Qv of Πh with a witness triangle ∆v = AvBvCv of Qv such that:

(1) ∆v does not contain any of the guards;
(2) Bv is the bottommost point of Qv;
(3) Av ∈ KlBv, where Kl is the first vertex on Qv after Bv clockwise;
(4) Cv ∈ BvKr, where Kr is the first vertex on Qv after Bv counter clockwise.
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g1

A1

B1

C1

Figure 3 Base case, Π1

Qv gv
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(a) the polygon Πh
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(b) the region Qv with the witness triangle ∆v

∆v gl grs
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Bv′ = X

Cv′
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∆v′

Qv′

ε Rv

(c) extending Qv to Qv′ with the witness triangle ∆v′

Figure 4 Illustration in support of the proof of Lemma 2.1

C For each internal node gu in the tree, the children of gu uniquely guard a trapezoidal
region Ru.

Observe that any polygon P and set G of guards that satisfy Properties A–C also satisfy
Properties 1–3. In what follows, we show how to construct Πk by induction.
Base case. Let Π1 be a diamond polygon with a single guard g1 at its topmost vertex; see
Figure 3. The entire polygon Π1 is uniquely guarded by a single guard g1, that defines a
perfect k-ary tree of height 0. Therefore, Properties A–C are trivially satisfied.
Induction step. Now we show how to extend the polygon Πh to Πh+1 so that Properties A–
C hold. Place k guards on a horizontal segment s strictly contained in ∆v; see Figure 4b. For
a new guard gv′ , we reshape Qv by drawing rays from Av and Cv that cross at some point X

in ∆v below s. We ensure that AvX crosses s between gv′ and the guard gl immediately to
the left, and that CvX crosses s between gv′ and the guard gr immediately to the right. Let
Qv′ denote the convex polygon obtained from Qv by adding the edges AvX and CvX and



Durocher et al. 58:5

removing away from Qv the parts that are below these two edges. Let XlX and XXr be the
new edges forming Πh+1 by placing Xl ∈ AvX and Xr ∈ CvX right below s (a sufficiently
small distance ε > 0); see Figure 4c.

We let ∆v′ = Av′Bv′Cv′ , where Bv′ = X, Av′ is the point where the ray from gr through
Xr hits XlBv′ , and Cv′ is the point where the ray from gl through Xl hits XrBv′ ; see
Figure 4c.

Let us show that Property B is satisfied. First, observe that all the guards on the root-
to-leaf path gvr

gv′ are contained in the convex region Qv′ (this holds, because by induction
the guards on the root-to-leaf path gvr gv are inside Qv, Qv′ ⊂ Qv, and the guard gv′ is
inside Qv′); therefore, all the guards on the root-to-leaf path gvr

gv′ see Qv′ . Second, notice
that ∆v′ ⊂ ∆v; therefore, no guards from the previous levels (guarding Πh), except the
root-to-leaf path gvr

gv and gv′ can see ∆v′ . Let us show that out of the new guards (added
at level h + 1) only gv′ can see ∆v′ . Observe that all these guards are arranged horizontally
and ∆v′ is contained below the line through gl (that is, a guard immediately to the left
of gv′) and Cv′ , that is, an endpoint of ∆v′ . Therefore, ∆v′ is not seen by gl, nor by any
guard left of gl. By an analogous argument, ∆v′ is not seen by gr, nor by any guard right
of gr. Therefore, ∆v′ is a witness triangle of Qv′ guarded by the root-to-leaf path gvr

gv′ .
Properties B.(1)–B.(4) are satisfied by construction with the vertices Bv′ , Av′ , and Cv′

respectively; see Figure 4c.
To satisfy Property C, we make a trapezoidal pocket Rv of height 2ε and width δ(ε)

aligned with s (so that every point of the pocket is visible to the children of gv) on the right
side of BvCv; see Figures 4b and 4c. For sufficiently small ε, the width δ(ε) of Rv can be
made arbitrarily small, so that it does not interfere with the rest of the polygon Πh and the
right end of Rv is only seen to the guards that are children of gv.

Finally, to see that Property A is satisfied (that is, that Πh is h-guarded) observe that
every point of the polygon is either contained in at least one convex region Qv that contains
h guards or it is contained in some trapezoidal pocket Rv that is seen by k ≥ h children
of gv. ◀

▶ Theorem 2.2. There exists a polygon P and a set of guards G such that P is k-guarded
by G but there is no 2-coloring of G.

Proof. Consider a k-guarded polygon Pk from Lemma 2.1 with a set of guards G embedded
in Pk as a perfect k-ary tree Tk of height k − 1. Suppose there exists a 2-coloring of G. For
each internal node gu in Tk, the children of gu uniquely guard some region of Pk. Since G

is 2-colored, this set of siblings must include at least one blue guard and at least one red
guard. Suppose, without loss of generality, that the root is colored blue. Therefore, there
is a root-to-leaf path gvr

gv that follows only the blue guards. According to Property 2,
that path is uniquely guarding some region of Pk, and, therefore, there is a point in Pk

that is only seen by blue guards, contradicting our assumption that there exists a 2-coloring
of G. ◀

3 Directions for Future Research

We conclude with some open questions.
In the construction of polygon Pk in the proof of Lemma 2.1, the ratio of the lengths

of the longest edge and the shortest edge is exponential in k. Consequently, we ask the
following questions.
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▶ Question 1. Is there a polygon P that is k-guarded by a set of guards G that is not
2-colorable for which the ratio of the lengths of the longest edge and the shortest edge is
polynomial in k?

Is there a simpler construction than Pk? For example, does there exist a weakly visible
polygon P (that is, every point of P is visible from some point on a given line segment in
P ) such that P is k-guarded by some set G of guards, but no bipartition of G exists such
that each part guards P?
▶ Question 2. Is there a weakly visible polygon P that is k-guarded by a set of guards G

that is not 2-colorable?
We can also examine the complexity (number of vertices) of Pk in terms of k. Our

construction for Pk has Θ(kk) vertices.
▶ Question 3. Can we show that Pk always needs ω(k) vertices?
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Abstract
Let P be a set of n = 2m + 1 points in the plane in general position. We define the graph GMP

whose vertex set is the set of all plane matchings on P with exactly m edges. Two vertices in GMP

are connected if the two corresponding matchings have m − 1 edges in common. In this work we
show that GMP is connected.

1 Introduction

Reconfiguration is the process of changing a structure into another—either through con-
tinuous motion or through discrete changes. Concentrating on plane graphs and discrete
reconfiguration steps of bounded complexity, like exchanging one edge of the graph for another
edge such that the new graph is in the same graph class, a single reconfiguration step is
often called an edge flip. The flip graph is then defined as the graph having a vertex for each
configuration and an edge for each flip. Flip graphs have several applications, for example
morphing [6] and enumeration [8]. Three questions are central: studying the connectivity of
the flip graph, its diameter, and the complexity of finding the shortest flip sequence between
two given configurations. The topic of flip graphs has been well studied for different graph
classes like triangulations [3, 14, 15, 16, 17, 19, 20], plane spanning trees [11, 12], plane
spanning paths [2, 5], and many more. For a nice survey see [10].

For matchings usually other types of flips were considered since a perfect matching cannot
be transformed to another perfect matching with a single edge flip. A natural flip in perfect
matchings is to replace two matching edges with two other edges, such that the new graph
is again a perfect matching. These flips were studied mostly for convex point sets [9, 18].
While the according flip graph is connected on convex point sets it is open whether this flip
graph is connected for any set of points in general position. Other types of flips in perfect
matchings can be found in [1, 4, 7].

In this work we study a setting where single edge flips are possible for matchings. Let P

be a set of n = 2m + 1 points in the plane in general position (that is, no 3 points on a line).
An almost perfect matching on P is a set M of m line segments whose endpoints are pairwise
disjoint and in P . The matching M is called plane if no two segments cross.

∗ Research on this work has been initiated at the 18th European Geometric Graph Week which was held
from September 4th to 8th in Alcalá de Henares. We thank all participants for the good atmosphere as
well as for inspiring discussions on the topic.
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p
q

p
q

Figure 1 Flipping a matching edge: the previously unmatched point p is matched to q.

Let MP denote the set of all plane almost perfect matchings on P . We define the flip
graph GMP with vertex set MP through the following flip operation. Consider a matching M1
and let p be the unmatched point. Let q be a point in P such that the segment pq does
not cross any segment in M1. The flip now consists of removing the segment incident to q

from the matching and adding pq instead, see Figure 1. Note that this gives another plane
almost perfect matching M2. In the graph GMP , the vertices corresponding to M1 and M2
are adjacent.

In this paper, we prove the following theorem.

▶ Theorem 1.1. For any set P of n = 2m + 1 points in general position in the plane the flip
graph GMP is connected.

In Section 2 we give an overview of the used techniques and the proof of Theorem 1.1.
Then in Section 3 we prove the lemmata used for the proof of Theorem 1.1.

2 Overview and Proof of Theorem 1.1

In this section, we give an overview of our used techniques and the proof of Theorem 1.1.
Let G = (V, E) be a graph G and let M be a matching in G. We call a path P in G

an alternating path if the edges of P lie alternately in M and in E \ M . In the following,
we consider so-called segment endpoint visibility graphs: graphs that encode the visibility
between the endpoints of a set of segments. More precisely, given a set S of (non-intersecting)
segments in the plane, its segment endpoint visibility graph is the graph that contains a vertex
for every segment endpoint, and an edge between two vertices if the corresponding segment
endpoints either (1) are connected by a segment in S, or (2) “see” each other, meaning that
the open segment between them does not intersect any segment from S. Hoffmann and
Tóth [13] proved that segment endpoint visibility graphs always admit a simple Hamiltonian
polygon—this is a plane Hamiltonian cycle—, and moreover presented an algorithm to find
such a polygon. This result is crucial for us, as a plane perfect matching can be considered
as a set of segments in the plane. Hence, for every plane matching M there exists a plane
subgraph of the segment endpoint visibility graphs of M that is the (not necessarily disjoint)
union of a Hamiltonian cycle and M . Even disregarding planarity, we prove

▶ Lemma 2.1. Let G be an undirected graph that is the union of a Hamiltonian cycle C and
a perfect matching M . Let e1 = (a, b) and e2 = (c, d) be two matching edges. Then there
exists an alternating path P that starts with the vertex a and the edge e1 and ends with the
vertex c.

We denote the symmetric difference of two graphs A, B with A △ B. Given the setup
of Lemma 2.1, we can compute another matching M2 = M △ P in which both a and d are



O. Aichholzer, A. Brötzner, D. Perz and P. Schnider 59:3

a
c

a
c

a
c

a
c

Figure 2 A plane alternating path in the visibility graph gives rise to a sequence of flips.

unmatched. Ignoring the point d, this augmentation corresponds to a sequence of flips in
a point set of odd size. See Figure 2 for an illustration. This flip sequence starts with the
matching M1 = M \ {e2} and point c being unmatched, and ends with the matching M2 and
point a being unmatched.

To prove that the flip graph GMP is connected, we show that there always exists a
sequence of flips which transforms a given plane almost perfect matching into a plane almost
perfect matching, where the unmatched point lies on the boundary of the convex hull.

▶ Lemma 2.2. Let M1 be a plane almost perfect matching and let t be a point on the convex
hull of P . Then there exists a sequence of flips to a matching M2 in which the unmatched
point is t.

We use Lemma 2.2 to show that we can flip every matching M to a canonical matching MC ,
which we now define. Let P = {p1, p2, . . . , p2m+1}, where the points are labeled from left to
right. The canonical matching MC now consists of the edges p1p2, p3p4, . . . , p2m−1p2m with
p2m+1 remaining unmatched. It follows from the ordering of the points that this matching is
plane.

Proof of Theorem 1.1. Let M be any plane almost perfect matching on P . Let i be the
smallest index for which the edge p2i−1p2i is not in M . We show that there is a sequence
of flips on the point set {p2i−1, p2i, . . . , p2m, p2m+1} after which p2i−1p2i is in the resulting
matching. In the following, for simplicity of notation, we set i = 1.

Using Lemma 2.2, we first flip to a matching M2 in which the point p1 is unmatched. As
the segment p1p2 cannot be crossed by any other segment, we can thus do one more flip
which puts p1p2 into the resulting matching. Now we can inductively continue the argument
on the point set P ′ = {p3, . . . , p2m+1} and eventually reach the canonical matching MC . ◀

▶ Remark. From our proof it follows directly that not more than O(n2) flips are needed
to transform any plane almost perfect matching on P into any other plane almost perfect
matching on P . Or in other words, the diameter of the flip graph GMP is in O(n2).

3 Proofs of the Lemmata

In this section, we prove Lemma 2.1 and Lemma 2.2. We begin this section with presenting
a procedure to find an alternating path in an abstract graph.

▶ Lemma 2.1. Let G be an undirected graph that is the union of a Hamiltonian cycle C and
a perfect matching M . Let e1 = (a, b) and e2 = (c, d) be two matching edges. Then there
exists an alternating path P that starts with the vertex a and the edge e1 and ends with the
vertex c.

Proof. In a first step, we reduce to the situation where no matching edge except possibly
e1 or e2 lies on the cycle C, that is, C ∩ M ⊆ {e1, e2}. To this end, assume that there is a
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matching edge f = {f1, f2} lying on the path (f0, f1, f2, f3) of the cycle C. We define the
graph G′ with vertex set V (G′) = V (G) \ {f1, f2} by keeping all edges of G induced by V (G′)
and adding the edge {f0, f3}. It follows from the construction that G′ is again the union of a
Hamiltonian cycle and a perfect matching and that G′ contains an alternating path starting
at a and ending at c if and only if G contains an alternating path starting at a and ending
at c. Thus, in the following we may assume that C ∩ M ⊆ {e1, e2}.

We now describe an algorithm that explicitly constructs a required alternating path. The
algorithm constructs a sequence of graphs G2, G3, . . . , Gp, starting with G2 = {e1}, with the
following properties:

(1) the graph Gk has the k vertices v1, . . . , vk;
(2) Gk has two vertices of degree 1, namely v1 and vk;
(3) all other vertices of Gk have degree 2 and are incident to one edge in M and one edge in

C \ M ;
(4) v1 = a, v2 = b and vp = c.

From these properties it follows that the last graph Gp is the disjoint union of cycles and
the required alternating path P . It remains to describe the algorithm and prove that the
constructed sequence of graphs satisfies the above properties. We start by setting G2 = {e1},
which trivially satisfies all the properties. In order to construct Gk+1 from Gk we distinguish
two cases, depending on whether in Gk the (unique) edge e incident to vk is in M or not.

Case 1: e ∈ C \ M . Let m = {vk, w} be the matching edge incident to vk. We define
Gk+1 by adding m to Gk. By Property (3) for Gk, all vertices in Gk except vk are incident
to an edge in M , and as M is a perfect matching, this implies that w is not a vertex of Gk.
Thus, Gk+1 has one more vertex, proving Property (1) for Gk+1. The only vertices whose
degrees have changed are w = vk+1, which now has degree 1, and vk which is now also
incident to an edge in M . This proves properties (2) and (3).

Case 2: e ∈ M . For an illustration of this case, see Figure 3. Consider the unique
path Q in C from vk to c which does not pass through a and let w be the first vertex on
this path that is not a vertex of Gk. Set vk+1 = w. For any edge e in Q, add e to Gk+1 if
and only if it is not in Gk and remove it otherwise. Properties (1) and (2) follow directly by
definition. For Property (3), note that the only vertices whose neighborhoods have changed
are the vertices on Q. As Q is a path on C and we assumed that C contains no matching
edge other than e1 and e2, it follows that no matching edge was removed. All vertices are
thus still incident to exactly one matching edge. Further, as C is a cycle, every vertex in Q

is incident to exactly two edges in C \ M . It follows from the construction that exactly one
of these edges is removed while the other one is added, proving Property (3).

Finally, we stop the procedure as soon as we add the vertex c, which has to happen for
some Gp, p ≤ n, where n is the number of vertices of G. This proves the last part of Property
(4) and thus finishes the proof. ◀

▶ Lemma 2.2. Let M1 be a plane almost perfect matching and let t be a point on the convex
hull of P . Then there exists a sequence of flips to a matching M2 in which the unmatched
point is t.

Proof. Let p be the unmatched point in M1. If p = t then we are trivially done, so assume
for the remainder that p ̸= t. We duplicate p such that the two points p, p′ have the same
neighborhood in the segment endpoint visibility graph. Moreover, we add the edge pp′ to M1.
By [13] there is a plane Hamiltonian cycle C that spans all segment endpoints of M1 and
M1 ∪ C is plane. Let u be the vertex that is matched to t in M1. By Lemma 2.1, there is an
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a a

b b
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d d

e1 e1

e2 e2

vk

w vk+1

Figure 3 Constructing Gk+1 (right) from Gk (left). The paths Gk and Gk+1 are depicted with
lines, while unused edges of G are dashed. The matching edges are red, the cycle edges are black.

alternating path P from t to p in C ∪ M1 which starts with the edge tu. Since the underlying
graph is plane, P is also plane. If p and p′ are in P , then the edge pp′ is also in P because
pp′ is a matching edge. Hence, we can contract p and p′ to a single point p such that P is
still an alternating path.

Now, we construct a matching M2 by augmenting M1 via a sequence of flips along P to
get M2 = M1 △ P . M2 is an almost perfect matching in which p is matched, and t is the
unmatched point. ◀

4 Conclusion

We considered the flip graph GMP of plane matchings for point sets of odd size, and showed
that GMP is connected. In the course of the proof, we also showed that the union of a
Hamiltonian cycle and a perfect matching always contains an alternating path from an
arbitrary matching edge to any other arbitrary point.

While we showed that the flip graph is connected, it would be interesting to determine
more precise bounds for the diameter of GMP . Another interesting setting might be to study
this problem in two colored point sets with plane almost perfect bicolored matchings and
determine whether the according flip graph is still connected.
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Abstract
Backwards analysis is a simple, yet powerful technique used in analyzing the expected performance of
randomized algorithms: a randomized incremental algorithm is seen as if it were running backwards in
time, from output to input [Seidel 1993]. To be applicable, a key requirement is that the algorithm’s
output is independent of the randomization order. This needs to hold even for intermediate structures,
assuming the same set of elements have been processed. In this note we illustrate a variant, which
can be applied to algorithms with order-dependent output. As an example, we use the randomized
incremental triangulation of a point set in Rd, a generalization of Quicksort in higher dimensions,
which has been cited by Seidel as a negative example, where backwards analysis could not be applied.
We prove that the expected running time of this algorithm is Opn log nq. This variant of backwards
analysis was introduced by [Junginger and Papadopoulou, DCG 2023].

1 Introduction

Backwards analysis was popularized in Computational Geometry by Seidel [7]. It is a simple,
yet powerful technique to analyze the expected performance of a randomized algorithm.
Backwards analysis is based on the observation that the cost of the last step of an algorithm
can be often expressed as a function of the complexity of the final output; and thus, the
algorithm can be analyzed as if it were running backwards in time, from output to input [7].

In computational geometry, the first algorithm analyzed by backwards analysis was the
construction of the Delaunay triangulation of a set of points in convex position in the plane [2].
Since then, backwards analysis has been applied to a plethora of problems, and has become a
standard trick in analyzing the expected performance of randomized algorithms, see e.g., [1]
and references therein. This includes a simplified analysis of the influential randomized
incremental construction paradigm, introduced by Clarkson and Shor [3], and a particularly
simple approach to analyze Quicksort, both presented by Seidel in [7]. A key requirement
to apply backwards analysis, however, is that the algorithm’s output is independent of the
randomization order. To illustrate this fact, Seidel pointed out a negative example, where
backwards analysis could not be applied. This is the randomized incremental triangulation of
a point set in Rd, which generalizes Quicksort in higher dimensions. Seidel concluded the
section with an open problem: “It remains to be seen whether for fixed d ą 1 the expected
running time of this triangulation algorithm is indeed Opn log nq”.

∗ This research was supported by the Swiss National Science Foundation, Projects 200021E_201356
(Evanthia Papadopoulou) and P500PT_206736/1 (Martin Suderland).
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Contribution. In this paper we advertise a new variant of backwards analysis, which indeed
can prove the aforementioned Opn log nq time complexity for the randomized incremental
triangulation algorithm. Problems where the final output or intermediate structures depend
on the randomization order can benefit from this approach. It was first described in [5]
for analyzing a randomized incremental algorithm to perform deletion in abstract Voronoi
diagrams in linear time The intermediate Voronoi-like diagrams computed by this algorithm
were order-dependent and thus ordinary backwards analysis could not be correctly applied1.
In this paper we present another example where this new variant of backwards analysis can
analyse the running time of a randomized incremental algorithm while ordinary backwards
analysis cannot be applied.

2 Backwards analysis

Preliminaries Given n P N, we write rns for t1, 2, ..., nu. Let Sn be the set of all permutations
of length n. We use the one-line notation of permutations.

For a permutation σ “ pσ1, σ2..., σnq and index 1 ď i ď n let σpiq “ σi. Further, we
define the shift permutation σpiq “ pσ1, ..., σi´1, σi`1, ..., σn, σiq, which moves the i-th element
to the end.

The standard backwards analysis is based on the following idea: “Analyze an algorithm as
if it were running backwards in time, from output to input. This is based on the observation
that often the cost of the last step of an algorithm can be expressed as a function of the
complexity of the final product output of the algorithm” [7].

The expected running time of a randomized algorithm is computed step by step. We
assume that the algorithm is randomized over a set of n elements. Denote by Ti the running
time expended for the i-th step and by Oi the computed structure at step 1 ď i ď n. Then
Tipσq, the time required for the i-th step for permutation σ, is getting bounded by a function
of the complexity of the output object Oipσq).

Considering that each permutation is equally likely, we write for the expected time EpTiq:

EpTiq “
ř

σPSi
Tipσq

i! “
ři

j“1
ř

σPSi

σpiq“j

Tipσq
i! .

Because the standard backwards analysis is used for order-independent structures, the
time needed for the i-th step does not depend on the entire permutation σ but only on the
last processed element, i.e. σpiq “ j.

The variant of backwards analysis exploits the key idea of looking at groups of similar
permutations, where the order of elements is almost the same. A group has one representative
permutation σ and consists of Gσ “ tσp1q, σp2q, ..., σpnqu, where σpnq “ σ.

Essentially each group has one representative from which all other permutations can be
derived, by moving one element to the end of the one-line representation, see Fig. 1. Let
Rn Ă Sn be a set of pn ´ 1q! many representative permutations such that the groups of
representatives is a partition of all permutations of length n, i.e.

Ť
σPRn

Gσ “ Sn.

1 The preliminary version of this paper [4] had originally assumed otherwise, after expressing the time
complexity of each step as a function of the output structure. The new variant in [5] successfully
completed the analysis.
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Gσ “

$
’’’’’’’’’&
’’’’’’’’’%

σ “ pσ1, σ2, σ3, ..., σn´1, σnq “ σpnq

σp1q “ pσ2, σ3, ..., σn´1, σn, σ1q
σp2q “ pσ1, σ3, ..., σn´1, σn, σ2q
...
σpiq “ pσ1, ..., σi´1, σi`1..., σn, σiq
...
σpn´1q “ pσ1, σ2, ..., σn´2, σn, σn´1q

,
/////////.
/////////-

Figure 1 The group Gσ for representative σ “ pσ1, σ2, σ3, ..., σn´1, σnq.

For brevity we write TipGσq “ ř
ρPGσ

Tipρq. Thus, for the expected time needed for step
i we can derive:

EpTiq “
ř

σPSi
Tipσq

i! “
ř

σPRi
TipGσq
i! .

The existence of such a set Rn, for all n P N, was shown by Levenshtein [6] for problems
that were not related to backwards analysis or this variant, and this was originally pointed
out to us by Stefan Felsner. For n “ 4, the set

tp1, 2, 3, 4q, p2, 1, 4, 3q, p3, 1, 4, 2q, p3, 2, 4, 1q, p4, 1, 3, 2q, p4, 2, 3, 1qu
can be chosen as R4. Only the existence of a set Rn is important for the variant to work
without having to know a particular representation.

Why choose this grouping? The grouping is chosen with the following ideas in mind.

Each element appears exactly once as last element: this is important for computing the
overall expected running time, where each element should appear as last the same number
of times.
The grouping minimizes the number of inversions between the base permutation σ and
the permutations within its group Gσ.

Among all groupings satisfying the first property, the one that we chose with Gσ induces
the least number of inversions. Minimizing inversions is desirable because it can drastically
simplify the derivation compared to other alternative groupings that may satisfy the first
item, such as the one generated by swapping elements σpiq and σpnq.

To evaluate TipGσq we try to bound each Tipσpjqq by a portion of the output structure
Oipσq for the base permutation σ of the group. We thus evaluate TipGσq as a function
involving Oipσq. A minimum number of inversions between σpjq and σ is hense essential for
simplifying this task. For our triangulation example this is done in Lemma 3.2.

3 Example: Triangulation algorithm

Given a set of n points P “ tp1, p2, ..., pnu Ă Rd for some d P N within a d-simplex ∆. We
are recalling a higher-dimensional triangulation algorithm of P within ∆, see [7]. Initially,
the triangulation T consists of just one simplex ∆. The points are getting inserted one-by-one
while we keep the triangulation updated. If point pi is inserted we are looking for the simplex
τ of T, which contains pi. We replace this simplex τ by the d ` 1 many simplices, which
have pi as corner each and which partition τ . An overview of the algorithm is given in
Algorithm 1 together with an example in Fig. 2. The randomized version is achieved by

EuroCG’24
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Algorithm 1: Triangulating a point set
Input : Set of n points P “ tp1, p2, ..., pnu within simplex ∆ Ă Rd

Output : Triangulation T of P and ∆
1 T Ð ∆;
2 for i “ 1 Ñ n do
3 Remove simplex τ , which contains pi, from T;
4 Partition τ into d ` 1 simplices, each having pi as corner;
5 Add the new d ` 1 simplices to T;
6 return T;

p1

p3

p2

p4

Figure 2 Triangulation of Algorithm 1 for the insertion order σ “ p1, 2, 3, 4q.

initially permuting the set of points P by some random permutation σ P Sn, i.e. processing
the points in the order pσp1q, pσp2q, ..., pσpnq.

At any time during the algorithm the following information is kept:

1⃝ for each simplex we know the points of P , which are contained in it, and
2⃝ for each point p P P we know the simplex containing p.

Expected time complexity In this part we show how to apply the variant of the backwards
analysis to derive a bound on the time complexity for the triangulation algorithm. For
simplicity we prove the following bound for the 2-dimensional version, even though the
analysis can easily be generalized to higher dimensions.

§ Theorem 3.1. For any fixed d, Algorithm 1 has Opn log nq expected time complexity.

The expected running time of the i-th step is dominated by updating the information
in Items 1⃝ and 2⃝, i.e. rebucketing the remaining points of P which were contained in the
deleted triangle τ . These are at most n ´ i many points, but we show that this number
is much less in expectation. For 0 ď j ď i ď n and permutation σ P Sn denote by Ti

σ

the partial triangulation derived by only processing the first i many points specified by σ.
Moreover, let jAi

σ be the union of triangles of Ti
σ, which are incident to point pσpjq. Finally,

if i ă n we write ∆i
σ for the triangle of Ti

σ, which contains point pσpnq.
The main idea for the variant of the backwards analysis is to bound the time complexity

needed to process an entire group Gσ by some features of the output derived from a single
permutation σ. In the triangulation algorithm case, we are putting the points, which need
rebucketing in the i-th step for some permutation σpjq for some j P rns, in relation with the
output triangulation Ti

σ corresponding to permutation σ.
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p1

p3

p2

p4

p1

p3

p2

p4

Figure 3 (Left) Partial triangulation T 3
σ for insertion order σ “ p2, 1, 4, 3q and orange highlighted

area 2A3
σ and (Right) partial triangulation T 2

σp2q for insertion order σp2q “ p2, 4, 3, 1q with gray
highlighted triangle ∆2

σp2q . Note the subset relation between the orange and gray highlighted sets,
which are proven in Lemma 3.2.

§ Lemma 3.2. For all 1 ď j ď i ď n and any permutation σ P Sn it holds: ∆i´1
σpjq Ă jAi

σ.

Proof. The proof works by induction over i. The base case i “ j holds because ∆j´1
σpjq “ jAj

σ.
The first difference between σpjq and σ occurs at the j-th position. Thus the triangle in Tj´1

σpjq ,
which contains point pσpjq, equals the union of three triangles in Tj

σ incident to pσpjq.
Let us therefore assume that the induction hypothesis ∆i´1

σpjq Ă jAi
σ holds for some

i P tj, j ` 1, ..., n ´ 1u. We want to prove that also ∆i
σpjq Ă jAi`1

σ .
If pσpi`1q R jAi

σ then we have ∆i´1
σpjq “ ∆i

σpjq and jAi
σ “ jAi`1

σ and thus the claim
∆i

σpjq Ă jAi`1
σ trivially follows. For the rest of the proof we assume the opposite, i.e.

pσpi`1q P jAi
σ. See Fig. 4 for an illustration of the proof. Consider the ray from pσpjq to

pσpi`1q and denote q the point of intersection with the boundary of jAi
σ. In counterclockwise

order around the boundary of jAi
σ we call a (resp. b) the vertex directly after (resp. before)

q. Let ra (resp. rb) be the ray from pσpi`1q to a (resp. b). Finally, we call W the wedge
bounded by rb and ra, which does not contain the segment pσpjqpσpi`1q. Note that none of
the points P X jAi

σ lies in the interior of W . By construction, we have that jAi`1
σ “ jAi

σzW .
On the other hand, the boundary of the triangle ∆i

σpjq intersects the segment pσpjqpσpi`1q, or
at least passes through pσpi`1q; at the same time it contains the point pσpjq and none of its
endpoints lies in W . Therefore, ∆i

σpjq X W “ H.
Combining the induction hypothesis ∆i´1

σpjq Ă jAi
σ with the properties ∆i

σpjq Ă ∆i´1
σpjq ,

∆i
σpjq X W “ H, and jAi`1

σ “ jAi
σzW , we can indeed verify that also ∆i

σpjq Ă jAi`1
σ holds:

∆i
σpjq Ă ∆i´1

σpjq Ă jAi
σ

ñ ∆i
σpjq zW Ă jAi

σzW

ñ ∆i
σpjq Ă jAi`1

σ

đ

§ Corollary 3.3. In the i-th insertion step of Algorithm 1, each of the n ´ i remaining points
has to be rebucketed for at most 3 permutations within a group Gσ for any σ P Si.

Proof. Due to Lemma 3.2 we have the property ∆i´1
σpjq Ă jAi

σ holding true for any j P ris
and permutation σ P Si. The term ∆i´1

σpjq describes exactly the region which has to be
re-partitioned in the i-th step of the triangulation algorithm if the permutation σpjq is chosen,
i.e. any point of P falling into that region would have to be rebucketed. Thus, the region
which needs to be repartitioned for permutation σpjq is a subset of all triangles in Ti

σ, which
are incident to point pσpjq. For a point p P P let τ be the triangle of Ti

σ containing p. Then p

EuroCG’24
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(a)
p1

p3

p2

p4

rarb ab
q

(b)
p1

p3

p2

p4

rarb ab
q

(c)
p1

p3

p2

p4

rarb ab
q

(d)
p1

p3

p2

p4

rarb ab
q

Figure 4 For insertion order σ “ p2, 1, 4, 3q we show: (a) T 3
σ with highlighted 2A3

σ (b) T 2
σp2q with

highlighted ∆2
σp2q (c) T 4

σ with highlighted 2A4
σ (d) T 3

σp2q with highlighted ∆3
σp2q . From ∆2

σp2q Ă 2A3
σ

we derive that also ∆3
σp2q Ă 2A4

σ.

only needs to be rebucketed for permutations of Gσ, in which one of τ ’s corners is processed
last. Thus p has to be rebucketed at most three times in total for the entire group Gσ; at
most once for each permutation in Gσ with one of τ ’s corners being processed last. đ

The proof of Theorem 3.1 follows immediately from the previous corollary:

EpT pnqq “
ř

σPRi
TipGσq
i! “ O

ˆř
σPRi

3pn ´ iq
i!

˙
“ O

˜
nÿ

i“1

n

i

¸
“ Opn log nq.

4 Conclusion

The first example using this variant of backwards analysis appeared in the context of abstract
Voronoi-like diagrams. These were introduced in [5] serving as intermediate structures in a
randomized incremental algorithm to perform site-deletion in an abstract Voronoi diagram
in expected linear time. These intermediate structures depended on the permutation order
of the randomized algorithm, while the final output did not.

The triangulation algorithm, presented in this abstract, is a very simple algorithm,
which we mostly used to illustrate this new variant of backwards analysis. We believe that
this variant can be of interest to many other problems, when analyzing the expected time
complexity of randomized algorithms for order-dependent structures.
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Abstract
A non-crossing spanning tree of a set of points in the plane is a spanning tree whose edges pairwise
do not cross. Avis and Fukuda in 1996 proved that there always exists a flip sequence of length at
most 2n − 4 between any pair of non-crossing spanning trees (where n denotes the number of points).
Two recent results of Aichholzer et al. and Bousquet et al. improved the upper bound on the length
of a flip sequence to 2n − Ω(log n) and 2n − Ω(

√
n) when the points are in convex position.

We pursue the investigation of the convex case by improving the upper bound by a linear factor
for the first time in 30 years. We prove that there always exists a flip sequence between any pair
of non-crossing spanning trees T1, T2 of length at most cn where c ≈ 1.95. Our result is actually
stronger since we prove that, for any two trees T1, T2, there exists a flip sequence from T1 to T2 of
length at most c|T1 \ T2|.

We give a new lower bound in terms of the symmetric difference by proving that there exists a
pair of trees T1, T2 such that a minimal flip sequence has length 5

3 |T1 \ T2|. We generalize this lower
bound construction to non-crossing flips (where we close the gap between upper and lower bounds)
and rotations.

Related Version arXiv:2310.18518

1 Introduction

Let C be a set of n points in the plane in convex position. A spanning tree T on the set of
points C is a subset of edges that forms a connected acyclic graph on C. A spanning tree T on
C is non-crossing if every pair of edges of T (represented by the straight line interval between
their endpoints) are pairwise non-crossing. Let us denote by S(C) the set of all non-crossing
spanning trees on the point set C. Let T ∈ S(C). A flip on T consists of removing an edge e

from T and adding another edge f so that the resulting graph (T ∪ f) \ e is also in S(C). A
flip sequence is a sequence of non-crossing spanning trees such that consecutive spanning
trees in the sequence differ by exactly one flip.

Avis and Fukuda [2] proved that there always exists a flip sequence between any pair of
non-crossing spanning trees of length at most 2n − 4 by showing that there is a star S on C

such that T1 and T2 can be turned into S with at most n − 2 flips. In fact, they showed that
this flip sequence exists even if the point set C is in general position.

Given two spanning trees T1, T2, the symmetric difference between T1 and T2 is denoted
by ∆(T1, T2) = (T1 \ T2) ∪ (T2 \ T1). We denote by δ(T1, T2) = |∆(T1, T2)|/2 the number of
edges in T1 and not in T2, which is a trivial lower bound on the length of a flip sequence from
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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T1 to T2. The set of spanning trees of a graph G forms a matroid, hence, for any possible
pair of spanning trees T1, T2, there is a (non geometric) flip sequence that transforms T1 into
T2 in exactly δ(T1, T2) flips. However, more flips are needed for non-crossing spanning trees.
Hernando et al. [5] provided for every n, two non-crossing spanning trees T1, T2 on a convex
set of n points whose minimal flip sequence needs 3

2 n − 5 flips.
During 30 years, no improvement of the lower or upper bound has been obtained until

a recent result of Aichholzer et al. [1]. They showed that the upper bound of Avis and
Fukuda can be improved when points are in convex position by proving that there exists a
flip sequence between any pair of non-crossing spanning trees of length at most 2n − Ω(log n).
Their result has been further improved by Bousquet et al. [4] who proved that 2n − Ω(

√
n)

flips are enough. However, until now, there does not exist any general proof that there always
exists a flip sequence of length at most (2 − ϵ)n for some ϵ > 0. On the other side, Bousquet
et al. [4] conjectured that the lower bound of Hernando et al. [5] is essentially tight:

▶ Conjecture 1.1. Let C be a set of n points in convex position. There exists a flip sequence
between any pair of non-crossing spanning trees of length at most 3

2 n.

One can easily prove that there exists a flip sequence of length at most 2δ(T1, T2) between
any pair of non-crossing spanning trees in convex position. The improvement of Aichholzer et
al. [1] also improves this upper bound by Ω(log(δ(T1, T2))). Since in the example of Hernando
et al. the intersection is reduced to two edges, one can wonder if Conjecture 1.1 can be
extended to the symmetric difference, namely:

▶ Conjecture 1.2. Let C be a set of n points in convex position. There exists a flip sequence
between any pair of non-crossing spanning trees T1, T2 of length at most 3

2 δ(T1, T2).

Contributions Our main results first consist in (i) improving the best known upper bound
to approximatively 1.95 · δ(T1, T2), breaking the linear factor 2 of the threshold on the length
of a minimal flip sequence (even in terms of the symmetric difference), and (ii) disproving
Conjecture 1.2 by proving that the best upper bound factor we can hope for is 5

3 . We complete
these results by providing improved upper and lower bounds on the length of transformations
in other models of flips, namely non-crossing flips and rotations. In particular, we close the
gap between upper and lower bounds in the case of non-crossing flips.

Due to space constraints, we only sketch some proofs of the main results, and the full
proofs can be found in a recent preprint [3].

2 Definitions

Let C be a set of points in convex position and T be a non-crossing spanning tree on C. We
say two points of a convex set C are consecutive if they appear consecutively on the convex
hull of C. A border edge (for T ) is an edge between consecutive points. An edge of T which
is not a border edge is called a chord. A hole of T is a pair of consecutive points that is not
a border edge. We will say that we fill a hole when we apply a flip where the created edge
joins the pair of points of the hole.

One can remark that, for each chord e of T , the line containing e splits the convex hull of
C in two parts. A side of a chord e is the subset of points of C contained in one of the two
closed half-planes defined by the line containing the two endpoints of e (see Figure 1 for an
illustration). A side of T is a side of a chord e for some e ∈ T . We say an edge (or a hole) is
in a side A if both its endpoints are in A.
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In the following, for every side A of a chord, we will denote by kA the number of holes in
A, which is also the number of chords of T in A. Since T is acyclic, we also have kA > 0.
Note that each chord e of T defines two sides A and B whose intersection is exactly the
endpoints of e. Moreover, T has exactly kA + kB holes.

h1

h2

h3e

v1

v4

v3

v2v6

v5

Figure 1 The side A (in grey) of the chord e is is the subset of vertex {v1, v4, v5, v6} and the
other side B (in red) of e is {v1, v4, v2, v3}. The edges of T in A are the edges v5v6, v1v5 and v1v4.
The holes h1 and h2 of T are in A and h3 is in B. So we have kA = 2 and kB = 1.

Let A be a side of a chord e of T . We define the degree of a side A in a tree T ′ as the
number of chords of T ′ crossing e plus twice the number of chords of T ′ with both endpoints
in A (see Figure 2 for an illustration). Note that, if T ′ has no chords with both endpoints in
A, then the degree of A in T ′ is equal to the number of chords of T ′ crossing e.

v4

v1

v2
v3

v5

v6v7

Figure 2 The side A of the edge v1v4 highlighted in grey contains v1, v2, v3, v4 and v5. The
degree of A in the red tree is equal to 4 : v4v6 and v4v7 cross v1v5, and v1v3 has both endpoints in
A. Note that v1v2 is not a chord, thus it does not increase the degree of A in T ′.

3 Upper bound

The first result of the paper is to improve the best upper bound of [4] by a linear factor by
proving that the following holds:

▶ Theorem 3.1. Let C be a set of n points in convex position. There exists a flip sequence
between any pair of non-crossing spanning trees T1 and T2 of length at most c · δ(T1, T2) with
c = 1

12 (22 +
√

2) ≈ 1.95.
In particular, there exists a flip sequence of length at most cn ≈ 1.95n between any pair of
non-crossing spanning trees.
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We prove Theorem 3.1 by induction. Let TI , TF be two trees on a convex point set C, and
assume that Theorem 3.1 holds for every pair of trees T ′

I and T ′
F , which are either defined on

the same set of points and δ(T ′
I , T ′

F ) < δ(TI , TF ) or on a smaller set of points. The goal to
prove Theorem 3.1 is to match pairs of chords in TI , TF using few flips, i.e. less than c flips
per pair of chords matched. Indeed, if we manage to apply at most ck flips on TI and TF to
obtain T ′

I and T ′
F with k more edges in common, we get δ(T ′

I , T ′
F ) = δ(TI , TF ) − k and we

can conclude by induction.

Basic properties of TI and TF Since common chords and non-common border edges can
be trivially reduced, we first observe that, if TI , TF share a common chord or do not have
the same border edges, we can conclude by induction. Hence, we may assume for the rest of
the proof that TI and TF form a nice pair of trees, i.e. the two trees have no common chord
and have the same border edges. Note that for a nice pair of trees, every pair of consecutive
points is either a common hole or a common border edge. Thus, for a nice pair of trees
(T, T ′), we will refer to a hole of T or T ′ simply as a hole.

The rest of the proof describes a transformation from the nice pair (TI , TF ) to a pair
(T ∗

I , T ∗
F ) which matches k pairs of chords of TI and TF using at most c · k flips. The main

steps of the proof are illustrated in Figure 3. We define a τ -extremal side, which is a side
which always exists in a nice pair of trees (and hence which we can also find in TI and TF ).
We then transform a τ -extremal side to what we call a very good side without using too
many flips. At the end we observe that in very good sides, we can match the kA chords in the
side using at most 5

3 kA flips in total. Analysing the steps then gives us the desired bound.

τ -extremal side

fill bad holes

good side

remove extra
crossing chords

very good side

match remaining
chords

matched side

Figure 3 The main steps in the proof of Theorem 3.1. The goal is to match the chords in a side
using few steps. (We define τ -extremal, bad, good and very good later).

τ -extremal side Our process starts from a τ -extremal side S of TI . Let T, T ′ be a nice pair
of trees and τ > 2. We say a side A of a chord e of T is τ -extremal for a tree T ′ if the degree
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of A in T ′ is at most τ · kA, and, for every side A′ ⊊ A of T ′, the degree of A′ in T is more
than τ · kA′ . To prove that such a side always exists in TI or TF (say TI by symmetry), we
start from an arbitrary side and use an iterative greedy argument until we get a τ -extremal
side.

The next step is to refine S until we can show it can be matched using few flips. This
refinement will start by removing bad holes. A hole h in a side A of T is bad w.r.t T ′ if it is
also in a side B ⊊ A of T ′, see Figure 4. For our process to yield the desired number of flips,
we first need to show that S contains few bad holes. In particular, we prove that S contains
m ⩽ 2

τ kS bad holes w.r.t. TF .

e′

e

h

h′

Figure 4 Let T1 be the black tree and T2 the red tree. The hole h is a bad hole of the side A (in
grey) w.r.t T2 since it is inside the side of e′ included in A.

Refining a τ -extremal side We describe in this paragraph how we refine S into a very good
side. Let T and T ′ be a pair of trees. A good side A of T with respect to T ′ is a side of T

containing no chord of T ′ (see Figure 5 for an illustration). A very good side A of T (w.r.t.
T ′) is a good side w.r.t T ′ whose degree in T ′ is at most kA.

e

h

h′

Figure 5 Let T1 be the black tree and T2 the red tree. The side A (in grey) of e is a good side of
T1 w.r.t. T2 since there is no chord of T2 inside A, but A is not very good w.r.t T2 since the degree
of A in T2 is 3 > kA = 2.

As we already said, we first obtain a good side from S by filling its bad holes with chords
of TI and TF that have both endpoints in S, therefore we perform 2m flips to match m pairs
of chords. In the resulting pair of trees (T ′

I , T ′
F ), the size of S is now k′

S = kS − m and its
degree is dS − 2m with dS the degree of S in TF .

Observe that S being good but not very good simply means that there are too many
chords crossing the unique chord e on the boundary of S. Hence, we now remove these
dS − 2m − k′

S extra chords crossing e by matching them with a chord of T ′
I on a hole which

is not in S.
To refine S from a good side into a very good side, we use 2(dS −2m−k′

S) = 2(dS −2m−k′
S)

flips to match dS − 2m − k′
S = dS − 2m − k′

S pairs of chords.

EuroCG’24
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Very good side Now that S is a very good side, we can match the k′
S chords in S with few

flips using the following:

▶ Lemma 3.2. Let T1 and T2 be a nice pair of trees, e be a chord of T1, and A be a very
good side of e (w.r.t. T2). Then, we can match the kA chords of T1 in A with chords of T2
using at most 5

3 kA flips in total.

Bounding the number of flips Let (T ∗
I , T ∗

F ) be the pair of trees obtained after refining S

then applying Lemma 3.2 to it. We are now ready to conclude the proof of Theorem 3.1.
Our transformation is as follows: first, we transform (TI , TF ) into (T ∗

I , T ∗
F ) by matching

m+(dS −2m−k′
S)+k′

S = dS −m pairs using 2m+2(dS −2m−k′
S)+ 5

3 k′
S = 2dS −kS/3−5m/3

flips. Then, we apply induction on (T ∗
I , T ∗

F ) and get a transformation from T ∗
I to T ∗

F using
at most cδ(T ∗

I , T ∗
F ) flips.

In order to conclude the proof of Theorem 3.1, we need to make sure that we save enough
using Lemma 3.2 to compensate for the expensive refinement process. More precisely, we
need that the total number of flips we used to get (T ∗

I , T ∗
F ), namely 2dS − kS/3 − 5m/3, is

at most c(dS − m). Using that dS ⩽ τkS and that m ⩽ 2
τ kS (since S is τ -extremal), this

boils down to an inequality implying only c and τ , which is satisfied when plugging in the
values τ = 2 +

√
2 and c = 1

12 (22 +
√

2).

4 Lower bounds

Our second set of results consists in proving stronger lower bounds in terms of the symmetric
difference of the two trees. In particular, we disprove Conjecture 1.2:

▶ Theorem 4.1. For every k > 0, there exist two trees Tk and T ′
k such that δ(Tk, T ′

k) = 3k

and every flip sequence between Tk and T ′
k has length at least 5k = 5

3 δ(Tk, T ′
k).

The proof of Theorem 4.1 consists in first providing two spanning trees T1, T ′
1 on 8 vertices

for which δ(T1, T ′
1) = 3 and such that the minimal flip sequence between T1 and T ′

1 needs 5
flips (see Figure 6). We can prove that if we glue many instances of (T1, T ′

1) appropriately,
we can obtain a similar example with arbitrarily large value of k.

v5

v2

v6

v1

v8

v3

v7

v4 vi+1
6vi+1

5vi
7 = vi+1

2vi
4vi

3

vi
5 vi

6 vi
8 = vi+1

1 vi+1
3 vi+1

4

vi
1

vi
2 vi+1

7

vi+1
8

Figure 6 On the left, the tree T1 in black and the tree T ′
1 in red. On the right, an example of

two copies of T1 and T ′
1 glued together.

We have not found any example for trees T1, T2 for which a flip sequence of length more
than 5

3 δ(T1, T2) is necessary. We therefore leave the following as an open problem:
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▶ Question 4.2. Let C be a set of points in convex position and T1, T2 two non-crossing
spanning trees on C. Does there always exist a flip sequence between T1 and T2 of length at
most 5

3 δ(T1, T2)?
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Abstract
In this work, we study mixed linear layouts of graphs. Our motivation stems from a result by
Pupyrev [15], who disproved a conjecture by Heath and Rosenberg [14] by showing the existence of
planar graphs not admitting layouts with one stack and one queue. Since stacks and queues form
special cases of the recently-introduced riques, we strengthen this result by showing that there exist
planar graphs that do not admit a layout with one rique and either one stack or one queue.

1 Introduction

Linear layouts of graphs [12] have a long tradition of research, e.g., in Algorithm Design,
Combinatorics, Graph Theory and Graph Drawing. The ones that we consider in this paper
are defined using an associated data structure [3, 4, 9, 14]. The task is to find a so-called
linear order of the vertices of the input graph and a partition of its edges into as few parts
(called pages) as possible, such that the edges of each part can be processed by the given data
structure. Namely, assuming that the vertices are left-to-right ordered according to their
linear order, each edge is added to the data structure when its left endpoint is encountered
in the order and is removed from the data structure when its right endpoint is encountered.

In this context, the most prominent types of linear layouts are the stack [9, 17] and
the queue layouts [11, 14] that are defined using the stack and the queue data structures,
respectively. A page of the former is called stack and does not allow two crossing edges, while
a page of the latter is called queue and does not allow two nesting edges; see Fig. 2. Both
these layouts form special cases of the so-called deque layouts [3], which are defined using
the double-ended queue (or deque, for short) data structure. It is well-known that a page of a
deque layout, called deque, has the following properties: the union of (i) two stacks, or (ii)
two queues or (iii) a stack and a queue forms a deque [3]. In particular, (i) and (ii) imply
that the deque-number (i.e., the minimum required number of deques over all deque layouts)
of a graph cannot be more than half its stack- or its queue-number (i.e., the corresponding
required numbers of stacks and queues, respectively).

In this work, we focus on planar input graphs and mixed linear layouts consisting of two
pages; one that is either a stack or a queue, and one that is rique [4]; such a page is defined
by the restricted-input double-ended queue (or rique, for short) data structure; refer, e.g.,
to Fig. 1 for a sample linear layout consisting of a single rique and to Section 2 for formal
definitions. The rique data structure forms a special case of the deque data structure as
follows. While in a deque insertions and removals occur both at the head and at the tail
of it, in a rique insertions occur only at the head (removals occur both at the head and at
the tail). Our work is motivated by a result by Pupyrev [15], who disproved a conjecture by
Heath and Rosenberg [14] by showing the existence of planar graphs not admitting mixed
layouts with one stack and one queue. Here, we show that there exist planar graphs that do
not admit mixed layouts with one rique and either one stack or one queue. In other words,
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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1 2 3 4 5 6 7 8 9 10 11

(b)

Figure 1 Illustration of: (a) the Goldner-Harary graph without the edge connecting its topmost
vertex with its bottommost one, and (b) a rique layout of it with a single rique, in which the green
edges are head-head, while the blue ones are head-tail.

with respect to the previously mentioned result by Pupyrev [15], our result implies that
substituting one of the pages by a rique is still not enough for a positive answer to Heath
and Rosenberg’s conjecture.

Our work is also related to the rique-number (i.e., the minimum required number of riques
over all rique layouts) of planar graphs. More precisely, since the stack-number of planar
graphs is 4 [7, 17], it follows that the deque-number of planar graphs is 2, as also observed by
Auer et al. [3]. So, it is natural to ask whether the rique-number of planar graphs is also 2;
the obvious upper bound is 4, since a stack page is trivially a rique [4]. Unfortunately, we
have not managed to completely settle this question, as our result does not close the gap
on the rique-number of planar graphs (this ranges between 2 and 4, as noted). It forms,
however, an indication that it might be not 2 (as observed above, both stacks and queues
form special cases of riques).

2 Preliminaries

A vertex order ≺ of a graph G is a total order of its vertices, such that for any two vertices
u and v of G, we write u ≺ v if and only if u precedes v in the order. Let F be a set
of k ≥ 2 pairwise independent edges (ui, vi) of G, that is, F = {(ui, vi); i = 1, . . . , k}. If
u1 ≺ · · · ≺ uk ≺ vk ≺ · · · ≺ v1, then the edges of F form a k-rainbow, while if u1 ≺ · · · ≺
uk ≺ v1 ≺ · · · ≺ vk, then the edges of F form a k-twist; see Fig. 2. Two edges that form
a 2-twist (2-rainbow) are commonly referred to as crossing (nested). A stack is a set of
pairwise non-crossing edges in ≺, while a queue is a set of pairwise non-nested edges in ≺.

u1 u2 u3 v1 v2 v3

(a)

u1 u2 u3 v3 v2 v1

(b)

u1 u2 v2 v1

(c)

Figure 2 Illustration of: (a) a 3-twist (i.e., three pairwise crossing edges), (b) a 3-rainbow (i.e.,
three pairwise nesting edges), and (c) a rique page with two edges; a head-head and a head-tail.

A rique is a set of edges that does not contain three edges (a, a′), (b, b′) and (c, c′) such
that a ≺ b ≺ c ≺ b′ ≺ {a′, c′} in ≺ [4]. A more intuitive definition of a rique is the following.
Assume that the vertices of the input graph are arranged on a horizontal line ℓ from left to
right according to ≺ (say, w.l.o.g., equidistantly). Then, each edge (u, v) with u ≺ v can
be represented either (i) as a semi-circle that is completely above ℓ connecting u and v, or
(ii) as two semi-circles on opposite sides of ℓ, one that starts at u, lies above ℓ and ends at a
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point p of ℓ to the right of the last vertex of ≺ and one that starts at p, lies below ℓ and
ends at v. Then, a rique is a set of edges each of which can be represented with one of the
two types (i) or (ii) that avoids crossings (such a representation is called cylindric in [3, 4]);
see Fig. 2c. A type-(i) edge is called head-head, while a type-(ii) edge is called head-tail1;
refer to the green and blue edges of Fig. 2c, respectively. It is not difficult to see that the
subset of the head-head edges of a rique induces a stack in ≺, while the corresponding set of
the head-tail edges of a rique induces a queue in ≺ [4]. Thus, in a sense, a rique is a special
case of a stack and a queue; not every pair of a stack and a queue however forms a rique.

3 Our result

In this section, we prove that there exist planar graphs that do not admit mixed layouts
with one rique and either one stack or one queue. To achieve this, we establish a recursive
definition of a planar graph (Section 3.1) and we prove that every layout of it with one
rique and either one stack or one queue contains at least two edges that either cross in the
cylindric representation of the rique or that cross (nest) in the stack (queue). Our proof
contains several combinatorial arguments (Section 3.2) but the case analysis that needs to
be performed in order to obtain the desired result is deferred to the computer (Section 3.3).
The reason for this is that there exist several cases that one needs to consider arising from
the two different types that each edge may have; in addition to this, each edge assigned
to the rique may be head-head or head-tail (Section 3.4). For the last step in the proof,
we exploit a known formulation of the problem of testing whether a given (not necessarily
planar) graph admits a layout with a certain number of pages (stacks, queues or riques) as
a SAT instance [8]. In our approach, we use properties from our combinatorial analysis to
reduce the size of the search space and to introduce several symmetry-breaking constraints
in the SAT instance, which made the latter verifiable in reasonable amount of time (less
than 10 minutes) using a standard SAT solver [10]. Note that, the actual implementation
has become part of [5] and the corresponding code is available to the community as part of
the following GitHub repository:

https://github.com/linear-layouts/SAT

3.1 The graph supporting the proof
We start with the description of the graph, which contains a set of 2T independent vertices
si and ti, with 1 ≤ i ≤ T , called terminals. For each i = 1, . . . , T , we connect each of si

and ti to two adjacent vertices A and B, called poles. Each pair of such terminals delimits
a so-called component Ci in GT (colored gray in Fig. 3a) as follows: For i = 1, . . . , T − 1,
we add two vertices xi and yi that are connected by an edge; each of these two vertices is
connected with si and ti; additionally, xi is connected with A, and yi with B. In a second
step, we construct a 3-cycle ⟨ai, bi, ci⟩ and we connect vertex ai with xi and si, vertex bi

with si and yi, and vertex ci with xi and yi. Symmetrically, we construct a 3-cycle ⟨a′
i, b′

i, c′
i⟩

and we connect vertex a′
i with xi and ti, vertex b′

i with ti and yi, and vertex c′
i with xi and

yi; see Fig. 3b. Aiming to introduce in GT several subgraphs, which are neither 2-stack nor
2-queue embeddable [1, 13], the construction continues by stellating several already formed

1 Note that a deque additionally supports tail-tail edges (semi-circles below ℓ) and tail-head edges (two
semi-circles, one that starts at the left endpoint of the edge, lies below ℓ and ends at a point p of ℓ to
the right of the last vertex of ≺ and one that starts at p, lies above ℓ and ends at the other endpoint).
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(a) Graph GT

B

A
xi

yi

tisi

ai

bi
ci c′i

a′
i

b′i

(b) Component Ci

ai
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(c) Stellating ⟨ai, bi, ci⟩

Figure 3 Illustrations for the construction of graph GT : Each gray subgraph in (a) corresponds
to a copy of the graph in (b); each gray subgraph in (b) corresponds to a copy of the graph in (c).

faces, where the operation of stellating a face f bounded by a cycle C introduces a vertex u

in f and connects u to each of the vertices of C. In particular, we proceed by stellating the
resulting faces ⟨ai, bi, ci⟩ and ⟨a′

i, b′
i, c′

i⟩, introducing two new vertices di and d′
i, respectively

(refer to the yellow vertex in Fig. 3c). Afterwards, a second round of stellations occurs
involving the faces ⟨ai, di, bi⟩, ⟨ai, di, ci⟩, ⟨bi, di, ci⟩, ⟨a′

i, d′
i, b′

i⟩, ⟨a′
i, d′

i, c′
i⟩ and ⟨b′

i, d′
i, c′

i⟩ (refer
to the green vertices in Fig. 3c). The final graph GT is obtained by stellating each of the
newly formed faces once more (refer to the red vertices in Fig. 3c). We refer to two vertices
(edges) of two different components Ci and Cj that correspond to the same vertex (edge) in
the construction above as twin vertices (edges), e.g., the vertices x1, . . . , xT are twin vertices,
while the edges (A, x1), (A, x2), . . . , (A, xT ) are twin edges.

3.2 The combinatorial part of the proof

Assume that GT has a mixed linear layout L with one rique and either one stack or one
queue. By symmetry, we may assume w.l.o.g. that A ≺ B and si ≺ ti holds in L, for each
i = 1, . . . , T . Since each component in GT is of fixed size, if we set T to be large enough,
then we can assume by pigeonhole principle that there is a certain number, say k, of copies
of components, w.l.o.g. C1, . . . , Ck, of GT that have exactly the same layout in L. Namely,
for any two components Ci and Cj , with 1 ≤ i, j ≤ k, (i) the order in which any two vertices
u and v of Ci appear in L is the same as their twin vertices u′ and v′ of Cj , while (ii) any
two twin edges of Ci and Cj are assigned to the same page and additionally are of the same
type (e.g., both head-head or both head-tail) if assigned to the rique of L. Using Ramsey’s
theory (and assuming that T is even larger), we can further guarantee that (iii) each group
of twin edges form a rainbow or a twist or a necklace in the underlying linear order.

In the following, we assume that T is large enough such that we can identify k = 4
components C1, C2, C3 and C4 with the aforementioned properties. In this case, by symmetry,
we can further assume that t1 ≺ t2 ≺ t3 ≺ t4. Let w1 be any vertex connected to t1 that
is not one of the poles A or B of GT . Let w2, w3 and w4 be the twins of w1 in C2, C3 and
C4, respectively. Since the edges (t1, w1), (t2, w2), (t3, w3) and (t4, w4) are twin edges (thus,
forming a rainbow or a twist or a necklace), it follows that either w1 ≺ w2 ≺ w3 ≺ w4 or
w4 ≺ w3 ≺ w2 ≺ w1 holds in L. Extending this argument to the neighbors of w1, w2, w3 and
w4 and further, one may conclude that for every quadruple of twin vertices z1, z2, z3 and z4 in
C1, C2, C3 and C4, respectively, it holds that either z1 ≺ z2 ≺ z3 ≺ z4 or z4 ≺ z3 ≺ z2 ≺ z1.
Twin vertices satisfying this property are said to be monotonically ordered.
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3.3 The computer-aided part of the proof
With the observations that we made in Section 3.2, we were able to prove that, for large
enough values of T , graph GT does not admit a mixed linear layout with one rique and either
a stack or a queue using the SAT formulation described in [8]. More precisely, assuming to
the contrary that GT admits such a layout, the subgraph of GT formed by the poles A and
B and by the four components C1, C2, C3 and C4 that we described in Section 3.2 must also
admit a corresponding layout under the following constraints:

1. Pole A precedes pole B.
2. Terminal si precedes terminal ti for each i = 1, 2, 3, 4.
3. Every quadruple of twin edges is assigned to the same page.
4. For every quadruple of twin vertices, we require them to be (i) monotonically ordered,

(ii) either all before or all after pole A and (iii) either all before or all after pole B.

Note that, by our discussion in Section 3.2, Constraints 1–4 preserve the satisfiability
of the SAT instance. However, with the online implementation [6] of [8], which already
provides support for encoding Constraints 1–4 in SAT, we verified that the subgraph of GT

formed by the poles A and B and by the four components C1, C2, C3 and C4 admits a mixed
linear layout neither with one rique and one stack nor with one rique and one queue when
Constraints 1–4 are imposed, contradicting the fact that GT also admits such a layout. The
total time needed to verify the unsatisfiability was less than 10 minutes on a single-node
4-core 3.3 GHz Intel Core i5-4590 machine with 16GM RAM. We summarize this finding in
the next theorem.

▶ Theorem 3.1. There exist planar graphs that do not admit mixed linear layouts with one
rique and either one stack or one queue.

3.4 Some remarks towards a purely combinatorial proof
We conclude this section by mentioning that a purely combinatorial proof is possible to
be derived by further extending the arguments that we introduced in Section 3.2. As a
matter of fact, the next step in the proof is to consider the six possible permutations that
may arise for the poles A and B with respect to the terminals s1, t1, s2, t2, s3, t3, s4
and t4 of the components C1, C2, C3 and C4, namely: (P.1) si ≺ A ≺ B ≺ ti, (P.2)
A ≺ si ≺ B ≺ ti, (P.3) si ≺ A ≺ ti ≺ B, (P.4) A ≺ B ≺ si ≺ ti, (P.5) si ≺ ti ≺ A ≺ B

and (P.6) A ≺ si ≺ ti ≺ B. Then, one has to argue on the feasible positions of the
remaining (twin) vertices contained in C1, C2, C3 and C4 within each of P.1–P.6. However,
these positions depend on the page that each edge is assigned (rique, stack or queue) and
of its type (head-head or head-tail, if the edge is in the rique). This make the number of
starting cases for the edges connecting A, B and the terminals s1, t1, s2, t2, s3, t3, s4 and t4
already very large and the resulting purely combinatorial proof very tedious.

4 Conclusions

In this work, we demonstrated planar graphs that do not admit mixed linear layouts with one
rique and either one stack or one queue strengthening a corresponding result by Pupyrev [15]
limited to layouts with one stack and one queue. We also made a step towards answering a
question in [8] related to the rique number of planar graphs that ranges between 2 and 4; we
feel that to show a lower bound of 3 is a realistic goal. Nevertheless, we consider closing this
gap as an interesting open problem for future consideration.
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Related to our work is also a result by Angelini et al. [2], who also provided a strengthened
version of the result by Pupyrev [15] by demonstrating 2-trees that do not admit mixed linear
layouts with one stack and one queue. Their result implies that 2-trees do not admit rique
layouts with one rique. On the other hand, 2-trees admit stack layouts with two stacks [16],
which trivially implies that they also admit mixed linear layouts with one rique and one
stack. In this regard, it would be interesting to study whether this result transfers to planar
3-trees, namely, whether planar 3-trees admit mixed linear layouts with one rique and either
one stack or one queue; note that planar 3-trees admit stack layouts with three stacks [13],
which implies that they also admit mixed linear layouts with one deque and one stack. So,
in a sense, our question is whether substituting the deque page with a rique one still suffices
for such a positive result.

Acknowledgements. The authors thank M. A. Bekos for numerous fruitful discussions.
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Abstract
In this paper, we study algorithms for the discrete Fréchet distance in graphs with low highway
dimension. We describe a ( 5

3 + ε)-approximation algorithm for the Fréchet distance between a
shortest path P with n vertices and an arbitrary walk Q with m vertices in a graph G = (V, E). The
algorithm makes use of a collection of sparse shortest paths hitting sets which are precomputed for
the graph G. After preprocessing, the algorithm has running time O

(
n log D + m(h log h log D)2)

,
where h is the highway dimension and D is the diameter of G. The preprocessing for the graph is
polynomial in |G| and 1/ log(1 + ε) and uses O (|V | log D(1/ log(1 + ε) + h log h)) space.

1 Introduction

The notion of the Fréchet distance between polygonal curves was introduced to Computational
Geometry by Alt and Godau in 1992 [5]. They also gave a O(n2 log n) algorithm to compute
the continuous Fréchet distance between two curves with O(n) vertices in Euclidean metric
spaces of fixed dimension. Bringmann showed that neither the discrete nor the continuous
Fréchet distance between two curves can be computed in time O(n2−ε) for any ε > 0
unless the orthogonal vectors hypothesis fails [9] and there are known algorithms showing
that this lower bound is tight in the discrete [4] and the continuous case [10]. There are
various faster exact and approximation algorithms known in specialized settings for the
continuous [6, 7, 11, 12, 13, 14] and discrete Fréchet distance [7, 15, 17, 19]. Some of these
algorithms work with a preprocessing that stores one curve such that computing the Fréchet
distance to any other curve can be done efficiently [13, 15, 17, 19]. All of the mentioned
algorithms require that the curves are embedded in some sort of underlying metric space.

We consider the discrete Fréchet distance between walks in a graph with respect to
the shortest path metric. This can for example be used to determine similarities between
trajectories in street networks, which has been a question of interest in the past [8, 18].
Driemel, van der Hoog and Rotenberg showed that for this variant of the problem the
near-quadratic conditional lower bound still holds [16]. They also study approximation
algorithms for the setting that one of the walks is κ-straight, that is a near-shortest path.
A path is κ-straight if any subpath between any two vertices p and q along the path has
length at most κ times the shortest path distance from p to q. In particular, a shortest
path is κ-straight for κ = 1. They show that one can compute a (1 + ε)-approximation of
the Fréchet distance between a κ-straight path P and any walk Q in a planar graph G in
O

(
|G| log |G| /

√
ε + |P | + κ

ε |Q|
)

time and they give a (κ + 1)-approximation algorithm, with
running time in O

(
(|P | + |Q|) log3+o(1) |G|

)
, after preprocessing. For general graphs, the
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for Mathematics); 416767905; and funded by the Lamarr Institute for Machine Learning and Artificial
Intelligence lamarr-institute.org.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



63:2 Approximating the Fréchet Distance for Low Highway Dimension Graphs

second algorithm has running time in O ((|P | + |Q|) · T (G) · log D), where T (G) denotes the
time for a distance query in G.

In this paper, we focus on the case where the graph G = (V, E) is not necessarily planar,
but has low highway dimension, a property which has been studied in the context of road
networks before [2]. We give an algorithm that computes a ( 5

3 + ε)-approximation to the
discrete Fréchet distance between a shortest path P and any walk Q in G. After preprocessing
the graph, the running time of the algorithm is in O

(
|P | log D + |Q| (h log h log D)2)

, where
h is the highway dimension of the graph and D is the diameter of G. The preprocessing is
polynomial in |V | and 1/ log(1 + ε) and uses O (|V | log D(1/ log(1 + ε) + h log h)) space.

1.1 Highway Dimension
Abraham, Delling, Fiat, Goldberg and Werneck introduced multiple definitions of the highway
dimension over the years [3, 1, 2]. We work with the latest definition from 2016 [2].

The intuition behind a low highway dimension is that there exists a small set of vertices
(“hubs”) such that for any point in the graph every shortest path to a destination far away
visits at least one of these hubs. Abraham et al. argue that this is a realistic model of road
networks [2]. A low highway dimension is especially helpful for shortest path computations.
We use these hitting sets of long shortest paths for Fréchet distance queries.

Let G = (V, E) be a graph with non-negative integer edge weights ℓ that satisfy the
triangle inequality and can all be expressed in a word of Θ(log |V |) bits. A walk in G is
a sequence of vertices with an edge between any two successive vertices. A path is a walk
where every vertex is visited at most once. We assume that shortest paths in G are unique.

Let P be a shortest path with weight ℓ(P ) > r for some value r > 0. Denote by V (P ) the
set of vertices in P . In [2], Abraham et al. call a shortest path P ′ an r-witness for a shortest
path P if ℓ(P ′) > r and P is either equal to P ′ or it arises from P ′ by deleting one or both
end vertices of P ′. All shortest paths that have an r-witness are called r-significant. This
means that also single vertices can be r-significant. Denote by Pr all r-significant paths.

▶ Definition 1.1 (Highway dimension [2]). The highway dimension h of the graph G = (V, E)
is the smallest integer such that for any real value r > 0 and v ∈ V there exists a set H ⊆ V

with |H| ≤ h and H ∩ V (P ) ̸= ∅ for all r-significant paths P with an r-witness P ′ satisfying
dist(v, P ′) := minw∈V (P ′) dist(v, w) ≤ 2r.

The sets H exist separately for every vertex and radius. Abraham et al. give a related
definition of sparse hitting sets:

▶ Definition 1.2 (Sparse Shortest Path Hitting Set (SPHS) [2]). For r > 0 an (h, r)-SPHS
is a set C ⊆ V (G) such that |B2r(v) ∩ C| ≤ h for all v ∈ V (G) and V (P ) ∩ C ̸= ∅ for all
P ∈ Pr, where B2r(v) is the set of vertices in G that have distance at most 2r to v.

It can be shown that there always exists an (h, r)-SPHS in a graph with highway dimension
h [2]. Note that the set B2r(v) ∩ C is very similar to the set H for v and r in the definition
of the highway dimension but it might not hit all necessary r-significant paths even though
C hits all these paths. One can extend this definition even further in the following way:

▶ Definition 1.3 (µ-multiscale SPHS). For µ > 1 a µ-multiscale SPHS with value h of
G is a collection of sets Ci for 0 ≤ i ≤

⌈
log D
log µ

⌉
, where Ci is a (h, µi−1)-SPHS and D :=

maxv,w∈V (G) dist(v, w) is the diameter of G.

In [2] the definition of a multiscale SPHS matches our definition of a 2-multiscale SPHS. Note
that log D ∈ O (log |V |) because all edge weights can be expressed in a word of Θ(log |V |)
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bits. Computing an (h, r)-SPHS in a graph with highway dimension h can be NP-hard.
However, we can compute an approximation in polynomial time (Theorem 8.2 in [2]), which
leads to the following theorem:

▶ Theorem 1.4. In a graph with highway dimension h, we can compute a µ-multiscale SPHS
with value O(h log h) in running time polynomial in size(G) and (log µ)−1.

Using 2-multiscale SPHS, one can create a fast distance oracle in G as it is discussed in [2]:

▶ Theorem 1.5 (see Theorem 8.3 in [2]). With a polynomial-time preprocessing and O(|V | log D·
h log h) space we can preprocess a graph G = (V, E) with highway dimension h such that a
distance query between any two vertices takes O (h log h log D) time.

1.2 Fréchet Distance
We follow [16] in our definition of the discrete Fréchet distance in a graph. The discrete
Fréchet distance is a similarity measure between two walks in a graph. Assume we are given
a graph G with a metric weight function w. Let P = (p1, . . . , pn) and Q = (q1, . . . , qm) be
walks in G. We denote by [n] × [m] ⊂ N × N the integer lattice of n by m integers and say
that an ordered sequence F of pairs in [n] × [m] is an xy-monotone discrete walk if for every
consecutive pair (i, j), (k, l) ∈ F , we have k ∈ {i, i + 1} and l ∈ {j, j + 1}.

▶ Definition 1.6 (see Section 2 in [16]). The strong discrete Fréchet distance of two walks
P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qm) is the minimum over the maximum pairwise
distance of any xy-monotone discrete walk F from (1, 1) to (n, m):

DF (P, Q) := min
F

max
(i,j)∈F

dist(pi, qi).

For brevity we just call this the Fréchet distance of P and Q. One can verify that the Fréchet
distance satisfies the triangle inequality.

Given two walks P , Q and some real value d, we define a |Q| × |P | matrix M which we
call the free-space matrix Md. The i-th column of Md corresponds to the i-th vertex in P

and the j-th row corresponds to the j-th vertex in Q. We assign to each matrix cell Md[i, j]
the integer −1 if dist(pi, qj) ≤ d, and 0 if dist(pi, qj) > d.

The Fréchet distance between two walks P and Q is at most d, iff there exists an xy-
monotone discrete walk F from (1, 1) to (n, m) such that ∀(i, j) ∈ F we have Md[i, j] = −1.

2 Algorithm

On a high level, our algorithm first computes a simplification of the shortest path P using
a certain SPHS. It then runs a BFS on a free space matrix between the walk Q and the
simplification of P to approximately determine, whether DF (P, Q) ≤ δ. In the analysis, we
show that the distance between the chosen simplification and P can be bounded from above,
which then bounds the approximation factor of the algorithm. Then, we prove that the
BFS does not visit too many vertices making use of the fact that almost all vertices on the
simplification belong to the same SPHS. This then bounds the runtime of our algorithm. In
the end we choose the values for the multiscale SPHS, the simplification and the free space
matrix to achieve the desired approximation factor.

Throughout the rest of the paper, let P = ⟨p1, . . . , pn⟩ be a shortest path in G and let
Q = ⟨q1, . . . , qm⟩ be an arbitrary walk in G. We denote by |P | the number of vertices in P .
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First, we focus on the case, where we are already given a certain SPHS and see that we
can compute an approximation of the Fréchet distance between P and Q quite fast, using
only a subset of the vertices of P .

Let Hδ be a (h′, δ)-SPHS for some h′ ∈ N and δ ≥ 0. Define by P δ the subsequence of
vertices in P , where we start in p1, then only visit the points of P ∩ Hδ and end in pn. Note
that P δ is not necessarily a walk in G. However, we treat it like a walk by adding artificial
edges in between any two consecutive points of P δ with costs equal to their distance.

▶ Lemma 2.1. It holds that DF
(
P, P δ

)
≤ δ

2 .

Proof. Denote by ai the index of the vertex pi in P δ. We define an xy-monotone path
through the free space matrix Mδ/2 of P and P δ only visiting entries with value −1 and
visiting all the tuples (i, ai) for pi ∈ P δ. We start with (1, 1). Let pi and pj be consecutive
in P δ. We now want to define an xy-monotone subpath from (i, ai) to (j, aj). We start with
(i, ai). If j = i + 1, we can take (j, aj) as the next tuple, which is a legal step and we are
done.

Now suppose that j > i + 1. Then, pi and pj are not consecutive in P . Assume
dist(pi, pj) > δ. Denote by P [i, j] the subpath of P starting in pi and ending in Pj . Observe
that P [i, j] is a shortest path. If we delete the two outer vertices of this subpath, we either
have another subpath or a single vertex. Denote this subpath or singleton by P̃ . The shortest
path P̃ is δ-significant with P [i, j] as a δ-witness. Hence, a vertex of P̃ has to be contained
in Hδ because it is a hitting set for all δ-significant shortest paths. This is a contradiction to
pi and pj being consecutive on P δ and hence dist(pi, pj) ≤ δ must hold.

Let i′ be the largest index such that dist(pi, pi′) ≤ δ
2 . This means that dist(pi′+1, pj) ≤ δ

2
because P is a shortest path. So, we define the following xy-monotone subwalk:

(i, ai), (i + 1, ai), . . . , (i′, ai), (i′ + 1, aj), . . . , (j − 1, aj), (j, aj).

The distance of all tuples is at most δ
2 and hence their entries in Mδ/2 are −1. Hence, if we

combine all such subpaths, we end up with an xy-monotone walk through Mδ/2 only visiting
entries with value −1, implying that the Fréchet distance between P and P δ is ≤ δ

2 . ◀

Using Lemma 2.1 and the triangle inequality of the Fréchet distance, we get the following:

▶ Lemma 2.2. If DF
(
P δ, Q

)
> α for any α ≥ 0, then DF (P, Q) > α − δ

2 .

▶ Proposition 2.3. Let Hδ be a (h′, δ)-SPHS of G, let P be a shortest path and let P δ be
given. Assume that a distance query in G takes time T (G). Then, we can decide in time
O (mh′T (G)) if DF

(
P δ, Q

)
≤ α for any 0 ≤ α ≤ 2δ.

Proof. The algorithm performs an implicit breadth first search through the non-zero entries
of the free space matrix Mα between P δ and Q and checks if (n, m) can be reached. This
means that we only compute dist(pi, qj), if the tuple (i, j) is considered in the BFS.

Note that only non-zero entries of Mα get added to the queue and every element in the
queue has at most three legal successors. Hence, for the runtime it suffices to bound the
number of non-zero entries in Mα. Let q be a vertex in Q. Hδ being a (h′, δ)-SPHS implies
|Bα(q) ∩ Hδ| ≤ |B2δ(q) ∩ Hδ| ≤ h′. So, the inner vertices of P δ with distance at most α to q

all lie in this set. Adding p1 and pn this yields that there are at most h′ + 2 non-zero entries
in the row corresponding to q and at most m(h′ +2) non-zero entries in Mα in total. For each
of them we have at most three distance oracle calls. So, the BFS takes O (mh′T (G)). ◀

This gives us all the necessary tools to prove the following theorem:
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▶ Theorem 2.4. Let G = (V, E) be a graph with a metric weight function and highway
dimension h and let ε > 0. Suppose a distance query in G takes O (T (G)) time using
O (S(G)) space. After preprocessing G in time polynomial in |V | and 1/ log(1 + ε), we
can decide for any shortest path P with n vertices, any walk Q with m vertices and any
δ > 0, whether DF (P, Q) ≤ ( 5

3 +ε)δ or DF (P, Q) > δ in O (n + m(h log h)T (G)) time using
O (|V | log D/ log(1 + ε) + S(G)) space.

Proof. Define µ := 1 + 9ε
8+3ε > 1. In this case, log(µ)−1 = Θ(log(1 + ε)−1). In the

preprocessing, we compute a µ-multiscale SPHS with value O (h log h) in running time
polynomial in |V | and 1/ log(1 + ε) by Theorem 1.4. We save this µ-multiscale SPHS as a
matrix of booleans with a row for every vertex and a column for every SPHS. This takes
O (|V | log D/ log(1 + ε)) space and ensures that we can check in constant time whether a
vertex is contained in a certain SPHS.

Now we choose α = δ
1− µ

4
and i such that µi < α

2 ≤ µi+1. From the µ-multiscale SPHS
we compute the set P µi+1 in O (|P |) time. Then, we compute in O (|Q| (h log h)T (G)) time
whether DF

(
P µi+1

, Q
)

≤ α using Proposition 2.3. If this is true, using Lemma 2.1 and the
triangle inequality, we can derive that

DF (P, Q) ≤ α + µi+1

2 ≤ (1 + µ

4 )α =
1 + µ

4
1 − µ

4
δ =

(
5
3 + ε

)
δ.

In the other case, we can use Lemma 2.2 to see that

DF (P, Q) > α − µi+1

2 > (1 − µ

4 )α = δ. ◀

Since the Fréchet distance between P and Q can be at most D, we can apply the algorithm
combined with a binary search on the value of the Fréchet distance to get the following result:

▶ Corollary 2.5. Let G = (V, E) be a graph with a metric weight function and highway
dimension h and ε > 0. Suppose a distance query in G takes O (T (G)) time using O (S(G))
space. After preprocessing G in time polynomial in |V | and 1/ log(1 + ε), we can compute for
any shortest path P with n vertices and any walk Q with m vertices a ( 5

3 + ε)-approximation
of DF (P, Q) in O (log D(n + m(h log h)T (G))) time using O (|V | log D/ log(1 + ε) + S(G))
space.

Using the distance oracle from Theorem 1.5, our algorithm for approximating the Fréchet
distance from Theorem 2.4 can be implemented in O

(
|P | log D + |Q| (h log h log D)2)

time
and using O (|V | log D(1/ log(1 + ε) + h log h)) space.
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Abstract
Given a set of shapes realized in Rd, an important but challenging task is, given a query point
p ∈ Rd, to find the nearest shape to p w.r.t. a given distance function. Finding approximate or exact
nearest neighbors is a fundamental algorithmic problem, which so far has predominantly focused
on point-sets. In this work, given only a point-shape distance function, we tackle the problem of
approximating the nearest neighbor of a query point to a set of shapes of unknown properties. We
design a shape-agnostic algorithm for partitioning the set of shapes hierarchically, and build a tree
data structure for answering nearest neighbor queries. For partitioning the space in k parts, we
propose a machine learning algorithm, in which the shapes are treated as high dimensional vectors.
We evaluate our proposed method on an extensive set of synthetic experiments.

1 Introduction

Nearest Neighbor Search constitutes a fundamental algorithmic problem that remains an
active research field due to its importance in a variety of settings. The Nearest Neighbor
Search problem is defined as follows. Let Od denote a finite collection of objects (shapes)
in Ω ⊆ Rd that satisfy a property P. This property indicates the type of data that we
have, namely cubes, spheres, ellipses, convex polytopes with bounded number of vertices, etc.
The distance between a point p ∈ Rd and an object O ∈ Od is denoted by D(p, O), and its
analytical form depends on the property P . In this work, we are interested in approximating
the nearest neighbor O∗ of a query point p from a collection of objects Od, such that:

O∗ = arg min
O∈Od

D(p, O). (1)

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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We assume that d a is small constant and provide experimental results for d = 2 and d = 3.
In the simple case when the objects represent points in Rd, the problem of approximating

the nearest neighbor has been studied extensively [12, 3, 10, 11, 16, 5].
Point-based nearest neighbor queries are essential in data analysis for a variety of

applications [2]. Searching for the nearest neighbor exhaustively is infeasible because the
linear, on the number of candidates, time complexity tends to be expensive in any real-world
setting [21]. Hence, one turns to approximate search where the goal is to retrieve one or a
set of Approximate Nearest Neighbors (ANNs) in a fast and effective manner, namely that
achieves sublinear, logarithmic, or even constant query time.

Considering more complex than points, objects, in a recent work [1], nearest neighbor
queries against line segments in Rd has been considered, for a fixed dimension d, yielding an
(1 + ε)-approximate nearest neighbor algorithm. In [7], the authors address the problem of
finding the nearest neighbor to a set of ellipses in R2 by computing the Voronoi diagram of a
set of ellipses. In [6], orthogonal polyhedra in R2 and R3 are considered, and the problem of
nearest neighbor is tackled by computing the Voronoi diagram of the set of polyhedra, using
the L∞ metric. In [18], the authors propose an algorithm for computing the L∞ Voronoi
diagram of a set of non-orthogonal shapes in R2. To the best of our knowledge, prior work
on shape-based ANN search is limited to specific objects families and fixed dimension.

In this paper, we consider objects that can be determined by a finite set of parameters, e.g.
a line segment in R2 can be uniquely described by its two endpoints, which can be considered
as a vector of four parameters. For such shape-agnostic class of objects in Rd, we designed
an algorithm based on a generative machine learning model that answers efficiently ANN
queries to a given point. To demonstrate the performance and applicability of our method to
different types of objects, we provide experimental results. Code is publicly available 1, with
details on how install and train the model, coupled with a demo.

2 Method

Our method employs a latent-variable generative model for hierarchical clustering, creating a
tree structure where nodes represent data space regions, not just centroids, and child nodes
represent sub-regions of their parent. Such a hierarchical clustering has been used in [16].
Hierarchical clustering refers to a tree T with branching factor k, that is built by recursively
partitioning the data into sub-clusters until individual or constant number of data points
are reached. This deviates from traditional fixed-cardinality clustering by adapting to the
data manifold’s shape. Critics assess and value the edges in this tree, converting it to a
weighted graph for navigational decision-making by an actor with a policy[14, 15]. Explicit
data embedding in a higher-dimensional space transforms complex shapes into discrete
points, enabling divergence calculations for iterative state refinement. This approach, termed
GeoCluster, dynamically clusters data, facilitating efficient approximate nearest neighbor
queries.

2.1 Architecture
The proposed architecture is centered around a clustering mechanism, forming the foundation
of a tree. This process begins by embedding objects into the high-dimensional space. The

1 https://github.com/PRigas96/GeoCluster
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clustering approach is recursive, resulting in a tree structure where each node is not merely
a centroid, but represents a specific area of the data manifold M.

To complement the clustering process a critic that evaluates and assigns values to the
edges connecting the nodes in this tree is used. This evaluation results in a weighted tree,
where the edge weights reflect the critic’s assessment of the relationship between nodes, given
a condition query p.

For inference, the tree T is utilized, or its corresponding quantified manifold S ′ obtained
from M after training. Given a query point q ∈ Q, T is inferred by the actor through its
policy π. This is based on weights on nodes, that act as decision-making tools, guiding the
inference process. This approach mirrors a cost-minimization strategy, akin to finding the
shortest path in the tree based on cross-entropy minimization [15].

Upon reaching a leaf node, an exhaustive search is conducted among the remaining
objects to find the nearest neighbor O∗. The tree’s functionality is illustrated in Fig. 1, where
each node, endowed with a critic function, actively contributes to the inferential process by
assigning scores to its children.

Figure 1 The tree constructed during training, and each node is associated with a critic.

2.1.1 Detailed Description

The architecture is presented at Fig. 2a, with the topology for the construction of a node in
T . It consists of a latent variable z ∈ Z decoder module to produce the centroids c ∈ S. A
divergence Div then is calculated based on c and data x ∈ M. Every fclk Hz, a Gaussian
sampler[4, 13, 20] is utilized and produces fuzzy centroids with radius ζ−1Div, scaled by a
factor Sc, to alleviate the initialization problem caused by the many bad local minima, and
initial centroids[17, 19]. This does not prevent clusters from being empty, which is utilized
to further enable structure alignment by deleting non-participant centroids[8].

After states have been constructed, critic network CS , a parametric function, is employed
to assign low and high values to non probable and probable state transitions respectively,
as shown in Fig. 2b. It is trained with data produced and labeled by an uncertainty area
sampler (UN) module. The UN sampler consists of getting the Voronoi surfaces, sampling
normal edges and points on those edges, conducting an efficient sampling in areas of uncertain
prediction due to non-linear bounds between spaces.

The clustering network’s latent variable is regularized through a one-hot encoder[9].
Representations c are regularized through Rrep =

∑
i

∑
j ̸=i dp(ci, cj)−1, a repulsive loss that

prevents trivial solutions and Rproj that enforces each representation to fall within its state.

EuroCG’24
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To ensure this the states associated critic is utilized:

Rproj =
∑

c∈S

∑

x∈c

∑

u∈bbox

ReLU
(∏

∀e∈u

e − x

|e − x|

)
min(||u − x||)

+
∑

S∈T

ωS

∑

c∈Sτ

CE(Softmax(Cs(c)), qs), (2)

where ReLU(x) = max(0, x) ensures initialization in root state, while cross entropy (CE),
weighted by ωS , that each a centroid in a path, satisfies all previous trajectory states, ensuring
flow of information between different hierarchy level states. Div =

∑
x∈M Ew(x, z̄), where

Ew is the states energy, is used to ensure clustering compactness[22].

Figure 2 Proposed Network. (a) illustrates the network topology, for the construction of a node
in the tree T . (b) showcases the critic network assigning weights in edges of a tree.

3 Experimental Results

In this section, we showcase the methods performance in three different aspects, the quality
of produced representations and associated states, the search precision and the robustness.

3.1 Representation Evaluation
In Fig. 3 the centroids are shown for different structured data. It is clear that they capture
the underlying structure effectively.

Figure 3 One-layer centroids, seen in dark blue areas for different structured 2D Data.

The resulted space for one layer of hierarchy is also shown for a 3D case in Fig. 4. Spaces
can be non-linear and discontinuous.
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Figure 4 Quantified space S ′ for 3D cuboids. Each color corresponds to a different cluster.

3.2 Search Precision and Parallelization
In this section, we delve into the model’s search precision, specifically its efficacy in identifying
complex geometric forms, as explicated in Tables 1 and 2. Table 1 provides insights
the model’s adeptness across various geometric shapes, demonstrating its commendable
generalization capabilities. Notably, the model exhibits similar layer-wise accuracies, with
final acc =

∏
i∈N acci, where N is the number of layers, being stable.

Layer 1-2 Layer 2-3 Layer 3-4 Layer 4-5 Layer 5-6 Dimensions Metric

Squares 82.8 ± 2.0 97.7 ± 0.7 99.8 ± 0.2 - - R2 L∞
Cuboids 91.3 ± 0.8 87.9 ± 1.4 90.5 ± 2.4 93 ± 2.2 99.3 ± 0.7 R3 L∞
Ellipses 95.7 ± 0.6 95.2 ± 1.1 97.7 ± 0.9 - - R2 L2

Table 1 Table of Layer-wise Accuracies for Each Shape in the Dataset of 10,000 elements. The
table displays mean accuracy and standard deviation for each shape. “Accuracy” is defined as
the model’s ability to precisely locate the nearest neighbor between layers, tested with randomly
generated query points within the data’s bounding area. Final accuracies can be obtained as a dot
product of each layer.

The effectiveness of the model in accurately identifying and approximating the nearest
neighbor is demonstrated in the results presented in Table 2. These results affirm the model’s
proficiency across various shapes, underscoring its strong generalization and scalability.
Further, the data shown in Fig. 5 reinforces our assertion that the model efficiently captures
the k-nearest neighbors, even when k is small, showcasing its robustness in neighbor detection.

k = 1 k = 2 k = 5 k = 10 k = 1% k = 5% k = 10% Layers

Squares 77.3 ± 2.3 79.1 ± 1.8 81.7 ± 2.4 83.4 ± 2.1 90.9 ± 2.0 99.7 ± 0.3 99.9 ± 0.1 5
Cuboids 61.9 ± 2.0 73.3 ± 1.6 85.3 ± 2.0 91.0 ± 1.2 99.0 ± 0.7 100 100 7
Ellipses 76.9 ± 1.6 79.3 ± 1.7 81.5 ± 1.8 83.8 ± 2.1 91.0 ± 0.9 98.4 ± 0.1 99.6 ± 0.4 5
Table 2 This table shows the accuracy of leaf nodes in the hierarchical structure for each shape

in the dataset, with each shape having 10k instances. Here, “k” represents the number of top results
considered for a successful search, indicating accurate neighbor detection among the first k results.

The results are also showcased for a soft-accuracy in non-randomly placed 2D data. The
distance D(q, O∗), given a query q and its nearest neighbor O∗ is measured. Then a relaxed
criterion, that the nearest neighbor we find Ō is in a radius of O∗, is calculated. As shown

EuroCG’24
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Figure 5 Cuboids: Mean Percentage of Correct Predictions per Layer for Different k-nearest
neighbor Values.

in Fig. 6, a twofold increase in ball radius ration the accuracy converges, with a low mean
bound of 95%.

Figure 6 Soft-Accuracy tests different kind of structured 2D data, 1000 in number with 4 layers
and width factor k=3. As ball radius ratio D(q, Ō)/D(q, O∗), where Ō is the nearest neighbor found
by our method and O∗ is the true nearest neighbor, increases, accuracy converges.

Fig. 7 illustrates the model’s superior performance in comparison to traditional serial
search methods. Specifically, Fig. 7a highlights the model’s adeptness at parallelization,
a direct benefit of utilizing batching techniques. For a single node, as the quantity of
query points escalates, our model consistently operates averagely at just p = 1/100th of the
time required by linear search methods, denoted as N · τ1. This efficiency underscores the
stark contrast in performance scalability, particularly in handling large volumes of queries.
Furthermore, Fig. 7b reveals that expanding the width factor k—which could potentially
complicate the search process—does not detrimentally affect the model’s performance.
This observation confirms the model’s robust scalability concerning data size, effectively
demonstrating that its empirical average computational complexity remains practical and
manageable, best captured by the expression O(⌈ |Q|

p ⌉ logk n), where Q is a set of queries, n

the data objects and p an observed random value characterizing parallelization due to neural
networks, shown in Fig. 7a. This notation adeptly reflects the combined influence of batching,
hardware acceleration, and the model’s algorithmic design on enhancing processing efficiency
beyond simple linear expectations. Worst case complexity still remains O(|Q| logk n), when
no parallelization takes place.

3.3 Robustness
The robustness of our method is evaluated using various structured 2D data sets, as illustrated
in Fig. 8. Although accuracy initially drops with high variance when the test set deviates from
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Figure 7 Performance (in seconds), in log scale, for a number of query points and one layer. τ1
denotes a query pass and thus Nτ1 can be regarded as O(n). (a) shows the difference between O(n)
and our method, while (b) shows for different width factors (k).

the trained area, it quickly converges, demonstrating the network’s effective extrapolation
capabilities. Additionally, Table 1 further corroborates the method’s robustness, highlighting
its consistent performance across a diverse range of shapes and dimensions.

Figure 8 Robustness tests for different structured 2D data in one layer hierarchy. Eight columns
show different areas, D for Data-trained area, OOD IM for data inside data manifold with trained
area and OOM*a for outside manifold area scaled with a. Accuracy converges outside manifold
rapidly but displays high variance for different structure

4 Conclusions

In this study, we leverage neural networks, specifically a latent variable generative model, to
construct a tree. This is coupled with a critic mechanism to weight the edges, streamlining
the nearest neighbor search across various domains and metrics. Addressing the challenge of
point-to-shape nearest neighbor in 3D, even for simple shapes, our model stands out for its
domain-agnostic nature. It requires only the definition of an embedding and a metric for
divergence, demonstrating its versatility and effectiveness in simplifying complex geometric
computations, while its inherent design makes it scalable.
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Abstract
Given an oriented graph −→

G on a set of points P in the Euclidean plane, the oriented dilation of
p, p′ ∈ P is the ratio of the length of the shortest cycle in −→

G through p and p′ to the perimeter of
the smallest triangle in P containing p and p′. The oriented dilation of −→

G is maximum oriented
dilation over all pair of points. We show that given an undirected graph G on P , it is NP-hard to
decide whether the edges can be oriented in way that the oriented dilation of the resulting graph
is below a given threshold. For the case that G is complete, it is known that there is always an
orientation of the edges with oriented dilation at most 2. As a first step towards improving this
bound, we show that for |P | = 4 there is always a tournament, i.e., an oriented complete graph,
with oriented dilation at most 1.5. This holds not only in the Euclidean but more generally in the
metric plane. In the latter the bound is tight.

1 Introduction

Geometric spanners have may applications like wireless ad-hoc networks [4, 10], robot motion
planning [5] and the analysis of road networks [1, 6]. The need to orient edges naturally arise
since edges might only support one-way communication/traffic. Thus, in such applications it
may be necessary to find an orientation of the edges that still provides relatively short paths
between vertices. While undirected spanners are a widely researched topic during the last
decades (see [2, 9] for a survey), oriented spanners have been only introduced recently [3].

Given a point set in the Euclidean plane and a parameter t, an oriented t-spanner−→
G is an oriented subgraph of the complete bi-directed graph, such that for every pair of
points, the shortest cycle in −→

G containing those points is at most a factor t longer than
their smallest triangle in the complete graph. Formally, given a point set P ⊂ Rd and a
parameter t ∈ R+, an oriented graph −→

G = (P,
−→
E ) (thus a graph where (u, v) ∈ −→

E implies
(v, u) /∈ −→

E ) is called oriented t-spanner if for every two points p, p′ ∈ P the oriented dilation
odil(p, p′) = |C−→

G
(p,p′)|

|∆(p,p′)| ≤ t. Here, C−→
G

(p, p′) denotes the shortest oriented cycle containing p

and p′ in −→
G and ∆(p, p′) is the triangle ∆pp′p′′ with p′′ = arg min

p∗∈P
|p − p∗| + |p∗ − p′|.

The problem of finding an oriented t-spanner with at most some fixed number m of edges
is NP-hard [3], thus there is little hope to compute minimum oriented spanners efficiently.
A natural approach for nonetheless computing an oriented spanner is to first compute a
suitable undirected graph and then orienting it. For convex point sets, for instance, one can
obtain an O(1)-spanner by orienting a greedy triangulation [3]. However, no constructions
are known to compute oriented spanners of small size for general point sets.

Here, we show that finding an orientation of an undirected graph such that the oriented
dilation is minimal, is NP-hard even on Euclidean graphs. As our NP-hardness construction
does not hold for complete graphs, we look into the oriented dilation of tournaments. As
first step and potential building block for larger point sets, we show that for every point set
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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P with |P | = 4 even in a metric plane there is a tournament −→
K(P ) such that the oriented

dilation of −→
K(P ) is at most 1.5. We further prove this bound to be tight.

2 Hardness

▶ Theorem 2.1. Given an undirected geometric graph G and a parameter t′, it is NP-hard
to decide if there is an orientation −→

G of G with oriented dilation odil(−→G) ≤ t′.

We will give a proof idea which is mainly described graphically here. A detailed proof
with an explanation for the coordinates of every point can be found in the full version.

Proof sketch. We reduce from the NP-complete problem planar 3-SAT [8]. We start with
a planar Boolean formula φ in conjunctive normal form with an incidence graph Gφ that
can be embedded on a polynomial-size 1 × 1-grid [7, 8] as illustrated in Figure 1. We give
a construction for a graph G based on Gφ such that there is an orientation −→

G of G with
dilation odil(−→G) ≤ t′ with t′ := 1.043 if and only if φ is satisfiable.

x1 x2 x3 x4

x1 ∨¬x2 ∨¬x3

x2 ∨ ¬x3 ∨ x4

Figure 1 Example: Incidence graph of a planar 3-SAT formula embedded on a square grid

In the following, every point p = (x, y) on the grid will be replaced by a so-called oriented
point, which is a pair of points P = {t(p), b(p)} with top t(p) = (x, y + ε

2 ) and bottom
b(p) = (x, y − ε

2 ), where ε ≥ 0 is a small constant. We will present the proof with ε = 0, i.e.,
t(p) and b(p) are two points with the same coordinates, while using a small positive ε in all
figures for illustration purposes. This choice of ε simplifies the proof. However, the proof
stays valid for a sufficiently small ε > 0.

We add an edge between t(p) and b(p), its orientation encodes whether this points
represent “true” or “false”. W.l.o.g. we assume that an oriented edge from b(p) to t(p), thus
an upwards edge, represents “true” and a downwards edge represents “false”. When this is
not the case, we can achieve this by flipping the orientation of all edges.

Edges in the plane embedding of our formula graph Gφ will be replaced by wire gadgets.
First, we add (a polynomial number of) grid points on the edge such that all edges have
length 1. Then, we create a wire as in Figure 2. Note that wires propagate the orientation of
oriented points - if two points next to each other on a wire have different orientations, their
dilation would be significantly larger than t′ := 1.043, since the shortest oriented cycle needs
to go through an additional oriented point. If they have the same orientation, their dilation
is 1 (since ε = 0; otherwise slightly larger). To switch a signal (for a negated variable in a
formula), we start the wire as in Figure 3.

To ensure that all clause gadgets encode the same orientation of oriented points as “true”,
we add a tree of knowledge. This is a tree with vertices on the 1 × 1-grid shifted by (0.5, 0.5)
relative to the grid of Gφ and with wires as edges. The tree will have two leaves per clause
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Figure 2 A wire where oriented points are oriented upwards

Figure 3 A wire where the orientation is switched to negate the signal

x1 x2 x3 x4

Figure 4 Gφ (blue) and its underlying grid together with a tree of knowledge (red)

(see Figure 4). W.l.o.g we assume that all oriented points of the tree of knowledge are
oriented upwards (thus “true”).

All oriented points, which are not direct neighbours of a wire, are linked by a K2,2
(compare to Figures 5 and 6). This ensures dilation 1 between those points.

Figure 5 K2,2 be-
tween oriented points
with same orientation

Figure 6 K2,2 be-
tween oriented points
with different orientation

1

ε

≥ 1
2

≥ 1
2

Figure 7 A wire (blue) can not be
shortcut by K2,2s (green)

Let p and p′ be direct neighbours and p∗ a third non-neighbouring point. Since p∗ has
at least distance (0.5, 0.5) to p and p′, the K2,2s between p and p∗ and p′ and p∗ do not
affect that the wire between p and p′ ensures equal orientation of the neighbours (compare
to Figure 7).

The dilation of t(p) and b(p) is bounded by the dilation of p and its closest point p′. That
is 1, both if p, p′ are direct neighbours and not.

The two leaves of the tree of knowledge for every clause are not linked by a K2,2. Figure 8
shows the two leaves of the tree at a clause, and Gφ at the clause. We can assume that Gφ is
embedded as shown, in particular leaving the area directly above the clause empty. The two
leaves are now linked by a clause gadget. We show how such a gadget looks like in Figure 9,
more detailed in Figure 10.
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empty area

Figure 8 Embedded clause

L1 L2

L B R

SL SB
SR

Figure 9 Clause gadget

The oriented points L (left), R (right) and B (bottom) are the ends of the variable wires
of a clause. They are placed such that they lie just inside an ellipse with the locations of the
leaves L1 and L2 as foci, and without any other points in the ellipse (compare to Figures 8
and 9). Stated differently, the triangles with endpoints L1, L2 and one of these three points,
have nearly the same size, and any triangle with L1, L2, and a different oriented point has a
larger perimeter. Adding edges as shown in Figure 10 guarantees that to obtain a short cycle
through L1, L2 and one of these points, the orientation of that point has to be the same as
of L1 and L2 (thus, the literal is “true”.)

For each of {L, R, B} there exists a satellite point, which is an oriented point on the
variable wire, which is close but outside the ellipse. Its purpose is to make sure that
the oriented dilation of L1 (and likewise L2) with L, B and R is stays below t′ if if the
corresponding literal does not satisfy the clause. We omitted all K2,2 in the drawing. As
described before, a K2,2 exists between all unrelated oriented points, thus between all oriented
points where there are no edges drawn in the figure.

1
1
2

1
2

δ′
δ

δ′′

L1 L2

L

B

R

SL

SB

SR

Figure 10 Detailed clause gadget

By setting δ = 0.1335, δ′ = 0.0303 and δ′′ = 0.35, we obtain the following properties:
The dilation between one of the points L1, L2 and one of the points L, B, R is lower or
equal t′, as a smallest cycle containing those points can use the related satellite point.
If one of the oriented points L, B, R is oriented upwards, the dilation between L1 and
L2 is smaller than t′ := 1.043
If none of the oriented points L, B, R is oriented upwards, the smallest cycle containing
L1 and L2 either leaves the ellipse or takes at least two points from {L, B, R} and thus
their dilation is greater than t′.
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Thus, formula φ is satisfiable if and only if there exists an orientation of our constructed
graph with dilation at most 1.043. ◀

Following the construction in the proof of Theorem 2.1, Figure 11 illustrates the graph
for the formula φ = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) (see also Figure 4).

x1 x2 x3 x4

Figure 11 Graph constructed for φ = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) (compare to Figures 1
and 4): For visibility, oriented points are placed diagonally instead of vertically. Only for one point,
K2,2s are indicated by green parallelograms. If the oriented point at the end of the wire from x1
(blue) is –as indicated– oriented the same way as the tree of knowledge (red), this corresponds to
setting it to true, resulting in an oriented cycle in the clause gadget (purple) that gives a dilation
smaller than 1.043.

3 Bounding the dilation of tournaments

Buchin et al. [3] showed by example that there are (Euclidean) point sets for which no
oriented t-spanner exists for t < 2

√
3 − 2 ≈ 1.46. For every (metric) point set P , they give

an algorithm that returns a tournament −→
K(P ) on P with dilation odil(−→K(P )) ≤ 2.

Our goal is to improve these bounds on the worst-case dilation 2
√

3 − 2 ≤ t ≤ 2 of the
minimum dilation tournament. As a first step, we show a tight bound for sets of four points.

The complete graph on four points and its tournaments satisfy the following properties:

▶ Observation 3.1. For every undirected complete graph K4 holds:
K4 contains

(4
3
)

= 4 triangles.
Every pair of these triangles shares exactly one edge.

EuroCG’24
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Every strongly connected tournament −→
K4 contains exactly two consistently oriented

triangles. This means the triangle is confined by an oriented cycle.

The following theorem gives a tight bound on the dilation of minimum dilation tournament
on any metric point set of size four:

▶ Theorem 3.2. For every point set P of size |P | = 4 embedded in a metric plane there is a
tournament −→

K(P ) with dilation odil(−→K(P )) ≤ 3
2 . This bound is tight.

Proof. We prove that the following algorithm computes an tournament −→
K(P ) with dilation

odil(−→K(P )) ≤ 3
2 for a point set P = {p1, p2, p3, p4} embedded in a metric plane:

1. Let ∆p1p2p3 be the shortest and ∆p1p2p4 the second shortest triangle of the four triangles
in K4. Orient ∆p1p2p3 and ∆p1p2p4 consistently. That is always possible (compare to
observation 3.1).

2. Orient the remaining edge between p3 and p4 such that the shortest oriented cycle
C−→

K(P )(p3, p4) containing p3 and p4 is minimised.
By d(p, p′) we denote the weight of the edge between p and p′. Note that the weights satisfy
triangle inequality.

We distinct cases by the orientation of the edge between p3 and p4, meaning
|C−→

K(P )(p3, p4)| = d(p1, p2) + d(p2, p3) + d(p3, p4) + d(p1, p4) if

d(p1, p3) + d(p2, p4) ≤ d(p2, p3) + d(p1, p4), or (1)

|C−→
K(P )(p3, p4)| = d(p1, p2) + d(p2, p4) + d(p3, p4) + d(p1, p3) if

d(p1, p3) + d(p2, p4) > d(p2, p3) + d(p1, p4). (2)

We show case (1), the other case can be proven analogously.
Since ∆p1p2p3 and ∆p1p2p4 are the shortest triangles and they are oriented consistently,

the dilation of every pair of points is 1, except the pair p3, p4. So, we want to prove

t = odil(p3, p4) = d(p1, p2) + d(p2, p3) + d(p3, p4) + d(p1, p4)
min{|∆p3p4p1 |, |∆p3p4p2 |} ≤ 3

2 .

Assume |∆p3p4p2 | ≤ |∆p3p4p1 | otherwise the names of the points belonging to the shortest
and second shortest triangle can be swapped. Since ∆p1p2p3 and ∆p1p2p4 are the two shortest
triangles, it holds

d(p1, p2) + d(p1, p4) ≤ d(p3, p4) + d(p2, p3), and (3)
d(p1, p2) + d(p1, p3) ≤ d(p3, p4) + d(p2, p4). (4)

Summing up the inequalities 1, 3 and 4 we achieve

2d(p1, p3) + 2d(p1, p2) + d(p2, p4) ≤ 2d(p3, p4) + 2d(p2, p3) + d(p2, p4)
⇔ 2 (d(p1, p3) + d(p1, p2) + d(p2, p4) + d(p3, p4)) ≤ 4d(p3, p4) + 2 (d(p2, p3) + d(p2, p4))

∆-ineq.
≤ 3 (d(p3, p4) + d(p2, p3) + d(p2, p4))

⇔ odil(p3, p4) = d(p3,p4)+d(p1,p3)+d(p1,p2)+d(p2,p4)
d(p3,p4)+d(p2,p3)+d(p2,p4) ≤ 3

2 .

For tightness, we show there is a point set P with |P | = 4, such that every strongly
connected tournament on P has dilation t = 3

2 . The following metric give such an point set:
d(p1, p3) = d(p2, p3) = d(p3, p4) = 1 and d(p1, p2) = d(p1, p4) = d(p2, p4) = 2. Taking into
account mirroring and rotation, Figure 12 lists all strongly connected tournaments on P . We
see that every tournament is a 1.5-spanner. ◀
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1
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Figure 12 A metric point set where every connected tournament is a 1.5-spanner

4 Conclusion

We have shown that orienting a given geometric graph to minimise the oriented dilation is
NP-hard. The complexity of this problem when restricting the graph class remains open. In
particular: Is the problem NP-hard for planar graphs, or for complete graphs?

In the second part of the paper we studied the oriented dilation of metric point sets of
size 4, i.e., with the K4 as underlying graph. We proved that the oriented dilation is at
most 1.5, while there are instances where it is tight. We know that in general the oriented
dilation of Kn on metric instances can be upper-bounded by 2. Is it strictly less than 2 also
for n > 4? Even for Euclidean instances this is open.

As noted in [3], in many applications some bi-directed edges might be allowed. This
opens up a whole new set of questions on the trade-off between dilation and the number of
bi-directed edges. Since this is a generalisation of the oriented case, our hardness proof also
applies to such models.

Acknowledgements. We thank Guangping Li and Marco Ricci for helpful discussions.
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Abstract
The range searching problem is one of the most studied problems in computational geometry. In this
paper, we study the following range-searching problem. Given a set of n homothetic right-angled
triangles in the plane, we want to compute the pairs of triangles intersecting inside an axis-aligned
query rectangle. A triangle T is said to be homothetic to another triangle T ′ if T can be obtained
from T ′ using scaling and translation operations. We show that after preprocessing the given set in
O(n log n)-space and time, each subsequent query can be answered in O(log n + k)-time, where k is
the number of reported pairs.

1 Introduction

Range searching problems are fundamental in computational geometry and find applications
in numerous domains, including motion planning, robotics, and spatial databases [2, 4, 5].
The range searching problems involving orthogonal objects (points, line segments, rectangles)
have been well explored [3, 4, 7]. In this paper, we study a range-searching problem that
considers a class of non-orthogonal objects (homothetic triangles). A triangle T is said to be
homothetic to another triangle T ′ if T can be obtained from T ′ using scaling and translation
operations. The problem is defined as follows.

Given a set of n homothetic right-angled triangles with perpendicular sides parallel
to the coordinate axes, we want to preprocess the set so that, given an axis-aligned
query rectangle Q, all the pair of triangles (Ti, Tj) intersecting inside the rectangle Q

(i.e. Ti ∩ Tj ∩ Q ̸= ∅) can be reported efficiently.

This problem is a generalization of the problem studied in [4, 5], which asks to compute
all pairs of rectangles intersecting inside a query rectangle. Mark de Berg et al. [4] solved
the problem using O(n log n) space and O(log n log∗ n + k log n) query time, where k is the
output size. Oh and Ahn [5] improved the query time to O(log n + k) without aggravating
the space bound. The problem finds application in motion planning. A common application
scenario for such problems is described next. We can think that geometric objects are the
trajectories of moving objects (drones/airplanes in the sky or robots in a factory), and we
would like to know parts of trajectories where two entities may collide so that one can take
appropriate measures to avoid collisions. Furthermore, we likely want to ask this question
for a particular small region only.

Our Result: We show that after preprocessing in O(n log n)-space and time, each query
can be answered in O(log n + k)-time, where k is the number of reported pairs of triangles.
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
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Definitions and Notations

Let S = {T1, T2, . . . , Tn} be a set of n homothetic right-angled triangles in the plane such
that their orthogonal sides are parallel to the coordinate axes. Without loss of generality, we
assume that all the triangles are present in the first quadrant and their right-angled vertices
are at the bottom-left position (i.e., minimum x and minimum y coordinates). Let m be the
slope of the hypotenuses of the triangles in S. The horizontal, vertical, and hypotenuse sides
of a triangle Ti are denoted by hi, vi, and hyi respectively.

Let li be the line containing the segment hyi, and let l0 be the line passing through the
origin (0, 0) with slope m. For each i ∈ {1, 2, . . . , n}, we define the distance of the segment
hyi from the line l0, denoted by di, as the Euclidean distance between the parallel lines l0
and li. We say that Ti ⪯ Tj if di ≤ dj .

Let ab be a side of a triangle T ∈ S (with a and b as its endpoints). The stretch of ab,
denoted by a′b′, is the smallest segment of ab which contains all the intersection points of
the side ab with sides of other triangles of S. If ab has no intersection point, then stretch of
ab is undefined. Thus, a triangle in S can have at most three stretches, one for each side.
Let P ′ be the set of their endpoints. Note that |P ′| ≤ 6n. We say that a line segment s

crosses a rectangle Q if s ∩ Q ̸= ∅ and each endpoint lies outside Q (see Figure 1).

(b)(a) (c)

Figure 1 Segments s1 and s2 do not cross Q, while the segment s3 does.

2 Proposed Solution

We design a space-efficient data structure that supports queries in optimal time. Our
approach is similar to the one used in [5]. For a given query rectangle Q, we need to compute
all the pairs (Ti, Tj) of S such that Ti and Tj intersect each other inside Q. Observe that the
intersection of Ti and Tj , denoted by I(i, j), is also a triangle homothetic to the triangles in
S. We identify a few configurations for a given Q, which will be used to compute the output
set U(Q). The size of the set U(Q) is denoted by k(Q). For any pair (Ti, Tj) of triangles of
S with I(i, j) ∩ Q ̸= ∅, it can be seen that at least one of the following conditions holds. The
configurations have been depicted in Figure 2.

C1: Ti contains Q and Tj intersects Q or vice-versa.
C2: An endpoint of a stretch l of Ti (or Tj) lies in Q, and Tj (or Ti) intersects l ∩ Q.
C3: A stretch li of Ti and a stretch lj of Tj cross Q and intersect each other inside Q.
C4: I(i, j) contains a vertex of Q.
C5: The vertical sides of Q intersect the horizontal and hypotenuse sides of I(i, j), or the
horizontal sides of Q intersect the vertical and hypotenuse sides of I(i, j).

2.1 Data structures
We now build a set of data structures that will be used to compute the pairs of the
configurations mentioned above.



W. Akram and S. Saxena 66:3

Figure 2 The gray region denotes the intersection I(i, j) of Ti and Tj in each configuration. The
bold segment of a side denotes its stretch.

Enclosure Searching Problem: Given a set of geometric objects, the problem is to find the
objects o enclosing a query object q (i.e., q ∈ o). We preprocess the set S of triangles for
enclosure searching queries as described in [1]. Let Denc denotes the built data structure.
The structure Denc supports enclosure searching queries for points, line segments, and
trapezoids in O(log n + t)-time, where t is the number of reported triangles.
The Orthogonal Range Searching Problem: Given a set of points in the d-dimensional
space and an orthogonal rectangle, the problem is to find all the points lying inside the
rectangle. Chazelle [3] gave an optimal solution to the problem in the 2-dimensional
space, which takes O(log n + #output)-query time and O(n log n/ log log n)-space. We
build an orthogonal range reporting data structure for the set P ′ of stretch endpoints
using Chazelle’s method [3] and denote it by D′

r.
The Segment Intersection Problem: Given a set of line segments and a line segment q,
the segment intersection problem is to find the segments s intersected by the segment q

(i.e., s ∩ q ̸= ∅). The following result is due to Chazelle [3].
Theorem 1 in [3]: It is possible to preprocess n segments in O(n log n) time and
O(n)-space so that computing their intersections with a query segment that either
has a fixed slope or has its supporting line passing through a fixed point can be
done in O(k + log n) time, where k is the number of intersections to be reported. It
is assumed that the interior of the segments are pairwise disjoint.

We now describe an overview of the Chazelle’s solution. Given a set of pairwise (interior)
disjoint line segments, a planar subdivision is built. The subdivision is then preprocessed
for point location queries, which, given a point in the plane, finds the face of the subdivision
containing the point. Given a query segment, the face containing an endpoint of the
segment is located and one moves towards the other endpoint along the query segment.
The segments encountered on the way are exactly those which are intersected by the
query segment. The query takes O(log n + t)-time, where t is the output size: O(log n)
time for locating the face and O(t) time for reporting the segments. Note that if we know
the face containing an endpoint of the query segment, then query time would be O(t).
For more details, please see [3].
Let H ′ be the set of all horizontal stretches. We build two data structures Dv

h and Dhy
h

EuroCG’24
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over the set H ′ using Chazelle’s method [3]: Dv
h supports queries with vertical segments,

and Dhy
h supports queries with segments along the hypotenuse-sides. Similarly, we build

the structures Dh
v and Dhy

v over the set V ′ of all vertical stretches, and Dv
hy and Dh

hy over
the set H ′

y of all stretches with slope m. We keep two pointers with each stretch-endpoint
a′ ∈ P ′ to save time while answering a query. If a′ is an endpoint of a vertical stretch,
we store two pointers pointing to the faces of Dv

h and Dv
hy containing the endpoint a′.

Analogously, we store pointers for the endpoints of the other types of stretches.

2.2 Query Algorithms
Let Q be the query rectangle. A pair (Ti, Tj) with I(i, j) ∩ Q ̸= ∅ may belong to more than
one configurations. We denote by ki the number of Ci-pairs not belonging to any other
configuration Cj with j < i.
Reporting C1-pairs: We find the set E of the triangles enclosing Q by querying the data
structure Denc in O(log n+ |E|)-time. For each triangle Ti ∈ E, a triangle Tj ∈ S intersecting
Q would form a C1-pair with Ti. If the set E is empty, then no C1-pair exists. The triangles
Ti ∈ S intersecting Q can be computed in O(log n + #output)-time due to the Lemma 2.1.

▶ Lemma 2.1. We can preprocess the set S in O(n log n)-time and space so that given a query
rectangle Q, the triangles T ∈ S with T ∩ Q ̸= ∅ can be computed in O(log n + #output)-time.

▶ Corollary 2.2. Given a query rectangle Q, we can compute the C1-pairs for Q in O(log n +
k1)-time and O(n log n)-space.

Reporting C2-pairs: We find the stretches with an endpoint inside Q by querying the
structure D′

r. For each reported stretch l, we compute the triangles intersecting l ∩ Q using
the segment intersection structures. If l is the stretch of the vertical side of a triangle Ti,
we can compute the horizontal and hypotenuse sides intersecting l ∩ Q using Dv

h and Dv
hy,

respectively. The details are omitted due to the space limitations.

▶ Lemma 2.3. We can compute all C2-pairs for Q in O(log n + k2)-time.

Reporting C3-pairs: We first consider the simpler case of orthogonal stretches: a vertical
stretch li and a horizontal stretch lj crossing Q. We can compute such pairs of stretches in
O(log n + t)-time using 3-d range reporting queries [4, 6], where t is the number of reported
pairs. The space used is O(n log n/ log log n).

We now consider the case of computing all pairs (s1, s2), s1 ∈ H ′ and s2 ∈ H ′
y, such that

both stretches cross Q and intersect each other inside Q; the symmetric case of vertical and
hypotenuse stretches is analogous. We design a segment tree-based data structure and give
an algorithm that takes O(log n + #output)-time to find all such pairs. The space used by
the structure is O(n log n).

▶ Lemma 2.4. All the C3-pairs for Q can be computed in O(log n + k3)-time. The space
used is O(n log n).

Reporting C4-pairs: For each vertex of Q, we find the set of the triangles enclosing the
vertex using the structure Denc. If the set size is less than two, no pair of triangles enclosing
the vertex exists. Otherwise, every possible pair of triangles would be a C4-pair. Of course,
we make sure that each pair is reported once.

▶ Lemma 2.5. One can compute all C4-pairs for Q in O(log n + k4)-time.
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Reporting C5-pairs: We show how to find the C5-pairs (Ti, Tj) not belonging to any other
configuration such that the non-vertical sides of I(i, j) are intersected by the vertical sides of
Q. The C5-pairs of the other type can be computed analogously.

We build a segment tree T over S along the x-axis. Each node v ∈ T stores a vertical slab
SL(v) = [x, x′] × R2 such that the vertical slabs corresponding to the nodes of a particular
level form a partition of R2. We say that a triangle T ∈ S spans a slab SL(v) if T ∩SL(v) ̸= ∅
and none of its vertex lies in SL(v). We store two sets Sc(v) and Sb(v) at node v. The set
Sc(v) consists of the triangles T ∈ S such that T spans the slab SL(v) but not the slab of v’s
parent node. The set Sb(v) consists of the triangles T ∈ S such that one or both endpoints
of its horizontal side lies in SL(v). We denote by S(v) the union of the sets Sc(v) and Sb(v).
The segment tree T can be built in O(n log n)-time and space.

Consider a pair (Ti, Tj) of triangles of S with Ti ∩ Tj ∩ Q ̸= ∅. A node v in the tree T is
said to be a canonical node of (i, j, Q) if the left side lQ of the rectangle Q lies in the interior
or on the left side of SL(v), and Ti, Tj ∈ S(v) such that Ti ∈ Sc(v) or Tj ∈ Sc(v). We have
the following results related to the canonical nodes.

▶ Lemma 2.6. For each C5-pair (Ti, Tj) of Q such that the non-vertical sides of I(i, j)
intersect the vertical sides of Q, there is a canonical node of (i, j, Q) in T .

Proof. The proof is analogous to that of Lemma 3 in [5]. ◀

▶ Lemma 2.7. For any rectangle Q and any pair (Ti, Tj) of rectangles of S with I(i, j)∩Q ≠ ∅,
there is at most one canonical node of (i, j, Q) in T .

Proof. The proof is analogous to that of Lemma 4 in [5]. ◀

We have the following corollary from Lemma 2.6 and Lemma 2.7.

▶ Corollary 2.8. The total number of canonical nodes for a query rectangle Q is O(k(Q)).

▶ Remark. A node in T could be the canonical node for more than one pair (Ti, Tj) ∈ U(Q).
Given a rectangle Q, we compute a set of nodes of T that includes the unique canonical
node of (i, j, Q) for each C5-pair (Ti, Tj) not belonging to any other configuration such that
the non-vertical sides of Ti ∩ Tj intersect the vertical sides of Q. For each such node v, we
find all C5-pairs such that v is the canonical node of (i, j, Q).

Finding all canonical nodes for C5-pairs: We compute a set VQ of canonical nodes which
contains the canonical node of (i, j, Q) for every C5-pair (Ti, Tj). For computing such a set,
we define the trimmed polygon for a pair (T, v), T ∈ S(v), as the smallest simple polygon
containing the region T ∩ SL(v) ∩ U(v). Here, U(v) is the union of all the triangles in Sc(v)
except T if T ∈ Sc(v). See Figure 3 for examples. The trimmed polygon for (T, v) has at
most two sides with slope m; the number of horizontal and vertical sides are bounded above
by 2 and 3, respectively. We compute the required set VQ by finding the sides of all trimmed
polygons intersected by the left side Q (the details are omitted).

▶ Lemma 2.9. Given a query rectangle Q, we can find a set of at most k nodes containing
all canonical nodes of C5-pairs not belonging to any other configuration in O(log n + k) time.

Handling each canonical node to find all C5-pairs: Let VQ be the set of canonical nodes for
Q computed due to Lemma 2.9. We now compute all C5-pairs present at each node v ∈ VQ.
For this, we have the following lemma.

▶ Lemma 2.10. For each v ∈ VQ, we can compute all C5-pairs (Ti, Tj) such that v is the
canonical node of (i, j, Q) in O(k5)-time. The preprocessing takes O(n log n)-time and space.
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Figure 3 The trimmed polygon (dotted region) for (Tj , v) when (a) Tj ∈ Sb(v) and (b) Tj ∈ Sc(v).

We finally put together the results for all configurations and got the following theorem.

▶ Theorem 2.11. Given a set of n right-angled homothetic triangles, one can preprocess so
that all pairs of triangles intersecting inside a query rectangle can be computed in O(log n +
#output)-time. The space complexity is O(n log n).
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Abstract
Schematic depictions in text books and maps often need to label specific point features with a text
label. We investigate one variant of such a labeling, where the image contour is a circle and the
labels are placed as circular arcs along the circumference of this circle. To map the labels to the
feature points, we use orbital-radial leaders, which consist of a circular arc concentric with the
image contour circle and a radial line to the contour. In this paper, we provide a framework, which
captures various dimensions of the problem space as well as several polynomial time algorithms and
complexity results for some problem variants.

1 Introduction

Map labeling is an extensively studied topic in computational geometry [1,7,12] that typically
involves annotating feature points with names or additional descriptions, ensuring non-
overlapping annotations. While traditional maps often use internal label positions next to
the feature points [11], external labeling models [4] place labels remotely along the contour
of a bounding shape and connect them to their feature points by crossing-free leaders. This
model is frequently used in applications, where feature points are dense, the details of a map
or an illustration should not be obscured by labels, or labels are relatively large, e.g., in
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Figure 1 An orbital labeling on a map for illustrating our notation.
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anatomy atlases or assembly drawings. In this paper we study a novel variant of external
labeling with a circular bounding shape, e.g., for displays of smartwatches; see Figure 1. The
circular map is displayed in the center of the display and each label is bent and turned into
a segment of the circular boundary of the map; we call these labels orbital labels. This is a
special case of external and boundary labeling [3]. We assume that the lengths of the orbital
labels are normalized and sum up to the perimeter of the boundary of the map. Previous
research on circular map display considered either multirow circular labels where the sum of
label lengths does not equal the map’s boundary length [8], radial labels [2, 6], or horizontal
labels [6, 9, 10]. The latter two settings are relevant for circular maps on rectangular displays
but not suitable for circular displays with a narrow annulus for labels.

Formally, we assume that we are given a disk D in the plane R2. The disk contains n

points P = {p1, . . . , pn}. We call the set P of points features and we refer to the boundary of
the disk as the boundary B. Every feature p ∈ P has an associated label which represents
additional information that is to be placed along a circular arc on the boundary starting at
a point b1 ∈ B and ending at a point b2 ∈ B. The circular arc along B is denoted as b̂1b2B

.
Usually, the start and endpoint of the label are not fixed in the input, however, the length
of the arc is part of the input. We represent the associated label simply as a number λ(p),
which indicates the length of the associated label. We assume that ∑n

i=1 λ(pi) is equal to
the circumference of D, i.e., if all labels are placed non-overlapping then there are no gaps
between the arcs on B.

In a labeling L, every feature p ∈ P is assigned a label with starting point sL(p) ∈ B and
an endpoint eL(p) ∈ B, s.t., ∣ ̂sL(p)eL(p)∣ = λ(p). We assume that all labels are pairwise
non-overlapping. Additionally, every feature p is connected to its label via a leader. In
this paper, we consider orbital-radial leaders, which consist of two parts: (1) starting at
the feature p with a (possibly empty) orbital circular arc that ends at a bend point q, and
(2) a radial segment that connects q to the boundary B; see Figure 1. We call the leader
endpoint, i.e., the point where the leader B the port ξL(p) of the leader starting at p. Note
that q has the same distance to the circle center as p since the first part of the leader is an
orbital-radial arc. We denote the length of the leader of feature p by l(p). Let the port ratio
ρL(p) = ∣ ̂sL(p)ξ(p)∣

λ(p) be the ratio of the arc from the starting point to the port and the arc
from the start-point to the end-point. Now, we define the generic orbital labeling problem.

▸ Problem 1. Given a disk D, containing n feature points P compute a labeling L, in which
all leaders are pairwise non-intersecting and the sum of leader lengths is minimal.

We discuss different variants of the problem and give an overview of the obtained running
times. The paper provides detailed explanations for a subset of the results. The remaining
results and proofs of statements marked with a star (*) will be presented in the full version.

2 Problem Space

In the following, we discuss the dimensions of our problem space. For the different dimensions,
we use the notation based on the COSA-Orbital Boundary Labeling scheme and use
each letter to describe the variants for the respective dimension.

[C] Candidate port positions on the boundary. If we are given a set C of candidate
positions on B and in any valid labeling L we require that for any port ξ ∈ ΞL we have ξ ∈ C,
we say the port candidates are locked (and use the symbol C🔒) otherwise they are free (C🔑).
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Table 1 A tabular overview of the problem space and our results. Empty cells remain open.
Results marked with † will be presented in the full version.

A🔒

� A🔑

� A🔒

� A🔑

�

C🔒

O🔒

S� O(n2∣C ∣) † O(n2∣C ∣) †

S� O(n2∣C ∣) † O(n2∣C ∣) †

O🔑

S� O(n∣C ∣3) †

S�

C🔑

O🔒

S� O(n2) [Sec. 4.1] O(n2) [Sec. 4.1]

S� O(n2) [Sec. 4.1] O(n2) [Sec. 4.1]

O🔑

S� O(n5) [Sec. 4.2]

S� NP-c [Sec. 4.2.1] NP-c [Sec. 4.2.1] NP-c [Sec. 4.2.1]

[O] Order. Next, we consider the cyclic order of labels around B. If a certain label order
is pre-specified we say the label order is locked (O🔒); otherwise, for the unconstrained
setting, we say the label order is free (O🔑).
[S] Size of labels. Then, we distinguish the setting where ∀p ∈ P ∶ λ(p) = 1, in which case
we say that the label size is uniform (S�), otherwise the label size is non-uniform (S�).
[A] Port position on labels. Lastly, we distinguish different positions of the ports
on the labels. We differentiate between uniform port ratios, where ∀i, j ρL(pi) = ρL(pj),
and non-uniform port ratios. We also distinguish between the ratios being predefined
as part of the input, in which case we call the ratios locked, or not, in which case we call
them free. We obtain the following four settings:

Ratios are uniform and locked to a value k ∈ [0, 1] given in the input (A🔒

� ).
Ratios are uniform and free, i.e., we have to find a value k ∈ [0, 1] for the ratios (A🔑

� ).
Ratios are non-uniform and locked, meaning, we are given a set K = {k1, . . . , kn} of
ratios, s.t., in a valid labeling L, we have ρL(pi) = ki (A🔒

�).
Ratios are non-uniform and free, i.e., ports can be chosen freely and independently (A🔑

�).

For our problem variants, we use the notation based on the COSA-Orbital Boundary
Labeling scheme where we substitute C, O, S and A with C🔑/C🔒, O🔑/O🔒, S�/S� and
A🔑

�/A🔑

�/A🔒

�/A🔒

�, respectively. An overview of all variants and our results can be seen in
Table 1. Whenever a statement applies to all variants along a certain dimension of the
problem space, we drop the sub- or superscript of C, O, S, or A. For example, C🔑O🔒SA🔒

�

refers to the variants where the port candidates are free (C🔑), the order is locked (O🔒), the
label sizes could be fixed to be uniform or they could be non-uniform (S) and all port ratios
are fixed to a given value (A🔒

� ). Therefore, C🔑O🔒SA🔒

� covers a set of two problem variants.

3 Uniformly Spaced Ports

Using a simple argument about shifting labels illustrated in Figure 2, we can show the
following equivalence.

▸ Observation 1. All problems in COS�A🔒

� are equivalent over all k ∈ [0, 1]. Similarly all
problems in COS�A🔑

� are equivalent over all k ∈ [0, 1].
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(a) Uniform ratio of 0.5. (b) Clockwise rotation. (c) Uniform ratio of 0.

Figure 2 Any solution with uniform label sizes and a uniform ratio (e.g., 0.5) (a) can be rotated
(b) to obtain a solution of any other ratio, e.g., 0 (c).
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Figure 3 Given a free label order Of we can reroute the leaders to arrive at a crossing-free
solution with a shorter total leader length.

This equivalence is based on the fact that the ports in these problems are necessarily
equally spaced, which is only the case if both the label size and the port ratio are uniform.
Based on the same property, we make the following statement, visualized in Figure 3.

▸ Lemma 3.1 (*). Given an instance of a problem variant in CO🔑SA� any leader-length
minimal labeling L is crossing-free, assuming that all feature points in P lie on circles of
different radii concentric with D.

4 Free Candidates

In this section, we consider the problem set C🔑OSA. Intuitively, these are problem sets,
where solutions can be continuously rotated around B. Let g ∶ P × [0, 2π] → R be a function
which maps a feature p ∈ P and an angle θ to the length of a leader that connects p and a
port on B, s.t., the orbital segment of the leader spans the angle θ. Let r be the radius of
the circle containing p concentric with D. If D has a circumference of C it has a radius of C2π

.
Then g(p, θ) = C2π

− r + rθ; see Figure 4.

▸ Observation 2. The function g(p, θ) is linear in θ.

The total leader length of a labeling L can obtained as h(L) = ∑n
i=1 g(pi, θ(pi)), where

θ(pi) is the angle spanned by the orbital segment of the leader connected to pi.
Note that by fixing a port ξ on the boundary for a feature p, there are two orbital-radial

leaders by which we could choose to connect them (with a clockwise or a counter-clockwise
orbital segment). We call these clockwise and counter-clockwise leader, respectively.
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θ
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r
rθ

C/(2π)− r

Figure 4 Determining the leader length by the length of the orbital and radial segment.

Figure 5 The port position of the inner-most feature (blue) determines labeling of other features:
Depending on the labeling of the inner-most feature, the green feature point has access to different
candidate ports (dark labels and solid leaders vs. light labels and dashed leaders).

▸ Observation 3. The inner-most feature, i.e., the feature which lies on a circle concentric
with D whose radius is smallest among all features can always be labeled with a clockwise or
a counterclockwise leader.

Observe that the leader of the inner-most feature p uses a radial line segment s starting
on a circle concentric with D, which does not contain any other feature of P . Consider
any other feature p′ and any other point ξ′ on B, then, p′ and ξ′ can be connected either
with a clockwise or a counter-clockwise leader; see Figure 5. The orbital segments of the
clockwise and the counter-clockwise leader of p′ together form an entire circle concentric
with D containing p and, hence, one of them has to intersect s.

▸ Observation 4. A leader of the inner-most feature determines for every other leader γ

connecting a feature and a point on B if γ is a clockwise or counter-clockwise leader.

4.1 Locked Order.
Next, we consider problems in C🔑O🔒SA.

▸ Lemma 4.1. For C🔑O🔒S�A🔒

�, C🔑O🔒S�A🔒

� and by extension C🔑O🔒S�A🔑

� , the choice of a
port point on B for the inner-most feature determines all other label placements including
their port positions as well as their leaders. This also includes the length of their leaders and
the angle that is spanned by the orbital segment of these leaders.

Proof. This lemma directly follows from Observation 4 and the key point that the placement
of one label not only determines the placement of others but also their port positions. ◂

With this, we state a method of solving the four problems C🔑O🔒SA🔒 and by extension
C🔑O🔒S�A🔑

� (recall Observation 1). By Lemma 4.1 the exact position of the port of the
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Figure 6 Two clockwise leaders whose ports are rotated, s.t., (a) the length of the orbital segment
of pj is 0, (b) the leaders are non intersecting, (c), the radial segment of pj contains pi and (d) the
leaders intersect. The admissible range of θ is shown in blue.

inner-most feature p1 is the only degree of freedom when choosing a labeling. By Lemma 4.1,
we immediately obtain the angle θ1 spanned by its orbital segment. By Lemma 4.1, we
likewise obtain all angles θ2, . . . , θn of all the other leaders. Therefore we can express the
functions g(p2, θ2), . . . , g(pn, θn) all as piecewise linear functions of θ1, which consist of
exactly two linear pieces. The sum over all of these functions is therefore a piece-wise linear
uni-variate function and we can find the minimum of it in O(n) time.

To guarantee that a solution (if it exists) found in this way is crossing free we compute an
admissible range Ii,j for θ1, s.t., if θ1 ∈ Ii,j the leaders of pi and pj are crossing free; see Figure 6.
Ii,j is one continuous interval and therefore we can in O(n2) time determine all ranges as
well as their (also continuous) intersection if it exists. Then we either restrict our search for a
minimum to this intersection or – if the intersection is empty – know that no solution exists.

4.2 Free Order.
These are the problems in C🔑O🔑SA. We will use a reduction of some of these problems to a
non-circular variant called Boundary Labeling [5].

▸ Lemma 4.2. In any (crossing-free) labeling of an instance of a problem in C🔑O🔑SA, there
exists a point b ∈ B, s.t., db does not intersect any leader, where d is the center of D.

Proof. Let x be the smallest angle between two points, two ports, or a point and a port in
an optimal labeling L (measured with 0 as the center). Consider the radial segment of the
leader of the inner-most feature p1, and assume w.l.o.g. that the orbital segment is clockwise.
Set b′ to be ξ(p1) but rotate it clockwise by x/2. Since the leader of p1 does not intersect
any other leader and the next feature or port is at least at an angle x in clockwise position
from ξ(p1), the segment db′ must now be crossing free. ◂

The previous lemma argues the existence of this splitting line in any labeling. Next, we
state that we only need to consider O(n2) possibilities for such a line.

▸ Lemma 4.3 (*). For any problem in C🔑O🔑S�A� there are only n2 possibilities for the port
of the inner-most feature.

We obtain an algorithm for the problems C🔑O🔑S�A� by creating an instance of Boundary
Labeling for every possible port of the inner-most feature and using the O(n3) algorithm [5]
to obtain a labeling in a total time of O(n5); see algorithm in the full version.

▸ Theorem 4.4. Any problem in C🔑O🔑S�A� can be solved exactly in O(n5).
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4.2.1 Non-uniform label sizes are NP-hard.
Finally, we investigate problems without candidate ports, a free order on the labels and non-
uniform label sizes. For C🔑O🔑S�A�, we show NP-hardness and the hardness of C🔑O🔑S�A🔒

�

extends to C🔑O🔑S�A🔒

�. C🔑O🔑S�A🔑

� remains open.

▸ Theorem 4.5 (*). Given an instance of C🔑O🔑S�A🔑

� , C🔑O🔑S�A🔒

� or C🔑O🔑S�A🔒

� together
with k ∈ R it is (weakly) NP-hard to decide if there exists a labeling L with a total leader
length of less than k.
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