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Abstract
Merge trees are a common topological descriptor for data with a hierarchical component. The
interleaving distance, in turn, is a common distance measure for comparing merge trees. In this
abstract, we introduce a form of ordered merge trees and extend the interleaving distance to a
measure that preserves orders. Exploiting the additional structure of ordered merge trees, we then
describe an O(n2) time algorithm that computes a 2-approximation of this new distance with an
additive term G that captures the maximum height differences of leaves of the input merge trees.

Related Version A full version of the paper is available at arxiv.org/abs/2312.11113.

1 Introduction

Merge trees are a common topological descriptor for data with a hierarchical component,
such as terrains and scalar fields. However, standard merge trees focus solely on the hierarchy
and do not represent other salient geometric features of the data. Specifically, our work is
motivated by the study of braided rivers (see Figure 1). A braided river is a multi-channel
river system, known to evolve rapidly [13, 17]. There exist methods to generate a river
network from a snapshot of the terrain [7, 14, 16]. We model a river network as a hierarchy of
braids. We use a merge tree to represent this hierarchy: each leaf represents a single channel
in the network, and each internal vertex represents two braids merging (see Figure 1).

It is our goal to analyse the evolution of the channel network over time. The standard
way to compare two merge trees is the interleaving distance [19]. However, the interleaving
distance has two main drawbacks. Firstly, the standard interleaving distance is unable to
capture any intrinsic order, e.g. from bank to bank in braided rivers, that might be present in

Figure 1 (Left) the Waimakariri River in New-Zealand is a braided river. Photo was taken by
Greg O’Beirne [21]. (Right) representing a river network by a merge tree.
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the data. Secondly, there is no known efficient algorithm to compute even an approximation
of the interleaving distance.1 To tackle both issues, we introduce the monotone interleaving
distance: an order-preserving distance measure on ordered merge trees.

Contributions. We show that the monotone interleaving distance can be defined in terms
of a single map between the input merge trees, two maps, or a labelling. Moreover, we
give an algorithm that computes an approximation of this distance in O(n2) time. Finding
an efficient algorithm to compute the monotone interleaving distance exactly, or to prove
NP-hardness of computing the distance, remains an open problem. We first review the
relevant background in Section 2. In Section 3 we introduce a form of ordered merge trees
and define monotone interleavings, monotone δ-good maps and monotone labellings. We
give constructions to prove that all of these lead to the same distance. Finally, in Section 4
we describe an efficient algorithm to approximate the monotone interleaving distance. All
omitted proofs can be found in the full version on arXiv.

Related work. The interleaving distance was first introduced as a measure for persistence
modules [8]. It has since been well-studied from a categorical point of view [3, 4, 5, 6, 9,
10, 11, 15, 22], and has been transferred to numerous topological descriptors [2, 18, 20].
Morozov et al. [19] defined the interleaving distance for merge trees. Agarwal et al. [1]
established a relation between the interleaving distance and the Gromov-Hausdorff distance.1
The interleaving distance on merge trees was redefined by first Touli and Wang [23], and
later Gasparovich et al. [12]. Touli and Wang also gave an FPT-algorithm to compute the
interleaving distance. Recently, the result by Gasparovich et al. has been used to design
algorithms for computing geometry aware labellings [24, 25].

2 Preliminaries

A merge tree is a pair (T, f), where T is a rooted tree and f : T → R ∪ {∞} is a continuous
height function that is increasing towards the root, with f(v) = ∞ if and only if v is the
root. Here, f is defined not only on the vertices of T , but also on points of T interior to the
edges. Specifically, f is linearly interpolated along the edges. For a point x ∈ T , we denote
by Tx the subtree of T rooted at x. Furthermore, for a given value δ ≥ 0, we denote by xδ

the unique ancestor of x with f(xδ) = f(x) + δ ∈ T .
Now consider two merge trees (T, f) and (T ′, f ′) and fix a value δ ≥ 0. Intuitively, a

δ-interleaving describes a mapping α from T to T ′ that sends points exactly δ upwards, and
a similar map β from T ′ to T , such that both compositions of α and β send any point to its
unique ancestor 2δ higher. Figure 2 shows an example of a δ-interleaving.

▶ Definition 1 (Morozov et al. [19]). Given two merge trees (T, f) and (T ′, f ′), a pair of
maps α : T → T ′ and β : T ′ → T is called a δ-interleaving if for all x ∈ T and y ∈ T ′:

(C1) f ′(α(x)) = f(x) + δ,
(C2) β(α(x)) = x2δ,

(C3) f(β(y)) = f ′(y) + δ, and
(C4) α(β(y)) = y2δ.

The interleaving distance dI is defined as the smallest δ such that there exists a δ-interleaving.

1 Agarwal et al. [1] actually prove that approximating the Gromov-Hausdorff distance with a factor better
than 3 is NP-hard. As many have observed, this proof also applies to the interleaving distance.
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Figure 2 Two merge trees and part of a δ-interleaving. Mapping a point x from T to T ′ through α

(in blue), and mapping it back to T via β (in red) gives the unique ancestor x2δ of x.

The maps α and β are both δ-shift maps, i.e. continuous maps that send points exactly δ

higher. Touli and Wang [23] give an alternative definition of the interleaving distance in
terms of a single δ-shift map with additional requirements. They call this map a δ-good map.
Gasparovich et al. [12] show that the interleaving distance can also be defined in terms of
labelled merge trees: merge trees equipped with label-maps. Formally, let n ≥ 0. We denote
[n] := {1, . . . , n}. A map π : [n] → T is called a label map if each leaf in T is assigned at
least one label. Note that π is not restricted to vertices, and may map different labels to
the same point. The induced matrix M = M(T, f, π) of a labelled merge tree is defined by
Mi,j = f(lca(π(i), π(j))), where lca(·, ·) is the lowest common ancestor of two points. See
Figure 3 for an example of a labelled merge tree and its induced matrix.

For a matrix M , the ℓ∞-norm is defined as ∥M∥∞ = maxi,j |Mi,j |. For two unlabelled
merge trees (T, f) and (T ′, f ′), we refer to a pair of equally-sized label maps (π, π′) as a
δ-labelling if ∥M(T, f, π) − M(T ′, f ′, π′)∥∞ = δ. The δ-good interleaving distance dG

I and
the label interleaving distance dL

I are defined as the smallest δ such that there exists a δ-good
map or a δ-labelling. It has been shown that dI = dG

I = dL
I [12, 23].

3 An Order-Preserving Interleaving Distance

We consider a new class of merge trees, which we call ordered merge trees. For a point x ∈ T

with f(x) ≤ h, we denote by x|h the unique ancestor of x at height h. An ordered merge tree
(T, f, (≤h)h≥0) is a merge tree (T, f) equipped with a set of total orders on the level sets of
T , such that these orders are consistent (see Figure 4). Formally, for two heights h1 ≤ h2
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Figure 3 Example of a labelled merge tree and its induced matrix.
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Figure 4 Two layers of an ordered merge tree.

and two points x1, x2 in f−1(h1), we require that x1 ≤h1 x2 implies x1|h2 ≤h2 x2|h2 .
An ordered merge tree induces a binary relation ⊑ on the complete tree T : for x1, x2 ∈ T ,

we define x1 ⊑ x2 if x1|h ≤h x2|h, where h = max(f(x1), f(x2)). This induced relation is
not antisymmetric, and thus not a total order. If we restrict ⊑ to the set of leaves of T ,
denoted ⊑L, we do obtain a total order. We refer to ⊑L as the induced leaf-order of T .

Monotone interleaving distance. We now define an order-preserving distance measure for
ordered merge trees. Specifically, we say a δ-shift map α : T → T ′ is monotone if for all
height values h ≥ 0 and for any two points x1, x2 ∈ f−1(h) it holds that x1 ≤h x2 implies
α(x1) ≤′

h+δ α(x2). A monotone δ-interleaving is a δ-interleaving (α, β) such that the maps
α and β are both monotone (see Figure 5). A monotone δ-good map, in turn, is a δ-good
map α that is also monotone. Lastly, a δ-labelling (π, π′) of size n is monotone if for all
ℓ1, ℓ2 ∈ [n] it holds that π(ℓ1) ⊏ π(ℓ2) implies π′(ℓ1) ⊑′ π′(ℓ2). The monotone interleaving
distance dMI is defined as the smallest δ such that there exists a monotone δ-interleaving.
Similarly, we can define the monotone δ-good, and the monotone label interleaving distances,
denoted dG

MI and dL
MI. Our main result is the following.

▶ Theorem 2. The distances dMI, dG
MI and dL

MI are equal.

To prove Theorem 2, we describe constructions between monotone δ-interleavings, monotone δ-
good maps, and monotone δ-labellings. The first construction, from a monotone δ-interleaving
to a monotone δ-good map, follows directly from the regular setting (by Touli and Wang
[23]). The construction of a monotone δ-labelling from a monotone δ-good map follows from
a refinement of the construction by Gasparovich et al. [12].2 We use yF to denote the lowest
ancestor of y ∈ T ′ in the image of α. Moreover, for two distinct points x1, x2 ∈ T , we say x1
is smaller than x2 if x1 ⊑ x2. The existing construction is as follows.

2 We remark that they use a slightly different (but equivalent) definition for a δ-good map.

Figure 5 Parts of an optimal regular (left) and an optimal monotone (right) interleaving.



T. Beurskens, T. Ophelders, B. Speckmann, K. Verbeek 2:5

π(`)

T

α−1(wF )

α−1(ŵı̂)
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Figure 6 The refined step (S2). The grey parts of T ′ do not lie in the image of α. We add the
pair (x̂, w5) to Π. In this example, w = w5, S = {1, 2, 3, 6}, i = 5, Si = {1, 2, 3} and ı̂ = 3.

(S1) For every leaf u ∈ L(T ), add (u, α(u)) to an initially empty set Π.
(S2) For every leaf w ∈ L(T ′), take an arbitrary point x ∈ α−1(wF ). Add (x, w) to Π.
(S3) Consider an arbitrary ordering Π = {(xℓ, yℓ) | ℓ ∈ [n]}, and set π(ℓ) = xℓ, π′(ℓ) = yℓ.

We refine (S2), by choosing a specific x ∈ α−1(wF ). Intuitively, we first identify all points x̄

that lead to a violation of the monotonicity property if we choose x smaller than x̄. Such a
violation occurs if x̄ is an ancestor of a labelled point whose corresponding labelled point in
T ′ is smaller than w. We then take x to be the largest point among the points x̄.

(S2) For every leaf w ∈ L(T ′), sort the set of leaves in T ′
wF by induced leaf-order, denoted

W = {w1, . . . , wm}. Define S ⊆ [m] such that for k ∈ S, wF
k is a strict descendant of

wF . Fix i ∈ [m] such that wi = w, and define Si = {k ∈ S | k < i}. Now consider the
set X = α−1(wF )

If Si is empty, take x to be the smallest point in X and add (x, w) to Π.
If Si is not empty, consider the largest index ı̂ ∈ Si. Define Y as the set of strict
descendants of wF that were labelled in (S1). Consider the following height values:

ĥ1 := max{f ′(wF
k ) | k ∈ S}, ĥ2 := max{f ′(y) | y ∈ Y }, ĥ = max(ĥ1, ĥ2) (1)

Consider the unique ancestor ŵı̂ of wı̂ at height ĥ. Note that ŵı̂ is a strict descendant
of the point wF and that it lies in the image of α. Let Xı̂ ⊂ X be the set of ancestors
of points in α−1(ŵı̂). Take x̂ to be the largest point in Xı̂ and add (x̂, w) to Π.

See Figure 6 for an illustration. We can show that the resulting δ-labelling is monotone.
Lastly, we construct a monotone δ-interleaving from a monotone δ-labelling. To do so,

we extend an existing construction of a δ-good map α from a δ-labelling by Gasparovich et
al. [12]. Specifically, for all x ∈ T , they consider an arbitrary label ℓ from the subtree Tx and
set yℓ = π′(ℓ)|f(x)+δ. Gasparovich et al. show that the point yℓ is well-defined, and argue
that the resulting map α is a δ-good map. We can construct a δ-interleaving (α, β) by using
this construction twice: first to build a map α : T → T ′ and next to build a map β : T ′ → T .

Monotone leaf-label interleaving distance. We now turn to a restriction of the (monotone)
label interleaving distance. Specifically, if we restrict a label map to map only to the leaves
of T , we obtain a leaf-label map. A δ-leaf-labelling is a pair of leaf-label maps that is also a
δ-labelling. The leaf-label interleaving distance dLL

I , in turn, is defined as the smallest δ for
which there exists a δ-leaf labelling. We can show that this distance is an approximation of
the interleaving distance, in both the regular and monotone setting. We define the leaf-gap G

of two trees T and T ′ as the maximum height difference of any pair of leaves in T and T ′.
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▶ Theorem 3. The monotone leaf-label interleaving distance between (T, f, (≤h)) and
(T ′, f ′, (≤′

h)) is bounded by 2δ + G, where δ = dMI(T, T ′) and G is the leaf-gap of T and T ′.

4 Approximating the Monotone Interleaving Distance

In this section we describe an algorithm to compute the monotone leaf-label interleaving
distance between two ordered merge trees (T, f, (≤h)) and (T ′, f ′, (≤′

h)). We denote the
leaves of T and T ′, sorted by leaf-order, by L(T ) = {u1, . . . , um} and L(T ′) = {w1, . . . , wm′},
respectively. We can show that we can permute the labels of a monotone labelling (ω, ω′) on T

and T ′, such that the resulting label maps respect the induced leaf-orders of their trees. That
is, for any two labels i, j ∈ [n] with i < j, we have ω(i) ⊑L ω(j) and ω′(i) ⊑′

L ω′(j). Assume
(ω, ω′) is such a monotone leaf-labelling. Let M = M(T, f, ω) and M ′ = M(T ′, f ′, ω′) be the
corresponding induced matrices and set M = M(T, T ′) := |M − M ′|. We refer to entries
Mi,i as the diagonal of M, and to entries Mi,j with j − i = 1 as the upper-diagonal of M.

▶ Lemma 4. The maximum of M lies on the diagonal or upper diagonal of M.

We now describe a dynamic program to compute the monotone leaf-label interleaving distance
between T and T ′. We denote by T [i] the subtree of T consisting of only the first i leaves.
For i ∈ |L(T )| and j ∈ |L(T ′)|, we maintain a value ∆[i, j] that stores the monotone
leaf-label interleaving distance between T [i] and T ′[j]. Consider an optimal monotone
leaf-labelling (ω, ω′) for T [i] and T ′[j] with a minimum number of k labels, such that ω

and ω′ respect the leaf-orders of T and T ′, respectively. From Lemma 4 we know that
to compute dLL

MI(T [i], T ′[j]), it suffices to compute the diagonal and upper-diagonal entries
of M = M(T [i], T ′[j]). As ω(k) = ui and ω′(k) = wj , we have Mk,k = |f(ui) − f ′(wj)| =: ε.
To compute the other relevant elements of M, we consider the three options for label k − 1:

(1) ω(k − 1) = ui, (2) ω(k − 1) = ui−1, (3) ω(k − 1) = ui−1,

ω′(k − 1) = wj−1, ω′(k − 1) = wj , ω′(k − 1) = wj−1.

First assume case (1) applies. Then we know that Mk−1,k = |f(ui) − f ′(lca(wj−1, wj))|.
Furthermore, ∆[i, j − 1] captures the remaining relevant entries of M. We set δ1 =
max(∆[i, j − 1], Mk−1,k). Similarly, we can set δ2 and δ3 for cases (2) and (3) respec-
tively. Finally, at each iteration, we set ∆[i, j] = max(ε, min(δ1, δ2, δ3)). We can show that
∆[i, j] = dLL

MI(T [i], T ′[j]). The algorithm returns ∆[|L(T )|, |L(T ′)|].
We can use our algorithm to compute a monotone interleaving as follows. First, we

compute the lowest common ancestors of all consecutive pairs of leaves in T or T ′. This
allows us to construct ∆ in O(n2) time, where n = |L(T )| + |L(T ′)|. Recovering an optimal
leaf-labelling from the dynamic program can be done in a standard way. Next, we can
construct two partial maps αL : L(T ) → T ′ and βL : L(T ′) → T using the construction from
Section 3 in O(n) time. Lastly, one can recover a complete interleaving (α, β) from αL and
βL using continuity and δ-shift map properties. Our final result follows from Theorem 3:

▶ Theorem 5. Given two ordered merge trees T and T ′, there exists an O(n2) algorithm
that computes a monotone δ-interleaving between T and T ′, where δ ≤ 2dMI(T, T ′) + G.
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