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Abstract
Constructing partitions of colored points is a well-studied problem in discrete and computational
geometry. We study the problem of creating a minimum-cardinality partition into monochromatic
islands. Our input is a set S of n points in the plane where each point has one of k ≥ 2 colors. A
set of points is monochromatic if it contains points of only one color. An island I is a subset of S

such that CH(I) ∩ S = I, where CH(I) denotes the convex hull of I. We identify an island with
its convex hull; therefore, a partition into islands has the additional requirement that the convex
hulls of the islands are pairwise-disjoint. We present three greedy algorithms for constructing island
partitions and analyze their approximation ratios.
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1 Introduction

Constructing partitions of colored points is a well-studied problem in discrete [8, 12] and
computational geometry [1, 4, 5, 16]. The colors of the points can be present in the constraints
and the optimization criterion in different ways. For example, one may require the partition
to be balanced—see the survey by Kano and Urrutia [12] for many such instances—or
monochromatic [1, 4, 5, 8]. Alternatively, one may want to minimize or maximize the
diversity [16] or discrepancy [3, 7] of the partition. Furthermore, one can use different
geometries to partition the points, such as triangles [1], disks [5], or lines [4].

We study the problem of creating a minimum-cardinality partition into monochromatic
islands [2]. Our input is a set S of n points in the plane where each point has one of k ≥ 2
colors. A set of points is monochromatic if it contains points of only one color. An island I

is a subset of S such that CH(I) ∩ S = I, where CH(I) denotes the convex hull of I. We
identify an island with its convex hull; therefore, a partition into islands has the additional
requirement that the convex hulls of the islands are pairwise-disjoint.

Related work. Bautista-Santiago et al. [2] study islands and describe an algorithm that
can find a monochromatic island of maximum cardinality in O(n3) time, improving upon
an earlier O(n3 log n) algorithm [10]. Dumitrescu and Pach [8] consider monochromatic
island partitions and prove how many islands are sufficient and sometimes necessary for
different types of input. Bereg et al. [3] use island partitions to define a notion of coarseness
that captures how blended a set of red and blue points are. Agarwal and Suri [1] study
the following problem: given red and blue points, cover the blue points with the minimum
number of pairwise-disjoint monochromatic triangles. They prove that this problem is
NP-hard and describe approximation algorithms. Their NP-hardness reduction can be used
to prove that covering and partitioning points of only one color into the minimum number of
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Figure 1 Left: optimal island partition; middle-left: disjoint-greedy island partition; middle-right:
overlap-greedy island cover; right: line-greedy separating lines.

monochromatic islands—the points of the other colors serving only as obstacles—is NP-hard,
as observed by Bautista-Santiago et al. [2]. We suspect that the problem we study is NP-hard
as well, which motivates us to focus on approximation algorithms.

Overview. In the remainder, we consider only monochromatic islands. We denote by
OptP the minimum cardinality of an island partition of S. In the following sections, we use
three greedy algorithms—disjoint-greedy, overlap-greedy, and line-greedy—to construct island
partitions. Disjoint-greedy creates an island partition by iteratively picking the island that
covers most uncovered points and does not intersect any island chosen before. We sketch a
proof that shows that disjoint-greedy has an approximation ratio of Ω(n/ log2 n). The overlap-
greedy algorithm greedily constructs an O(log n)-approximation of the minimum-cardinality
island cover. We prove that any algorithm that transforms an island cover returned by
overlap-greedy into an island partition has approximation ratio Ω(

√
n), and describe one such

algorithm that has approximation ratio O(Opt2
P log2 n). Lastly, we investigate the relation

between constructing a minimum-cardinality island partition and finding the minimum
number of lines that separate the points into monochromatic regions. In particular, we show
that greedily choosing the line that separates most pairs of points of different color induces
an O(OptP log2 n)-approximation to the minimum-cardinality island partition. Figure 1
illustrates the greedy algorithms. The full paper contains all technical details.

2 Disjoint-Greedy

We sketch our lower bound construction that shows that disjoint-greedy has an approximation
ratio of Ω(n/ log2 n). Consider a family of problem instances that have the form of two
opposing complete binary trees of height ℓ (Figure 2). Sets of points are placed close together
at the nodes of these trees. The idea is that by placing sufficiently many points at the nodes,
and by placing obstacle points appropriately, the disjoint-greedy algorithm iteratively picks
points of two opposing nodes such that the problem instance is split into two symmetric
nearly independent parts that have nearly the same structure as the original instance. This
results in disjoint-greedy returning a partition into Ω(2ℓ) islands (Figure 3). However, there
exists a partition such that each layer in the tree consists of a constant number of islands,
resulting in O(ℓ) islands in total (Figure 4). In our construction, the number of red points at
a node at height i ∈ {0, . . . , ℓ−1} is 2i+6 and the number of blue points at a node is constant.
Hence, the problem instance contains Θ(ℓ · 2ℓ) points in total and the approximation ratio of
disjoint-greedy is Ω(2ℓ/ℓ) = Ω(n/ log2 n).
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Figure 2 The problem instance for ℓ = 5. The lines in the figure are not part of the problem
instance, but illustrate its structure. The purple squares represent red and blue points lying close
together inside a square. The red disk inside the square represents many red points placed together
inside a disk. The centers of the purple squares lie within the strip bounded by the two dashed lines.

Figure 3 The solution returned by disjoint-greedy.

Figure 4 An alternative solution, serving as an upper bound for the optimal solution.

3 Overlap-Greedy

A greedy algorithm that iteratively picks the island that covers most uncovered points
results in an O(log n) approximation to the minimum-cardinality island cover. This follows
immediately from viewing the problem as a set cover problem, where islands form the sets.
We refer to this greedy algorithm as overlap-greedy. Below, we explore how to transform the
island cover returned by overlap-greedy into an island partition. We assume that the greedy
algorithm breaks ties by choosing an island that covers the fewest previously covered points.

We first define the relation between island covers and partitions based on them. Intuitively,
islands that intersect can be transformed into a set of pairwise-disjoint islands by splitting
them. In the transformation, each island has a corresponding family of islands into which
it is split. The union of such a family should be a subset of the original island—a subset,
not equal, because a point that was originally covered by multiple islands should be part of
exactly one island after the transformation. This motivates the following definition.

▶ Definition 1 (Compatible). Families I ′
1, . . . , I ′

m are compatible with islands I1, . . . , Im if:
Families I ′

1, . . . , I ′
m cover the same points as I1, . . . , Im:

⋃
k

⋃
I ′

k =
⋃

i Ii;
For every i, we have

⋃
I ′

i ⊆ Ii;
Islands

⋃
k I ′

k are pairwise-disjoint.
Islands I ′

1, . . . , I ′
m′ are compatible with islands I1, . . . , Im if there exists a partition of

{I ′
1, . . . , I ′

m′} into families that are compatible with I1, . . . , Im.
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Figure 5 A lower bound on the cardinality of solutions compatible with islands returned by
overlap-greedy. Left: overlap-greedy cover; middle: a partition compatible with the overlap-greedy
cover; right: an optimal island partition.

Thus, we arrive at the following problem: given m islands I1, . . . , Im obtained by overlap-
greedy, find compatible families I ′

1, . . . , I ′
m with |

⋃
k I ′

k| minimum. Solving this problem
optimally is non-trivial. A natural approach to tackle the problem is to create an arrangement
of the islands I1, . . . , Im and extract compatible families from that arrangement. However,
two minor issues arise: the faces in the arrangement may not be convex, and the quality
of the solution is not immediately clear as the number of faces in the arrangement may
be arbitrarily greater than m. To resolve these issues, we build an arrangement iteratively.
Before describing this process, we give a lower bound on the approximation ratio of algorithms
that return islands compatible with those returned by overlap-greedy.

▶ Lemma 2. Any algorithm that returns islands compatible with those returned by overlap-
greedy has approximation ratio Ω(max{OptP,

√
n}).

Proof. Let k ∈ N≥1. Consider a problem instance that consists of k evenly spaced vertical
blue lines each formed by k + 1 evenly spaced blue points, and symmetrically k evenly
spaced horizontal red lines (Figure 5). The cover returned by overlap-greedy has cardinality
2k and is induced by exactly those lines that were just described (Figure 5, left). Any
partition that is compatible with the overlap-greedy cover has cardinality at least 2k + k2

(Figure 5, middle). Indeed, each intersection between two lines in the overlap-greedy
cover forces an additional island in a compatible partition. An optimal island partition
has cardinality OptP = 2k + 1 and consists of either all horizontal or all vertical islands
(Figure 5, right). The number of points n = O(k2). Thus, the approximation ratio of
an algorithm that produces solutions compatible with that of overlap-greedy is at least
2k+k2

2k+1 = Ω(k) = Ω(OptP) = Ω(
√

n) = Ω(max{OptP,
√

n}). ◀

3.1 Upper Bound
As mentioned earlier, our algorithm for creating a compatible island partition from an island
cover works in an iterative manner. Throughout the iterations, we keep track of a restricted
planar subdivision, which we call an island arrangement, to bound the cardinality of the
island partition constructed by the algorithm. To simplify the arguments, we assume all
islands in the island cover have cardinality at least three and that no three points are collinear.
Then, a compatible island partition can be created from the faces of the island arrangement.
See Figure 6 for an overview of the transformation from island cover to island partition.

We now define the notion of an island arrangement. In the following, vertices, edges, and
faces of a planar subdivision are collectively referred to as features.



S. van den Broek, W. Meulemans and B. Speckmann 3:5

Figure 6 Left: an island cover I1, . . . Im returned by overlap-greedy; middle: an island arrangement
of I1, . . . , Im; right: an island partition compatible with I1, . . . , Im induced by the arrangement.

▶ Definition 3 (Island arrangement). An island arrangement of islands I1, . . . , Ii is a planar
subdivision with the following additional requirements:

Bounded faces are convex;
Every bounded feature is a subset of CH(Ij) for some 1 ≤ j ≤ i;
For every 1 ≤ j ≤ i, CH(Ij) is covered by bounded features.

Let I1, . . . , Im be the islands chosen by overlap-greedy for some set of points S. Let
Ui = Ii \

⋃
j<i Ij be the set of uncovered points island Ii covers. Because islands are chosen

greedily by overlap-greedy, they satisfy |Ui| ≥ |Ui+1| for i ∈ {1, . . . , m − 1} and for all i

island Ii is such that |Ui| is maximum. By using these properties, the following lemma can
be proven to hold for islands I1, . . . , Im.

▶ Lemma 4. Let δ denote the boundary operator on sets. For distinct 1 ≤ i < j ≤ m, the
number of intersections between δ(CH(Ii)) and δ(CH(Ij)) is at most 2OptP.

Using this lemma we can prove that an island arrangement of I1, . . . , Ii−1 with 1 ≤ i ≤ m

can be modified into an island arrangement of I1, . . . , Ii such that the increase in the number
of faces is bounded in terms of i and OptP. We call this modification an augmentation of the
arrangement. The following lemma makes one face for the new island Ii and modifies any
existing features to make room. We refer to this as a bold augmentation of the arrangement.

▶ Lemma 5 (Bold augmentation). Given an island arrangement A of I1, . . . , Ii−1 with f

faces, there exists an island arrangement A′ of I1, . . . , Ii with at most f + 2OptP · (i − 1)
faces such that there is exactly one face whose closure equals CH(Ii).

By repeatedly applying Lemma 5, an island cover returned by overlap-greedy can be
transformed into a compatible island partition. Let bold overlap-greedy be the algorithm
that first runs overlap-greedy to obtain islands I1, . . . , Im, then repeatedly applies the bold
augmentation step to create an island arrangement A of I1, . . . , Im, and finally extracts an
island partition from the faces of A. The following bound holds on its approximation ratio.

▶ Corollary 6. Bold overlap-greedy has approximation ratio O(Opt2
P log2 n).

4 Line-Greedy

In this section, we explore the relation between our problem and that of separating colors
with the minimum number of lines. In particular, we show that greedily chosen separating
lines induce an O(OptP log2 n)-approximation to the minimum-cardinality island partition.

A set of lines L separates a set of colored points S if each face in the arrangement A(L)
is monochromatic. The problem of finding the minimum-cardinality set of such separating
lines is W[1]-hard with the parameter being the solution size [4]. Furthermore, the problem
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Figure 7 Left: islands; right: expanded islands and their contact graph.

is NP-hard [14] and APX-hard [6], even when allowing only axis-parallel lines. The problem
can be viewed as a set cover problem where lines are used to cover line segments between
pairs of points of different color. Thus, the corresponding greedy algorithm, which we refer
to as line-greedy, yields a O(log n)-approximation [11, 13]. Line-greedy can be implemented
to run in O(kOptLn2 log n) time [11], where OptL is the optimal number of lines and k is
the number of colors of the input set.

If L separates S, then the faces of the arrangement A(L) induce a partition of S into
O(|L|2) islands. Conversely, an island partition P of S, with |P| ≥ 3, induces a set of O(|P|)
lines that separates S. This can be shown using a construction by Edelsbrunner, Robison,
and Shen [9]. We sketch their construction, adapted slightly for our use; see their paper for
details and proofs. Circumscribe a rectangle around all the polygons—the convex hulls of
the islands in P . Grow the polygons, by moving their sides, until they are maximal. Extend
each shared polygon side to obtain a set of lines. This set of lines separates the input points.
Furthermore, each line corresponds to an edge of the contact graph of the expanded polygons
(Figure 7). Because the contact graph is planar, there are at most 3|P| − 6 lines, yielding
the desired result. While the exact running time of the construction is unclear, it is clearly
polynomial. Pocchiola and Vegter [15] provide an alternative construction that makes use of
a pseudo-triangulation of the polygons. Their algorithm runs in O(n + |P| log n) time.

Thus, an optimal island partition induces an O(OptL)-approximation to the optimal
set of separating lines. Conversely, an optimal set of separating lines induces an O(OptP)-
approximation to the optimal island partition. There is an analogous relation between
approximation algorithms of the two problems. In particular, we have the following result.

▶ Lemma 7. Line-greedy induces an O(OptP log2 n)-approximation to the minimum-cardinality
island partition.

For a lower bound instance, place points in a square grid of k = 2ℓ rows and columns and
color them alternatingly as in a checkerboard. In addition, place points on the corners of thin
axis-parallel rectangles on the sides of the grid to encourage the line-greedy algorithm to use
axis-parallel lines (Figure 8). We suspect that for any ℓ ≥ 1 line-greedy returns horizontal
and vertical separating lines that separate the rows and columns of the grid as shown on the
left in Figure 8. However, a formal proof eludes us. If this were true, then the island partition
induced by the line-greedy solution would have cardinality Ω(k2). Because an island partition
of cardinality O(k) exists (Figure 8, right), this would result in an Ω(

√
n) = Ω(OptP) lower

bound on the approximation that is attained by an island partition induced by line-greedy.
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Figure 8 The figure shows an idea of a lower bound on the approximation that is attained by an
island partition induced by line-greedy.
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