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Abstract
We introduce two geometry-based morphing techniques that build upon the existing Voronoi and
mixed morphs. These morphs are Hausdorff morphs, meaning they linearly interpolate the Hausdorff
distance between the two polygons. Our new morphs are also Hausdorff morphs, and additionally
reduce the number of components in intermediate shapes. In an experimental analysis we record
data on the area, perimeter and total angular change throughout the morph, and the number of holes
and components. Our new morphs perform better in these aspects than their original counterparts
and the new component-reduced mixed morph also appears to introduce fewer visual artifacts in the
intermediate polygons.

1 Introduction

Shape morphing, also called shape interpolation, is the process of gradually transforming a
source shape to a target shape over time. Good morphs produce intermediate shapes that
preserve the input shapes’ appearances.

We focus on abstract morphing between 2D shapes. Abstract morphs do not concern
themselves with (semantic) reasons to transform certain parts of the source shape to the
target shape. This type of morphing can be used to morph between complex shapes that do
not have any clear correspondence.

To capture a morph is gradual, we may use distance measures between shapes: ideally,
the distance to the source shape should linearly increase, while the distance to the target
shape should linearly decrease. A morph is a Hausdorff morph, when it satisfies this property
using the Hausdorff metric [5]. The dilation morph [5] is such a Hausdorff morph, though
the resulting intermediate shapes tend to lack characteristic features of either input shapes;
see Figure 1. The Voronoi morph [3] is also a Hausdorff morph; compared to the dilation
morph, it greatly reduces the area of intermediate shapes and also retains more characteristic
features. This morph does however add superfluous components and noise: extra details
that are not present in the input shapes; see Figure 1. The above two morphs combine into
a mixed morph [3], which reduces, but does not eliminate these issues. We introduce the
Component-Reduced Voronoi morph (CRV morph): a Hausdorff morph based on improving
the Voronoi morph by reducing the number of extra components in intermediate shapes. We
also describe the Mixed Component-Reduced Voronoi morph (MCRV morph), by combining
our CRV morph with the dilation morph, resulting in intermediate shapes with considerably
less noise and fewer superfluous components.
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Figure 1 From left to right: two input shapes, with the origin of the plane indicated with a cross;
intermediate shapes of the dilation [5], Voronoi [3] and mixed [3] morphs at α = 1/2.

1.1 Preliminaries
Hausdorff distance. For two non-empty sets A and B, the Hausdorff distance is defined as

dH(A, B) := max (sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a))

where d denotes the Euclidean distance. dH(A, B) is a bottleneck metric that can be described
as the largest distance from all points in A and B to their closest point on the other shape.

Morphs. We regard morphs as a function from the interval [0, 1]. The parameter α operating
on this interval can be viewed as time. The function operates on two shapes A and B, and
outputs another shape Cα, where C0 = A and C1 = B. The output shape is referred to as
an intermediate shape.

Assume we are given two shapes A and B in the plane that is scaled so that dH(A, B) = 1.
A morph that outputs Cα is called a Hausdorff morph if it satisfies the Hausdorff property:
dH(A, Cα) = α and dH(B, Cα) = (1 − α), for all α ∈ [0, 1]. For shapes that do not have
a Hausdorff distance of 1, we can easily scale the plane uniformly to achieve a Hausdorff
distance of 1; as the considered morphs are scale-invariant, this does not affect results.

We define a component of a shape S, as a disjoint non-empty subset, such that two
components of S are always positively separated. S is equal to the union of all its components.

Dilation morph. The dilation morph [5] is defined as

Sα(A, B) := (A ⊕ Dα) ∩ (B ⊕ D1−α),

where ⊕ denotes the Minkowski sum defined as {a + b | a ∈ A, b ∈ B}, and Dα is a disc of
radius α. This operation is also called dilation. This morph produces the maximal shape to
support the Hausdorff property. Therefore, any Hausdorff morph is a subset of Sα.

Voronoi morph. The Voronoi morph [3] moves points in the source shape to their closest
point on the target shape by a fraction of α and moves every point in the target shape to
their closest point in the source shape by a fraction of 1 − α. The union of these two sets
results in the intermediate shape at a given α. Formally, it is defined as

Tα(A, B) := {a + α(c(a, B) − a) | a ∈ A} ∪ {b + (1 − α)(c(b, A) − b) | b ∈ B},

where c(p, X) denotes the point on a shape X that is closest to a point p. If a point is
equidistant to multiple points in the other shape, all options are included. To compute
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this morph, the Voronoi diagram V (A) of the vertices, open edges the polygonal region of
A, partitions B into regions; the Voronoi cells of V (A). Slices of B are defined as disjoint
non-empty subsets of B, such that two slices in one region of the partitioning by V (A) are
always positively separated. Note that two slices in adjacent regions may not be positively
separated. Symmetrically, A is partitioned into slices by V (B).

Mixed morph. The mixed morph [3] is defined as

Mα,φ(A, B) := ((Tα(A, B) ⊕ Dφ) ⊖ Dφ) ∩ Sα,

where ⊖ denotes the Minkowski difference, defined as A ⊖ B := (Ac ⊕ B)c, where Ac is the
complement of A. It first dilates Tα by taking the Minkowski sum with a small disc. After
that, it erodes the shape by taking the Minkowski difference with a disc of the same radius,
causing small gaps and holes to close while keeping the rest of the shape intact. To make
sure it is also a Hausdorff morph, the intersection with Sα is taken.

2 Component-Reduced Voronoi Morph

We introduce the Component-Reduced Voronoi morph (CRV morph), which benefits from the
advantages of the Voronoi morph, while reducing the number of components. This morph
identifies which slices converge to extra components in the Voronoi morph, and tries to move
them along with neighboring slices. Two slices of a shape S are neighboring if they are not
positively separated. Every slice in the Voronoi morph has a target. This target is the site of
the Voronoi cell by which the slice is partitioned. This site can be a vertex, edge or polygonal
region of the other shape. Every slice is scaled and translated towards its target during the
morph. In the CRV morph, the target of a slice can be set to the target of a neighboring
slice. In that case, the slice is redirected. When two neighboring slices have the same target
due to redirection, they will always be part of the same component during the morph. We
call the targets of redirected slices alternative targets. Slices cannot always move along with
a neighboring slice; the alternative target has to be valid. An alternative target is valid when
the Hausdorff distance between the slice and target is smaller than dH(A, B), and it satisfies
one of the following conditions: (1) it is the primary target of a neighboring slice that is
part of a larger component, or (2) it is the alternative target of a neighboring slice that is
redirected along with a larger component.

If a slice has a valid alternative target, it will be redirected, making the alternative target
the new target of the slice. When a slice has multiple valid alternative targets, it will be
redirected to the alternative target to which the directed Hausdorff distance is smallest.
Assuming the final targets are given, we formally define our new morph Uα as:

Uα(A, B) := {a + α(c(a, ts) − a) | a ∈ A, ts ∈ B} ∪ {b + (1 − α)(c(b, ts) − b) | b ∈ B, ts ∈ A},

where c(p, ts) is the closest point on the final target ts of the slice in which point p is located.
If a slice has no valid alternative targets, its target remains the closest point on B. Note
that if no slices are redirected, Uα(A, B) = Tα(A, B).

Alternative targets are valid only if their Hausdorff distance is smaller than that of the
two input shapes. This means that redirected targets never determine the Hausdorff distance
between an intermediate shape and the input shapes. Therefore, Uα is a Hausdorff morph:

▶ Theorem 1. Let A and B be two compact sets in the plane with dH(A, B) = 1. Then for
any 0 ≤ α ≤ 1, we have dH(A, Uα) = α and dH(B, Uα) = 1 − α.
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2.1 Mixed Component-Reduced Voronoi morph
We also define the Mixed Component-Reduced Voronoi morph (MCRV morph) Um

α,φ, to reduce
noise on the boundary of intermediate shapes in the CRV morph as

Um
α,φ(A, B) := ((Uα(A, B) ⊕ Dφ) ⊖ Dφ) ∩ Sα,

where ⊖ denotes the Minkowski difference, defined as A ⊖ B := (Ac ⊕ B)c, where Ac is the
complement of A. Dφ denotes a disc of radius φ. This means that Um

α,0 = Uα. To make sure
Um

α,φ is a Hausdorff morph, the intersection with Sα is taken.

2.2 Algorithm
The algorithm to compute the CRV morph uses the algorithm to compute the Voronoi morph
as the first step. To compute Uα we assume A and B are (sets of) solid polygons that may
contain holes. The basic algorithm on these input sets works as follows:
1. Compute Tα at α = 1/2 as described in de Kogel et al. [3]. This results in a set of slices,

with each slice transformed and scaled halfway to their target.
2. Determine which slices belong to which components in the halfway Voronoi morph for

both input shapes separately.
3. For each input shape construct a graph G where each slice is a vertex and two neighboring

slices are connected by an edge. For each slice, determine the closest neighboring
component in G, using any graph searching algorithm.

4. For both shapes A and B, sort all slices separately based on two ascending sort keys.
The primary sort key is the area of the component they belong to and the secondary key
is the shortest-path distance from the slice itself in G to the closest slice in G that is part
of an adjacent component in the initial shape.

5. For each slice s, in order of the previously sorted slices, determine which neighbors in
the original shape are valid alternative targets based on the described criteria. The valid
alternative target that is closest, in terms of the directed Hausdorff distance from slice s

to the target, will be set as the new target. If slice s has no valid alternative targets, the
primary target remains. If slice s is redirected, it is marked a follower of its neighboring
slice l that s is redirected along with. If l is redirected, the target of slice s is set to the
new target of l, if the Hausdorff distance allows for it. If the Hausdorff distance does not
allow s to also be redirected again, the target of s slice is reset to its primary target.

6. Each slice in A is scaled and translated to its target in B. If the target is an interior
component of the other shape, the slice will be stationary throughout the morph. If the
target is a vertex, the slice will be uniformly scaled towards that vertex by a fraction
of α. If the target is an edge, the slice will scale perpendicular to the supporting line of
that edge by a factor of α. Slices in B are scaled towards their targets in A in the same
manner, except that they are scaled by a factor of 1 − α.

7. Combine slices of A and B into one multipolygon.
We sort components from small to large in order to ensure that larger components can move
along with smaller components if that smaller component is redirected to the target of an
even larger component. Within each component, slices are sorted based on the distance
to a neighboring component in terms of slices, to allow slices with no directly neighboring
components to move along with neighboring slices that can be redirected.

Um
α,φ can simply be computed when Uα is constructed by dilating and eroding Uα with a

disc of radius φ, and intersecting the result with Sα.
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The Voronoi morph can construct any intermediate shape in O(n2 log n) time [3]. Our
morph additionally relies on a sorting algorithm and a shortest path algorithm on a graph
with n edges: both can be found in standard books [2]. The all-pairs shortest path in graph
can be computed in O(V 3). We have at most O(n2) slices, resulting from the intersections
between a polygon and the Voronoi diagram of the other polygon. Therefore, an intermediate
shape can be constructed in O(n6) time. In practice such a worst case scenario is very
unlikely to occur. For the shapes used in our experiments (see Section 3), computing one
intermediate shape took approximately five seconds on commodity hardware.

3 Experiments

We compare the Voronoi, CRV, mixed and MCRV morphs experimentally on two data
sets: animal outlines from [1] and country outlines from [4]. The animal dataset contains a
collection of nine outlines of animals, averaging 143 vertices, that all comprise one component.
The country dataset contains 13 country outlines, averaging 1548 vertices and 12 components.
We compute the four morphs for all animal pairs and all country pairs from these sets. The
input shapes are scaled to have the same area and translated to have a common centroid.

For all experiments we record the perimeter, area, total angular change (sum of all
enclosed boundary loops’ angular changes), and the number of components and holes. We
record this for α values starting at zero and increasing in steps of 1/8. For the perimeter
and area we record the ratio between the value and a linear interpolation. The number of
components and holes are discrete and directly recorded at every value of α except for zero
and one.

4 Results

Figures 2 and 6 show visual examples of the four morphing techniques.
The CRV morph can effectively reduce the number of extra components created in the

Voronoi morph. Table 1 shows the average number of components created in the animal
data set during the CRV morph to be more than three times less than that in the Voronoi
morph. In Figure 2 we see that the CRV morph removes all extra components created in the
Voronoi shark-spider morph. The mixed morph can also reduce the number of components,
but as indicated by label 2 in Figure 2, this type of component reduction can still result in
superfluous details that are not present in the CRV morph.

In terms of area, perimeter and total angular change, Figures 3, 4 and 5 indicate that
the CRV and MCRV morphs perform slightly better or similar to their Voronoi and mixed
morphs counterparts. In terms of holes the CRV morph performs worse than the Voronoi
morph, but most of these holes are resolved in the MCRV morph which only has slightly
more holes than the Mixed morph. The number of components and holes are recorded as the
average over all α values except 0 and 1.
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Figure 2 Intermediate shapes at α = 1/2 when morphing between the outlines of a shark and
spider shown in Figure 1. The images show the Voronoi, mixed, CRV and MCRV morphs from left
to right. The labeled ellipses are highlighted parts of the shape in which details differ.

Voronoi Mixed CRV Mixed CRV

Category Mean SD Mean SD Mean SD Mean SD

Components 11.262 4.686 4.210 2.480 3.710 2.263 3.016 2.024
Holes 0.282 0.589 0.337 0.663 1.690 1.787 0.508 0.770

Table 1 Component and hole count distributions for each morphing method for all tested values
of α except 0 and 1. Only the animal data set is included, as these shapes only have one component.
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Figure 3 Normalized average area for the animals and countries data set experiments.
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Figure 4 Normalized average perimeter for the animals and countries data set experiments.
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Figure 5 Average total angular change for the animals and countries data set experiments.

Figure 6 Intermediate shapes for α ∈ {0, 1
4 , 1

2 , 3
4 , 1} when morphing between outlines of Germany

and Italy. The columns show the Voronoi, mixed, CRV and MCRV morphs from left to right.
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