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Abstract
A polyomino is an edge-connected set of cells on the square lattice. Every row or column of a totally-
concave (TC) polyomino consists of more than one sequence of consecutive cells of the polyomino.
We show that the minimum area (number of cells) of a TC polyomino is 21 cells. We also suggest,
implement, and run an efficient algorithm for counting TC polyominoes. Finally, we prove that the
associated sequence (κ(n)) has a finite growth constant λκ, and prove the lower bound λκ > 2.4474.

1 Introduction

A polyomino of area n is a connected set of n cells on the square lattice Z2, where connec-
tivity is through edges. Two (fixed) polyominoes are considered equivalent if one can be
transformed into the other by a translation.

Counting polyominoes is a long-standing problem in discrete geometry, originating in
statistical physics in the context of percolation processes [8] and popularized in Golomb’s
pioneering book [9] and by M. Gardner’s columns in Scientific American; The sequence A(n),
which lists the number of fixed polyominoes, is currently known up to n = 70 [1].

The growth constant of polyominoes has also attracted much attention in the literature.
Klarner [13] showed that the limit (a.k.a. Klarner’s constant) λ := limn→∞

n
√

A(n) exists.
The convergence of A(n + 1)/A(n) to λ, as n → ∞, was proved only three decades later by
Madras [14]. The best-known lower [4] and upper [5] bounds on λ are 4.0025 and 4.5252,
respectively. By applying numerical methods to the known values of A(n), it is widely
believed that λ ≈ 4.06, and the currently best estimate of λ is 4.0625696 ± 0.0000005 [11].
(Based on the new counts of A(n) till n = 70, a better estimate is 4.06256912(2) [12].)

In a totally-concave (TC) polyomino, each row and column consists of at least two maxi-
mal continuous sequences of cells, as is shown in Figure 1. It is hinted in Ref. [7, §14, p. 369,
problem 14.5.4] that the minimum possible area of a TC polyomino is 21. Let κ(n) be the
number of TC polyominoes of size (area) n. An algorithm for computing κ(n), for a given n,
is also sought as an open problem [Ibid., problem 14.5.5]. Among other results, we settle
the minimality conjecture and suggest an efficient algorithm.

In this paper, we investigate a few problems related to TC polyominoes. We prove that
the minimum possible area of such a polyomino is indeed 21; suggest an efficient algorithm
for counting TC polyominoes, and report the values of κ(n) till n = 35; show that the
seqeunce (κ(n)) has a growth constant λκ; and finally, prove that λκ > 2.4474.
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Symbolic Eatable With marked edges
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Figure 1 TC polyominoes of various areas and flavors. The symbolic representation in (b)
distinguishes between hidden edges (green), inside edges (blue), and outside edges (red).

2 Minimum Area

▶ Theorem 2.1. The minimum area of a TC polyomino is 21.

The proof of this theorem follows a necessity-sufficiency format. Necessity is shown by
deducing upper and lower bounds on the area of TC polyominoes in m × ℓ bounding boxes;
These bounds contradict each other for areas less than 21. Sufficiency is evident by example.

Proof. A lower bound on the area of a TC polyomino within an m × ℓ bounding box is
achieved by partitioning the edges of such a polyomino into hidden, outside, and inside
edges, as shown in Figure 1(b). The top (resp., right/bottom/left) edge of a cell c is hidden
if there is a cell of the polyomino immediately above (resp., to the right of/below/to the
left of) c. An edge is outside if it is not facing any other edge. An inside edge is an edge
facing another edge, but not immediately, that is, with a gap of at least one cell. Consider
a TC polyomino. Denote by n its area, and by h, o, and i the number of hidden, outside,
and inside edges, respectively, of the polyomino. For example, by these definitions, the “U-
pentomino” ( ) has i = 2, o = 10, and h = 8. For the area-24 TC-polyomino depicted in
Figure 1(b), we have i = 24, o = 24, and h = 46. By duplicity of inside and outside edges in
rows and columns, we have that o = 2m+2ℓ and i ≥ 2m+2ℓ. We also have that h ≥ 2n−2
since the polyomino is connected and, hence, it must include at least n−1 cell adjacencies.
Since h + o + i = 4n, we have that n ≥ 2m + 2ℓ − 1.

For an upper bound on n, we may assume without loss of generality that m ≤ ℓ. Then,
a TC polyomino within an m × ℓ bounding box must be missing at least one cell from each
of the ℓ columns, none of which is in the top or bottom row (for guaranteeing concavity of
the columns), as well as at least two further cells, one in the top and one in the bottom row
(for guaranteeing concavity of these rows). Therefore, n ≤ mℓ − ℓ − 2.

Altogether, we have that 2m + 2ℓ − 1 ≤ n ≤ mℓ − ℓ − 2, with m ≤ ℓ. A simple case
analysis shows that the smallest n satisfying these constraints is 21, with m = 5 and ℓ = 6.

Hence, n ≥ 21 is a necessary condition for a TC polyomino. On the other hand, the
existence of a TC polyomino of area 21 is evident by Fig. 1(a). This completes the proof. ◀

This result was verified by our TC-polyomino counting programs (see Section 3). Figure 2
shows representatives of the 152 TC polyominoes of area 21. (None of these polyominoes have
any symmetries, hence, each of the 19 drawn polyominoes has eight distinct orientations.)
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Figure 2 The 19 TC polyominoes of area 21, up to rotation and mirroring.

3 An Efficient Counting Algorithm

3.1 Algorithm
We first implemented a prototype backtracking algorithm for counting TC polyominoes.
The program recursively concatenated concave columns to a growing polyomino. A branch
of this procedure was abandoned when the area of the polyomino grew too large or if it was
no longer possible for it to become connected with the addition of further columns. (This
happened when a component of the polyomino became permanently detached.)

We then designed a much more efficient algorithm, based on Jensen’s algorithm for
counting all polyominoes [10, 11]. In a nutshell, Jensen’s algorithm counts polyominoes
within horizontal bounding strips of height h, where 1 ≤ h ≤ ⌈n/2⌉. The algorithm considers
column by column from left to right, and cell by cell from top to bottom within each
column. At each cell, the algorithm considers either to have it occupied (belonging to the
polyomino) or empty (not belonging). At all stages, the algorithm does not keep in memory
all polyominoes but all possible right boundaries of polyominoes, that is, all combinations
of the last h cells considered. The algorithm maintains a database whose entries have keys
that are the different signatures, where a signature consists of a boundary plus all possible
connections between cells on the boundary by cells found to the left of it. In other words,
the keys reflect all possible splits of boundary cells into connected components, where the
connections are to the left of the boundary. In addition, a signature also includes two bits
that indicate whether or not the polyominoes associated with that entry touch the top and/or
bottom of the strip. The contents of each entry in the database is statistics of all partially-
built polyominoes (“partially” means that polyominoes may still consist of more than one
connected component), that is, the counts of all polyominoes parameterized by area, having
that specific signature. When the currently considered cell is chosen to be occupied, the
counts of polyominoes are updated by adding the numbers of fully-built polyominoes, that
is, polyominoes that consist of exactly one connected component and touch the top and
bottom of the strip.
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Figure 3 Plots of the number of signatures (while counting TC polyominoes), all poyominoes,
and TC polyominoes.

For counting TC polyominoes, we also need to ensure that each column and each row
consists of more than one consecutive sequence of cells. This is simple to achieve for columns:
At the end of processing a column, we discard from the database all entries that correspond
to columns that contain less than two sequences of occupied cells. For rows, we enhance
the signatures by splitting each one into at most 4h subsignatures: For each row, we keep a
number as follows: ‘0’ indicates that the first sequence of occupied cells has not been met
yet; ‘1’ means that we are in the middle of the first sequence; ‘2’ states that we are between
the first and second sequences; and ‘3’ signifies that we have already entered the second
sequence. (Once we reach ‘3,’ we do not need to update this indicator any more.) Then,
we count only polyominoes with signatures whose line indicators are all ‘3.’ Note that the
indicators of the top and bottom rows make the two bits described above redundant.

Jensen’s algorithm is efficient in the sense that it’s the only known algorithm whose run-
ning time, Õ(1.732n) [3], is smaller than the total number of polyominoes, Θ̃(λn). (Recall
that λ ≈ 4.063.) Our modification splits every signatures into at most 4n/2 = 2n sub-
signatures (in practice, into much less than that), thus, the running time of the modified
algorithm is Õ(3.464n), which is still much smaller than the total number of polyominoees.
Figure 3 plots in a semi-logarithmic scale the number of distinct signatures encountered
by the algorithm while computing κ(n)) (in red circles), together with the number of TC
polyominoes (cyan) and the total number of polyominoes (blue), all as functions of n, for
21 ≤ n ≤ 31.

3.2 Results

Our prototype program, implemented in Python, computed in 90 hours (elapsed time) κ(n)
up to n = 26 on a PC with a 64-bit system operating an i5-9400F Intel Core CPU at
2.90GHz with 12GB of RAM.

The modified version of Jensen’s algorithm was implemented in C++ and run on a 12th
generation Intel(R) i9-12900KF with 128GiB of RAM. Using about 41 hours of CPU, the
program computed κ(n) up to n = 35, obtaining the values reported in Table 1 and agreeing
with all values computed by the prototype program.
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Table 1 Counts of TC polyominoes.

n κ(n) n κ(n) n κ(n) n κ(n)
1–20 0 24 52,306 28 119,309,768 32 88,476,873,440
21 152 25 606,636 29 641,447,812 33 435,921,253,072
22 120 26 3,376,528 30 3,403,173,276 34 2,113,011,155,472
23 15,820 27 20,204,672 31 17,634,751,456 35 10,065,872,407,536

Figure 4 The concatenation of two TC polyominoes is always a TC polyomino.

4 Growth Constant

4.1 Existence
▶ Definition 4.1. (lexicographic order) For cells c1, c2, we say that c1 ≺ c2 if c1 lies in a
column which is to the left of the column of c2, or if c1 lies below c2 in the same column.

▶ Definition 4.2. (concatenation) Let P1, P2 be two polyominoes, and let c1 (resp., c2) be
the biggest (resp., smallest) cell of P1 (resp., P2). The concatenation of P1 and P2 is the
placement of P2 relative to P1, such that c2 is found immediately on top of c1.

▶ Theorem 4.3. The limit λκ := lim
n→∞

n
√

κ(n) exists and is finite.

Proof. We follow closely the proof of existence and finiteness of Klarner’s constant λ [13].
First, the sequence κ(n) is supermultiplicative, that is, κ(n)κ(m) ≤ κ(n+m) for all m, n ∈ N.
This is justified by a simple concatenation argument. Indeed, all TC polyominoes of area n

can be concatenated with all TC polyominoes of area m (see, e.g., Figure 4), yielding distinct
TC polyominoes of area n + m. Second, there exists a constant µ > 0 for which κ(n) ≤ µn

for all n ∈ N. For example, µ = λ, the growth constant of all polyominoes. (This follows
immediately from the fact that κ(n) ≤ A(n) ≤ λn.) By a lemma of Fekete (Klarner cites
Ref. [15, p. 852] for similar results), the claim follows. ◀

Remark In fact, it makes more sense (see Section 4.2) to explore ((4κ(n))1/n) instead
of ((κ(n))1/n). Figure 5 shows plots of the known values of (4κ(n))1/n and κ(n)/κ(n − 1).
Surprisingly, the ratio sequence seems empirically to be monotone decreasing (except some
low-order fluctuations), a property rarely found in other families of polyominoes.
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Figure 5 Plots of known values of (4κ(n))1/n and κ(n)/κ(n−1).

Figure 6 A few compositions of a sample pair of polyominoes.

4.2 A Lower Bound on λκ

We now present a computer-assisted proof of a lower bound on λκ.

▶ Definition 4.4. (composition) A composition of two polyominoes is a relative placement
of the two polyominoes, such that they touch (edge to edge), possibly in multiple places,
but do not overlap.

Figure 6 shows a few compositions of a pair of polyominoes P, Q. Note that some
compositions have the property that all cells of P are smaller than all cells of Q (or vice
versa), and some compositions do not. It is easy to observe that a composition of two TC
polyominoes is not always a TC polyomino.

▶ Lemma 4.5. (A simplified version of Theorem 1(a) in Ref. [2, p. 3]) Assume that the
limit µ := limn→∞

n
√

Z(n) exists for a sequence (Z(n)). Let c1 ̸= 0, c2 be some constants.
Then, if c1nc2Z2(n) ≤ Z(2n) ∀n ∈ N, then n

√
c1(2n)c2Z(n) ≤ µ ∀n ∈ N.

▶ Theorem 4.6. λκ > 2.4474.
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Figure 7 The at least four order-preserving compositions of a pair of TC polyominoes.

Proof. We use a composition argument, using the property that the extreme (rightmost
and leftmost) columns of any TC polyomino have at least two cells. This property allows
at least four lexicographic compositions of any pair of TC polyominoes P, Q that yield TC
polyominoes, that is, compositions in which all cells of P are lexicographically smaller than
all cells of Q. It can easily be verified that the minimum number of such compositions is
obtained when both the rightmost column of P and the leftmost column of Q contain exactly
two cells, with the same vertical gap between them. For such pairs of TC polyominoes, we
have the four lexicographic compositions shown in Figure 7.

Consequently, we have that 4(κ(n))2 ≤ κ(2n). Then, Lemma 4.5 implies that any term
of the form (4κ(n))1/n is a lower bound on λκ. Checking the known values of κ(n), we see
that n = 35 provides the best lower bound λκ ≥ (4κ(35))1/35 > 2.4474. ◀
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