
Approximating Simplet Frequency Distribution for
Simplicial Complexes∗

Hamid Beigy1, Mohammad Mahini2, Salman Qadami3, and Morteza
Saghafian4

1 Sharif University of Technology
beigy@sharif.edu

2 Sharif University of Technology
m_mahini@ce.sharif.edu

3 Amirkabir University of Technology
salmanqadami@gmail.com

4 Institute of Science and Technology Austria
morteza.saghafian@ist.ac.at

Abstract
Simplets, constituting elementary units within simplicial complexes (SCs), serve as foundational
elements for the structural analysis of SCs. Previous efforts have focused on the exact count or
approximation of simplet count rather than their frequencies, with the latter being more practical in
large-scale SCs. This paper enables simplet frequency analysis of SCs by introducing the Simplet
Frequency Distribution (SFD) vector. In addition, we present a bound on the sample complexity
required for accurately approximating the SFD vector by any uniform sampling-based algorithm. We
also present a simple algorithm for this purpose and justify the theoretical bounds with experiments
on some random simplicial complexes.

1 Introduction

In a range of disciplines, including biology, geology, and social science, the application of
simplicial complexes is frequently employed to extract essential structural insights. Simplicial
Complexes (SCs) are defined as networks of higher-order that possess the property of
downward closure, which makes them suitable for representing higher-order relationships
within network-like structures and their geometrical aspects [6, 11, 13]. In particular, SCs are
used to study the geometric and combinatorial structure of protein interaction networks [12],
epidemic spreading [17], co-authorship relations [26], analyze email communications [15], and
investigate the functional and structural organization of the brain [18].

Analyzing network behavior using small network building blocks, commonly known
as motifs, is common in numerous fields, including biological [1] and social networks [25].
Graphs are great examples where researchers use small building blocks called graphlets to
understand how networks behave based on local structures [23]. Graphlet analysis has many
applications in biological networks [10, 30], and social networks [2, 3]. By considering simplets
as fundamental elements within simplicial complexes, analogous to graphlets in the context
of SCs, we can examine the specific patterns formed by the simplices associated with different
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sets of nodes [22]. This approach offers a straightforward way of analyzing complex networks’
structural characteristics and their constituent parts.

Approximating Graphlet Count and Distribution. Numerous investigations have delved
into the precise enumeration of graphlet types or approximating their frequencies. Several
studies, like the ESU and RAGE algorithms, count the precise number of graphlets [29, 20].
Meanwhile, various algorithms like GRAFT, CC have employed sampling techniques to
estimate the frequency of graphlets [5, 7, 8, 9]. For instance, Bressan in [7] introduced a
random walk based method that preprocesses k-vertex graphlets, and gives a random graphlet
in the time complexity of kO(k) · log ∆, where ∆ is the maximum degree in the given graph.

Approximating Simplet Count and Distribution. Preti et al. introduced the concept of
simplets, and the FRESCO algorithm that indirectly estimates the quantity of each simplet
by utilizing a proxy metric referred to as support [21, 22]. B-Exact precisely enumerates up
to 4-node configurations through combinatorial techniques [4]. Importantly, each simplet
can correspond to zero, one, or more than one configuration. Kim et al. presented SC3,
a sampling-based algorithm for approximating simplet count, that utilizes color coding
techniques [14]. Thus far, a limited number of dedicated algorithms designed for counting
simplets either precisely or approximately. The concept of simplets is relatively novel, and
numerous opportunities remain untapped for their application in various contexts.

Contribution. Calculating the exact quantity of each graphlet type or simplet type is
frequently prohibitively expensive, and for numerous practical purposes, obtaining an esti-
mated count of various graphlet types and simplet types or approximating their frequency
distribution is usually adequate. This paper studies the concept of the Simplet Frequency
Distribution (SFD) for the first time (to the best of the authors’ knowledge), which can be
more practical in analyze of large-scale SCs. Alongside this new concept, we present an
algorithm to approximating the SFD vector based on uniform sampling of simplets.

More importantly, we present an upper-bound on the sample complexity (number of
samples needed) of any approximation algorithm based on a uniform sampling method.
By doing this, we aim to enhance our comprehension and analysis of simplicial complexes,
mapping them to vector spaces and using this vector for machine learning applications such
as classification. In overview, we present the following contributions.

Defining the concept of the Simplet Frequency Distribution (SFD) vector
Studying an upper bound on the number of samples we need for every sampling based
algorithm for approximating the SFD vector
Proposing an algorithm for approximating the SFD vector by uniform sampling of simplets

2 Preliminaries

Within this section, we lay out the foundational concepts employed in this paper.

Simplex. A n-simplex is the convex hull of n + 1 distinct points in n-dimensional space. A
face of an n-simplex σ is the convex hull of any non-empty subset S of its vertices.

Simplicial Complex. A simplicial complex K is a set of simplices that is closed under taking
faces, and the non-empty intersection of any two simplices σ, τ ∈ K is a face of both σ, τ .
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Figure 1 The set of all 18 simplet types with at least two and at most four vertices.
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Simplicial complexes provide a combinatorial and topological framework for studying the
structure of spaces through simplices, capturing both geometric and connectivity information.

Simplet. Simplets are small induced connected sub-complexes of a massive complex that
appear at any frequency. A complex H is an induced sub-complex of K if and only if, for any
simplex S in K whose vertices are a subset of V (H), S should also be in H. So, every simplet
can be identified by its vertices, typically regarded as being at least two. A simplet set is a
set of simplets of a simplicial complex. Simplet types are isomorphic classes of simplets. We
denote SK(i) as a set of all simplets of type i in K, where 1 ≤ i ≤ Nm, and Nm is the number
of simplet types with at most m vertices. Also, we denote Sm

K as the set of all simplets in K
with at most m vertices. We assume that m is a constant small number.

Simplet Frequency Distribution. The SFD vector of complex K characterizes the relative
frequencies of various simplets in K. By definition, |SK(i)| is the number of simplets of type
i in K, where i ∈ {1, . . . , Nm}. The frequency, denoted by ϕK(i), is obtained by dividing
|SK(i)| by

∑Nm

j=1 |SK(j)|. The vector (ϕK(1), . . . , ϕK(Nm)) is called the SFD vector of the K.
In Figure 2, we show an SFD vector for two sample SCs.

3 Approximating the SFD Vector

In this section, we focus on showing that if we have a method for sampling simplets uniformly
from an SC, we can have an (ϵ, δ)-approximation of the SFD vector. After that, we study
an algorithm for simple uniform sampling that is better than a trivial brute-force sampling
method. Consider a collection of independent samples Xk = X1, . . . , Xk drawn from a
distribution ϕ over a domain D. Here, ϕ(A) signifies the probability of selecting an element
from the set A ⊆ D. The empirical estimation of ϕ(A) based on the samples Xk is:

ϕ̂X(A) = 1
k

k∑
j=1

1A(Xj),

In this equation, 1A(Xj) is an indicator function that equals 1 when Xj belongs to A and
equals 0 otherwise. Additionally, let R be a family of subsets of D.

(ϵ, δ)-approximation. For any given ϵ, δ ∈ (0, 1), we say X ⊆ D is an (ϵ, δ)-approximation
of (R, ϕ), if with a probability of at least (1 − δ), it satisfies supA∈R|ϕ(A) − ϕ̂X(A)| ≤ ϵ.

3.1 Sample Complexity of Approximating the SFD Vector
We utilize the concept of Vapnik-Chervonenkis dimension (VC dimension), introduced in [27].
In short, for a domain D and a collection R of subsets of D, the VC dimension V C(D, R),
represents the maximum size of a set X ⊆ D that can be shattered by R, which means
{r ∩ X|∀r ∈ R} = 2|X|. We use VC dimension to determine the sample complexity for
approximating the SFD vector through simplet sampling models. Theorem 3.1 establishes
the VC dimension of the collection of simplet sets.

▶ Theorem 3.1 (VC Dimension of Simplets). Let R = {Si | 1 ≤ i ≤ Nm} be a family of all
simplet sets where Nm is the number of simplet types with at most m vertices, and D = Sm

K .
Then, we have V C(D, R) = 1.
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Figure 2 The SFD vector and the number of at most 4-vertices simplets for two sample SCs.
The simplet types in the table refer to the types in Figure 1.

Proof. We show that a set X with |X| > 1 can not be shattered with (D, R). Let X be
a set of simplets shattered with (D, R), and assume that |X| > 1. Let s1 and s2 be two
distinct elements of X. There are two possibilities. If elements s1 and s2 belong to the same
simplet type, then, set {s1} can not be shattered because there is no set Si, including only s1.
Otherwise, elements s1 and s2 belong to different simplet types, but then {s1, s2} can not be
shattered because no set Si contains both. Clearly every singleton set can be shattered by
one of the Sis, hence V C(D, R) = 1. ◀

The subsequent theorem from [24] illustrates the relationship between the upper bound
on the sample complexity of sampling-based (ϵ, δ)-approximations and VC dimension.

▶ Theorem 3.2. Let D be a domain and R be a family of subsets of D, with V C(D, R) ≤ d

and ϕ be a distribution on D. For every ϵ, δ ∈ (0, 1), every set X of independent samples
drawn from D using ϕ that satisfies

|X| ≥ c

ϵ2

(
d + ln 1

δ

)
,

is an (ϵ, δ)-approximation of (R, ϕ) for some positive constant c.

Combining Theorem 3.1 and Theorem 3.2 we conclude our main result.

▶ Proposition 3.3. Let X be a set of at least c
ϵ2 (1 + ln 1

δ ) simplets sampled uniformly from
simplicial complex K. Then, X obtains an (ϵ, δ)-approximation on the SFD vector of K.

Proposition 3.3 shows that we can approximate the SFD vector using sampling-based
algorithms, and the sample complexity of these approximations are independent of the
simplicial complex size. This property suggests the usage of approximation algorithms for
various simplicial complex sizes with the same sample complexity.
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3.2 Simplet Uniform Sampling Algorithm
In this section, we propose a uniform sampling algorithm for simplets in a connected simplicial
complex K that is better than a trivial brute-force method. The algorithm we present is a
Monte-Carlo Markov-Chain algorithm [28], that samples sufficiently many simplets uniformly
at random. We assume that K is connected with at least three vertices, and m ≥ 3.

For the sampling part, we perform a random walk on a directed graph Pm
K whose vertex

set (states) is a set of all simplets in complex K with at most m vertices. Out-neighbors
of every state s can be created by adding one vertex to s, removing one vertex from s, or
replacing one vertex in s with another vertex out of s.

The transition probability matrix T for the random walk is such that every cell T (i, j)
defines the transition probability from state i to j. If i and j are not neighbors, we set
T (i, j) = 0. Otherwise, we set T (i, j) = min( 1

d(i) , 1
d(j) ) where d(i) specifies the number of

out-neighbors of state i. Also, for every i, if the sum of transitions from i is not equal to
1, we allocate the remaining probability to a self-loop for i. Observe that since K is finite,
Pm

K is finite and since K is connected, the random walk is irreducible. Indeed, since K is
connected, there is a vertex u in K that is connected to at least two other vertices v, w. So
the three simplets on {u, v, w}, on {u, v}, and on {u, w} form a triangle in Pm

K with positive
probabilities on the edges, this means the random walk is aperiodic. Also T is symmetric,
meaning T = T T . This ensures that the random walk on Pm

K converges to the uniform
stationary distribution ( 1

|Sm
K | , . . . , 1

|Sm
K | ). So, using this random walk on Pm

K , we can select a
simplet from the input complex K with uniform distribution.

3.3 The SFD Vector Approximation Algorithm
Now, we propose the (ϵ, δ)-approximation algorithm on the SFD vector of K. For input
ϵ, δ ∈ (0, 1) and simplicial complex K, first the algorithm calculates the number ℓ of samples
needed, according to Proposition 3.3. After that it executes ℓ times the sampling algorithm,
presented above, to find the set X of ℓ simplets that are chosen uniformly at random. Based
on X, it computes ϕ̂X

K (i), that is a (ϵ, δ)-approximation for ϕK(i), for 1 ≤ i ≤ Nm. The
vector (ϕ̂X

K (1), . . . , ϕ̂X
K (Nm)) is therefore a (ϵ, δ)-approximation for the SFD vector of K.

Time Complexity of the SFD vector Approximation Algorithm The time complexity of the
(ϵ, δ)-approximation algorithm, consists of two components: the number of samples and the
time complexity for sample identification. Having established that O( 1

ϵ2 · (1 + ln 1
δ )) samples

are sufficient for (ϵ, δ)-approximation, our focus shifts to analyzing the time complexity of
the MCMC sampling algorithm. The mixing time tG

mix in a random walk on graph G is the
number of steps needed to be close to its stationary state with high probability. Lemma 3.4
limits the maximum degree of Pm

K , and then Lemma 3.5 shows an upper bound on t
Pm

K
mix in

terms of the number of vertices n, the maximum degree ∆ in K, and the diameter diam(K),
which is the length of maximum shortest path between any pair of vertices in K.

▶ Lemma 3.4. The maximum degree of Pm
K satisfies ∆(Pm

K ) ∈ O(m2 · ∆).

Proof. We can create neighbors of every state in Pm
K by adding a new vertex, removing a

vertex, or replacing two vertices. The number of neighbors by adding a new vertex is at
most m · ∆, by removing a vertex is at most m, and by replacing two vertices is at most
m · (m − 1) · ∆. Therefore, the maximum degree of every state in Pm

K is in O(m2 · ∆). ◀

▶ Lemma 3.5. The mixing time of the markov chain on Pm
K is in O(log(n) · ∆ · diam(K)2).
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Proof. Theorems (12.4) and (13.26) in [16] imply that the mixing time tG
mix of a random walk

on graph G with n vertices is in O(log(n) ·∆(G) ·diam(G)2). For Pm
K we can reach from every

state i to every other state j with diam(K) + m steps as follows: Assume v ∈ V (i), u ∈ V (j)
and assume a shortest path from v to u in K. Starting from i, in every step, we replace
one vertex from the current state with the unused closest vertex to v in the shortest path
from v to u, until we reach u. After that we replace vertices that are not in j with vertices
in j, starting from neighbors of u. We make sure that after each step the simplet remains
connected. So, diam(Pm

K ) = diam(K) + m and therefore in the markov chain Pm
K we have

t
Pm

K
mix ∈ O(log(n(Pm

K )) · ∆(Pm
K ) · diam(Pm

K )2) ∈ O(log(n) · ∆ · diam(K)2).

◀

▶ Corollary 3.6 (Time Complexity of (ϵ, δ)-approximation of SFD vector). Let K be a simplicial
complex with the number of vertices n, maximum degree ∆ and diameter diam(K). The time
complexity of (ϵ, δ)-approximation of SFD vector of K is O( 1

ϵ2 ·(1+ln 1
δ )·log(n)·∆·diam(K)2).

In practice, for a large sparse simplicial complex K, since ∆ and diam(K) are bounded, the
above bound is sublinear in the size of K (i.e. the number of vertices or K).

Implementation and Experiments. We implement an algorithm for counting the exact
number of simplets of different types and another algorithm for approximating the frequencies
based on uniform simplet sampling, with their source code accessible on GitHub [19].
This experimental outcome demonstrates that the confidence in the (ϵ, δ)-approximation is
unrelated to the size of the input complex.

4 Conclusion

This paper introduced the Simplet Frequency Distribution (SFD) vector and a method for
approximating it with simplet sampling algorithms. Also, we studied the sample complexity of
approximating the SFD vector for SCs and showed that the obtained bounds are independent
of SC size. We also showed that we can approximate the SFD vector with a specific error
and confidence, and the time complexity depends only on the time complexity of sampling
algorithm for finding a sample, that is sublinear in the algorithm we presented. It would be
beneficial to have such algorithms with time complexity that is independent of the SC size.

Combining these approaches with filtrations of simplicial complexes and exploring them
within alpha complexes would be interesting. Additionally, defining the vertex-specific SFD
vectors for each vertex in the complex could offer valuable insights into their potential to
convey more information about the global structure of the complex.
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