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Abstract
We study extremal problems about faces in convex rectilinear drawings of Kn, that is, drawings
where vertices are represented by points in the plane in convex position and edges by line segments
between the points representing the end-vertices. We show that if a convex rectilinear drawing of Kn

does not contain a common interior point of at least three edges, then there is always a face forming
a convex 5-gon while there are such drawings without any face forming a convex k-gon with k ≥ 6.

A convex rectilinear drawing of Kn is regular if its vertices correspond to vertices of a regular
convex n-gon. We characterize positive integers n for which regular drawings of Kn contain a face
forming a convex 5-gon.

To our knowledge, this type of problems has not been considered in the literature before and so
we also pose several new natural open problems.

1 Introduction

Let G be a graph with no loops nor multiple edges. In a rectilinear drawing of G the vertices
are represented by distinct points in the plane and each edge corresponds to a line segment
connecting the images of its end-vertices. We consider only drawings where no three points
representing vertices lie on a common line. As usual, we identify the vertices and their
images, as well as the edges and the line segments representing them.

A crossing in a rectilinear drawing D of G is a common interior point of at least two
edges of D where they properly cross. A heavy crossing in D is a common interior point of
at least three edges of D where they properly cross. We say that D is generic if there are no
heavy crossings in D. That is, crossings in a generic drawing D are the points where exactly
two edges of D cross.

We focus on rectilinear drawings of complete graphs Kn on n vertices. We say that
a rectilinear drawing D of a graph Kn is convex if the points representing the vertices of
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8:2 Faces in Rectilinear Drawings of Complete Graphs

Kn are in convex position. We say that a convex drawing D of Kn is regular if the points
representing the vertices of Kn form a regular n-gon; see Figure 1 for regular drawings of K8
and K12.

(a) (b)

Figure 1 Regular drawings of K8 (part (a)) and K12 (part (b)). Observe that none of these
drawings contains a 5-face.

A face in a rectilinear drawing D of Kn is a non-empty connected component of R2 \D.
Note that exactly one face of D is unbounded and that every bounded face of D is a convex
polygon. Thus, we can define the size of a bounded face F of D to be the number of vertices
of the polygon that forms F . If the size of F equals k, then we call F a k-face of D.

In this paper, we study extremal problems about the bounded faces of a given size in
convex drawings of Kn. To our knowledge, there has been no systematic study of this topic
despite the fact that it offers an abundance of natural and interesting problems. For example,
what is the largest face we can always find in a convex drawing of Kn for large n? What if
we restrict ourselves to generic convex drawings of Kn? Or to regular drawings of Kn? In
this paper, we address these questions and we pose several natural open problems.

2 Previous Work

Despite the fact that these problems are very natural and that rectilinear drawings of Kn

have been studied extensively, we did not find any relevant reference in the literature. The
existence of faces of a given size in regular drawings of Kn was recently considered by
Shannon and Sloane [14], who computed the values from Table 1, but we are not aware of
any publication. The total number of faces in a regular drawing of Kn was considered by
Harborth [8] and Poonen and Rubinstein [12], but these results do not distinguish faces of
different sizes and do not apply to all convex drawings of Kn. Finally, Hall [7] studied large
faces in convex drawings of Kn where the vertices are points from the integer lattice.

Concerning other graph classes, Griffiths [6] calculated the number of regions enclosed
by the edges of so-called regular drawings of the complete bipartite graphs Kn,n. There
are also various results about the complexity of faces in the more general setting of line
arrangements; for example [1, 2, 4, 5, 11]. However, we do not know any result that would
imply the existence of large bounded faces in all convex drawings of sufficiently large Kn.
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Closely related to our paper is the work of Poonen and Rubinstein [12] who gave a formula
for the number of crossings in regular drawings of Kn and used it to count the number of
faces in regular drawings of Kn. In particular, it follows from their formula that all regular
drawings of Kn with odd n have

(
n
4
)
crossings and thus are generic. They also showed

that, apart from the center, no point is the intersection of more than 7 edges of a regular
drawing of Kn for any positive integer n. We also note that these results are connected to
the well-known Blocking conjecture; see [10, 13].

3 Our Results

First, we address the question about the maximum size of a face that we can always find in
convex or regular drawings of Kn for large n. We observe that finding faces of size 3 or 4 in
convex drawings of Kn is not difficult.

I Proposition 3.1. Let n be a positive integer and D a convex drawing of Kn. Then, D

contains a 3-face if and only if n ≥ 3. Moreover, D contains a 4-face if and only if n ≥ 6.

To find larger faces, we restrict ourselves to generic convex drawings of Kn. In this case,
we can show that a 5-face always exists if we have at least five vertices.

I Theorem 3.2. For every positive integer n and every generic convex drawing D of Kn,
the drawing D contains a 5-face if and only if n ≥ 5.

On the other hand, we can provide examples of generic convex drawings of Kn with
arbitrarily large n that do not contain any k-face with k ≥ 6.

I Theorem 3.3. For every positive integer n, there is a generic convex drawing of Kn that
does not contain any k-face with k ≥ 6.

Thus, in the case of generic convex drawings of Kn, we can settle the question about
the largest face we can always find completely. A k-face with k ∈ {3, 4, 5} is guaranteed
in all sufficiently large drawings, while faces of sizes larger than 5 can be avoided (even
simultaneously). The problem, however, becomes significantly more difficult if we allow heavy
crossings.

We were not able to find a k-face with k ≥ 5 in every sufficiently large convex drawing
of Kn. In fact, finding larger faces becomes surprisingly difficult already for regular drawings
of Kn. Here, however, we can at least show that a 5-face always exists in all sufficiently large
regular drawings of Kn. In fact, we can even precisely characterize the values of n for which
a regular drawing of Kn contains a 5-face.

I Theorem 3.4. For a positive integer n, a regular drawing of Kn contains a 5-face if and
only if n /∈ {1, 2, 3, 4, 6, 8, 12}.

The proof of Theorem 3.4 is quite involved and is based on the results obtained by Poonen
and Rubinstein [12].

Finally, although we were not able to find a 5-face in all sufficiently large convex drawings
of Kn, we can at least show that every convex drawing of K7 contains at least one.

I Proposition 3.5. Every convex drawing of K7 contains a 5-face.
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k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

a(k) 3 6 5 9 7 13 9 29 11 40 13 43 15 212 17 231 19
Table 1 The values of a(k), the smallest n such that the regular drawing of Kn contains a k-face,

computed by Shannon and Sloane [14].

4 Open Problems and Discussion

The study of extremal questions about faces of a given size in convex drawings of Kn offers
plenty of interesting and natural problems. Here, we draw attention to some of them.

Although we were able to determine the largest size of a bounded face that appears in
every sufficiently large generic convex drawing of Kn, the same question remains unsolved
for general convex drawings of Kn. In particular, the following problem is open.
I Problem 4.1. Is there a positive integer n0 such that for every n ≥ n0 every convex drawing
of Kn contains a 5-face?

Since the regular drawing of K12 does not contain a 5-face, we have n0 ≥ 13, if it exists.
An affirmative answer to Problem 4.1 would imply that every sufficiently large regular
drawing of Kn contains a 5-face, a fact that was quite difficult to prove.

Considering the regular drawings of Kn, although we proved that all sufficiently large
regular drawings of Kn contain a 5-face, we do not know much about larger faces. It seems
plausible that we can find arbitrarily large faces in regular drawings of Kn as n grows.
I Problem 4.2. Is it true that for every integer k ≥ 3 there is an integer n(k) such that every
regular drawing of Kn with n ≥ n(k) contains a k-face?

For every integer k with 3 ≤ k ≤ 19, Shannon and Sloane [14] computed the value a(k),
which is the smallest n such that the regular drawing of Kn contains a k-face; see Table 1.
Note that even if a(k) exists, n(k) might not. Those computations suggest that the answer
to Problem 4.2 might be positive. In such a case, it would be interesting to determine the
growth rate of n(k) with respect to k. It follows from Proposition 3.1 and Theorem 3.4 that
n(3) = 3, n(4) = 6, and n(5) = 13. We encourage the reader to visit website1 to see the
regular drawings for themselves.

For k odd, we trivially have a(k) = k as the regular drawing of Kn with n odd contains
an n-face in the center. It might be interesting to explore the size of the largest faces in such
drawings if we exclude this n-face.

A more difficult version of Problem 4.2 would be to determine, for a given k ≥ 3, all
values of n such that every regular drawing of Kn contains a k-face.

Another possible direction is to count the minimum number of k-faces in a convex drawing
of Kn. For example, regarding 3-faces, it is simple to show that there are always at least
n(n− 3) by considering the area of a convex drawing around its 3-face as long as n ≥ 3, but
what is the growth rate of the minimum number of 3-faces with respect to n?
I Problem 4.3. What is the minimum number of 3-faces in a convex drawing of Kn? What
if the drawing is generic or regular?

In the whole paper, we focused on convex drawings. The problems we considered can also
be stated for all rectilinear drawings of Kn. Here, we can show that every generic rectilinear
drawing of Kn with n ≥ 10 contains a k-face with k ≥ 5. This follows easily since, by a result

1 fklute.com/regularkn.html

https://fklute.com/regularkn.html
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of Harborth [9], every set P of at least 10 points in the plane without three collinear contains
a 5-hole, that is, a set H of 5 points in convex position with no point of P in the interior of
the convex hull of H. If we then apply this result on the vertex set of a generic rectilinear
drawing of Kn and use a similar reasoning as in the proof of Theorem 3.2 on the drawing
induced by the resulting 5-hole in D, then we find a bounded face of size at least 5 in D.

Finally, we considered the problem of finding a bounded face of size exactly k for a given
integer k, but it also makes sense to consider more relaxed variants of the above problems
where we want to find a bounded face of size at least k for a given integer k. In particular,
this leads to the following potentially simpler variant of Problem 4.1.

I Problem 4.4. Is there a positive integer n1 such that for every n ≥ n1 every convex drawing
of Kn contains a bounded face of size at least 5?

We note that a simple double-counting argument based on Euler’s formula yields the
existence of k-faces in generic convex drawings of Kn with k ≥ 4. If we knew that there
are many 3-faces in such drawings, then the argument gives the existence of k-faces with
k ≥ 5. This also illustrates that some insight for Problem 4.3 might have consequences for
our original questions.

5 Proof of Theorem 3.3

We prove that, for every positive integer n, there is a generic convex drawing of Kn that
does not contain a k-face with k ≥ 6. We apply a similar construction to the one used by
Balko et al. [3].

First, we state some auxiliary definitions. For an integer k ≥ 3, a set of k points in the
plane is a k-cup if all its points lie on the graph of a convex function. Similarly, a set of
k points is a k-cap if all its points lie on the graph of a concave function. Clearly, k-cups
and k-caps are sets of points in convex position. A convex polygon P is k-cap free if no k

vertices of P form a k–cap. Note that P is k-cap free if and only if it is bounded from above
by at most k − 2 segments (edges of P ). Analogously, P is k-cup free if no k vertices of P

form a k–cup. Observe that vertices of a k-face determine an a-cap and a u-cup that share
the leftmost and the rightmost vertex and satisfy a + u = k + 2. We use e(P ) to denote the
leftmost edge bounding P from above; see part (a) of Figure 2.

We inductively construct a certain generic convex drawing Dn of Kn with vertices
represented by points p1, . . . , pn that form an n-cup in the plane and their x-coordinates
satisfy x(pi) = i; see part (b) of Figure 2. Let V (Dn) denote the vertex set of Dn. We
recall that we identify the vertices of Kn and the points from Dn representing them. We
let V (D1) = {(1, 0)} and V (D2) = {(1, 0), (2, 0)}. Now, assume that we have already
constructed the drawing Dn−1 with V (Dn−1) = {p1, . . . , pn−1} for some integer n ≥ 3. We
choose a sufficiently large number yn, and we let pn be the point (n, yn). We then set
V (Dn) = V (Dn−1) ∪ {pn} and we let Dn be the drawing of Kn on this vertex set. The
number yn is chosen large enough so that the following three conditions are satisfied:

1. for every i = 1, . . . , n− 1, every intersection point of two line segments spanned by points
from V (Dn−1) lies on the left side of the line pipn if and only if it lies to the left of the
vertical line x = i containing the point pi,

2. if F is a 4-cap free face of Dn that is not 3-cap free, then there is no point pi below the
(relative) interior of e(F ),

3. no crossing of two edges of Dn lies on the vertical line containing some point pi.

EuroCG’24
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(a) (b) (c)

e(P )
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Figure 2 (a) A 4-cap free and 5-cup free polygon P that is not 3-cap free nor 4-cup free. (b) A
construction of the drawing Dn for n = 5. If the point pn is chosen sufficiently high above V (Dn−1),
then each line segment pipn with i < n is very close to the vertical line containing pi and thus all
faces of Dn will be 4-cap free and 5-cup free. (c) The face F of Dn−1 is split into new faces of Dn

and contains the face F ′ that is 4-cap free and 5-cup free but not 3-cap free nor 4-cup free.

Choosing the point pn is indeed possible as for a sufficiently large y-coordinate yn of
pn we get that for each i, all the intersections of the line segments pipn with line segments
of Dn−1 lie very close to the vertical line x = i containing the point pi. Note that no line
segment of Dn is vertical and that there are no heavy crossings in Dn. Since p1, . . . , pn form
an n-cup, they are in convex position and Dn is a generic convex drawing of Kn.

It remains to prove that there are no k-faces with k ≥ 6 in D. To show that, we use the
following lemma.

I Lemma 5.1. Each bounded face of Dn is a 4-cap free and 5-cup free convex polygon.

Now, suppose for contradiction that there is a k-face F in Dn for some integer k ≥ 6. By
Lemma 5.1, the face F is a 4-cap free and 5-cup free convex polygon. On the other hand, the
vertex set of F is in convex position and thus determines an a-cap and a u-cup that share
the leftmost and the rightmost vertex and satisfy a + u ≥ 8. Therefore, we either have a ≥ 4
or u ≥ 5, However, this contradicts the fact that F is 4-cap free and 5-cup free.
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