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Abstract
Unique Sink Orientations (USOs) of cubes capture the combinatorial structure of many essential
algebraic and geometric problems. It is crucial to have systematic constructions of USOs for various
structural and algorithmic questions, including enumeration of USOs and algorithm analysis. While
some construction methods for USOs already exist, each one of them has some significant downside.
Inspired by cube tilings of space, we expand upon existing techniques to develop generalized rewriting
rules for USOs. These rewriting rules are a new construction framework which can be applied to all
USOs. Furthermore, they can generate every USO using only USOs of lower dimension.

Related Version arXiv:2211.06072

1 Introduction

A Unique Sink Orientation (USO) is an orientation of the hypercube graph, such that every
non-empty face (subcube) has a unique sink. See Figure 1 for an example. USOs were first
defined by Szabó and Welzl in 2001 [21]. They encode the combinatorial structure of several
problems, for examples the P-matrix linear complementarity problem, linear programming,
and many more [8, 11, 13, 17, 19]. USOs have also attracted attention as purely combinatorial
objects, with interest in structural and algorithmic directions [2, 5, 6, 7, 9, 10, 16, 18].

Figure 1 A Unique Sink Orientation of the 3-cube.

On the structural side, enumerating and sampling USOs are important unsolved challenges.
The main issues are that USOs are hard to recognize [9] and while they are very sparse
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Figure 2 Two examples of 4Z2-periodic tilings of R2 with their corresponding USOs.

among all cube orientations, there still exists a doubly exponential number (in terms of the
cube dimension) of them [16].

A few systematic construction methods for USOs are known: the product construction [18],
inherited orientations, flipping all edges of one dimension at once [21] and flipping equivalence
classes of edges (called phases) that preserves the USO condition [17]. Of all these methods,
only the product construction is able to increase the dimension of the USO, and only phase
flips are capable of theoretically generating all USOs of a fixed dimension — however no
systematic strategy for this is known and the mixing rate of the natural Markov chain based
on phase flips remains unknown too. We discuss the existing construction methods more
in-depth in the full version of the paper [1].

Results. Based on a remark of Schurr [17], we prove a one-to-one correspondence
between so-called 4Zk-periodic tilings and k-dimensional USOs. Representations of these
tilings can be manipulated in the language of string rewriting, in particular this technique
was used to disprove Keller’s conjecture on unit cube tilings [12, 14, 15]. We generalize these
construction techniques and translate them into the language of USOs. Our generalization
provides a very general framework with many parameters, and every choice of parameters
is a new construction which can be applied to any USO. Given both 1-dimensional USOs
and a specific 2-dimensional USO (the bow), repeated application of constructions from our
framework can be used to generate all USOs of dimension k ≥ 1, we thus call our framework
universal.

In the full version [1], we additionally show that we can realize all existing constructions
that are applicable to all USOs as special cases of our framework. We also point out another
special case of our construction as a new dimension-preserving modification, the partial swap.

2 Unit Cube Tilings and USOs

In a 4Zk-periodic tiling [20] we tile the k-cube C of side length 4 by 2k integer-grid aligned
k-cubes (tiles) of side length 2, such that (i) every point of K is contained in at least one
tile, and (ii) if a point is contained in multiple tiles, it lies on the boundary of all such tiles.
These tiles may wrap around the boundary of C, exiting on one side and entering again
on the opposite side (see Figure 2). This then defines a periodic tiling of Rk, as infinitely
repeating the tiling of C fills Rk.

It was shown by Szabó [20] that Keller’s conjecture [12] — a conjecture claiming that all
cube tilings of Rk contain two tiles that share a facet (so-called twins) — can be decided
by only considering these 4Zk-periodic tilings. Note that Keller’s conjecture has since been
resolved and is known to hold up to dimension 7 [3] and fail for dimensions 8 and above [15].

A 4Zk-periodic tiling can be described by a set of 2k strings in {0, 1, 2, 3}k, each string
describing the coordinates of the bottom left corner of one tile. A set of strings describes a
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valid 4Zk-periodic tiling if and only if for every pair of strings, there is at least one coordinate
in which the integer entries differ by exactly 2 [4, 14].

Schurr [17] briefly mentioned a bijection between 4Zk-periodic tilings and USOs of the
k-cube. We want to make this more explicit.

A set of strings describing a tiling also describes an orientation as follows. Each string
s ∈ {0, 1, 2, 3}k describes one vertex of the k-cube and the orientation of its incident edges:

If si = 0 or si = 1, then s is in the lower i-facet of the cube.
If si = 2 or si = 3, then s is in the upper i-facet of the cube.
If si = 0 or si = 2, then the edge from s in dimension i is downwards oriented.
If si = 1 or si = 3, then the edge from s in dimension i is upwards oriented.

In other words, the two bits of the binary encoding of si encode the location and the
orientation of the vertex in dimension i, respectively. Equivalently, we can also retrieve a
4Zk-periodic tiling from a k-cube and its orientation. See Figure 2 for an example and note
that we always mark upwards edges by a yellow background.

It remains to show that the set of strings describes an USO if and only if the tiling it
describes is valid. To see this, we use the characterization of USOs by the Szabó-Welzl
condition [21]: An orientation is USO if and only if for each pair of distinct vertices v, w,
there exists a dimension i in the subcube they span such that they both have the same
up-map in that dimension, i.e., both have an upwards i-edge or both have a downwards
i-edge. This corresponds directly to the condition that any pair of strings s, t differs by
exactly 2 in the i’th coordinate:

The difference of two strings si and ti is greater than 1 if and only if the vertices s and t

lie in different i-facets, and thus i is a dimension of the subcube these vertices span.
The difference of two strings si and ti is even if and only if the vertices s and t agree on
the orientation of their incident edge in dimension i.

Combining these two conditions yields that si and ti differ by exactly 2, as desired. Thus,
the Szabó-Welzl condition is equivalent to the condition for tiling validity.

3 Rewriting Rules

The first disproof of Keller’s conjecture by Lagarias and Shor [14] used string rewriting to
create higher dimensional tilings from lower dimensional tilings. In this section, we generalize
their technique to operations that can be applied to all USOs, so-called generalized rewriting
rules. We first define simple rewriting rules, which are used to rewrite a single digit in each
string of an USO. To define such a rule we need four lists, which specify what to replace each
possible digit with. From Lagarias and Shor’s approach we extract the conditions necessary
to hold for these four lists, such that the result is again an USO.

▶ Definition 3.1. Let S(0), S(1), S(2), S(3) ⊆ {0, 1, 2, 3}d with the properties that
(i)

(
S(0) ∪ S(2)) defines a d-dimensional USO (a 4Zd-periodic tiling) and S(0) ∩S(2) = ∅, and

(ii)
(
S(1) ∪ S(3)) defines a d-dimensional USO (a 4Zd-periodic tiling) and S(1) ∩ S(3) = ∅.

The sets
(
S(0), S(1), S(2), S(3)) define a simple rewriting rule. We define the function Sh

to apply this simple rewriting rule to a k-dimensional input USO K on dimension h ∈ [k]. It
maps subsets of {0, 1, 2, 3}k to subsets of {0, 1, 2, 3}k+d−1. Applying the simple rewriting
rule to a single vertex of the input USO is defined as follows:

Sh(v) :=
{

v1, . . . , vh−1, s1, . . . , sd, vh+1, . . . , vk | s ∈ S(vh)
}

.

We write Sh(K) (for a set K ⊆ {0, 1, 2, 3}k) for the union of the outputs of Sh when applied
to all elements of K, i.e., Sh(K) :=

⋃
v∈K Sh(v).
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For each string v ∈ K, Sh(v) produces a set of strings which depends on the value of the
entry vh. For each element s of S(vh), a string is generated by replacing the entry vh with s.
The single vertex v is thus mapped to |S(vh)| vertices. Note that some of the sets S(·) may
be empty. In this case, when |S(vh)| = 0, no strings are produced from v.

A particularly interesting operation on USOs is the following 1-dimensional rewriting
rule, which we call the partial swap: (S(0) = {0}, S(1) = {3}, S(2) = {2}, S(3) = {1}). We
analyze this rewriting rule in more detail in the full version of this paper [1].

▶ Example 3.2. To the USO K = {110, 310, 012, 202, 031, 230, 033, 222} we apply the partial
swap in dimension h = 2, i.e., we rewrite the second coordinate of each vertex. In the
resulting USO, the subgraphs KL and KU swapped places.

h

110 310

031 230

012 202

033 222

KL

KU

⇒
rule

rewriting
Apply

130 330

011 210

032 202

013 222

⇒
position
vertex

Fix

011 210

130 330

013 202

032 222

KU

KL

In the full version [1] we show the following lemma, i.e., that simple rewriting rules are
correct USO constructions.

▶ Lemma 3.3. Applying any rewriting rule Sh to an USO K of strings in {0, 1, 2, 3}k results
in a valid USO Sh(K) of strings in {0, 1, 2, 3}k+d−1.

3.1 Generalized Rewriting Rules
To arrive at their counterexamples to Keller’s conjecture, Lagarias and Shor used a more
general rewriting technique [14]. They do not only use the four digits 0, 1, 2, 3 in their input
tiling, but also “alternative digits” 0′ and 1′, which only differ from their normal counterparts
for the purposes of the rewriting, but specify the same coordinate for the tiling. We generalize
our construction based on this idea, by letting the input USO specify one of i labels at each
vertex.

For the full generality of our rewriting framework, the sets S(m) are replaced by a list of i

sets S
(m)
1,...,i each, where the indices correspond to the possible labels attached to the vertices

of the input USO. All the compatibility requirements are appropriately expanded.

▶ Definition 3.4. Let d, i ∈ N, S
(0)
1,...,i, S

(1)
1,...,i, S

(2)
1,...,i, S

(3)
1,...i ⊆ {0, 1, 2, 3}d where

(i)
(

S
(0)
j ∪ S

(2)
j′

)
defines a d-dimensional USO and S

(0)
j ∩ S

(2)
j′ = ∅ for all pairs j, j′ ∈ [i], and

(ii)
(

S
(1)
j ∪ S

(3)
j′

)
defines a d-dimensional USO and S

(1)
j ∩ S

(3)
j′ = ∅ for all pairs j, j′ ∈ [i].

The sets
(

S
(0)
1,...,i, S

(1)
1,...,i, S

(2)
1,...,i, S

(3)
1,...i

)
define a generalized rewriting rule. We define the

function Th to apply this generalized rewriting rule to a k-dimensional input USO K on
dimension h ∈ [k]. It maps subsets of {0, 1, 2, 3}k ×[i] to subsets of {0, 1, 2, 3}k+d−1. Applying
the generalized rewriting rule to a single vertex v labeled j of the input USO is defined as:

Th(v, j) :=
{

v1, . . . , vh−1, t1, . . . , td, vh+1, . . . , vk | t ∈ S
(vh)
j

}
.

We extend the function Th from single inputs to sets similarly to Definition 3.1.
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Note that we can use duplicate sets S
(m)
j = S

(m)
j′ in case we want to have fewer than i

sets for some m ∈ {0, 1, 2, 3}. Lemma 3.3 holds also for generalized rewriting rules, with the
proof applying mutatis mutandis since Definition 3.4 provides the necessary disjointness and
coherence conditions:

▶ Lemma 3.5. Let K be an USO of strings in {0, 1, 2, 3}k, and L : K → [i] an additional
labelling function. Then Th(K, L) is an USO of strings in {0, 1, 2, 3}k+d−1.

Intuitively, the effect of a generalized rewriting rule can be described as follows. Given
an input USO K and a rewriting rule, we replace edges of dimension h. For simplicity, we
focus on a single 2-face containing two edges of this dimension h: {v1, v2} and {w1, w2}. The
rewriting rule replaces those two h-edges by the d-dimensional USOs Th({v1, v2}, L) and
Th({w1, w2}, L). Instead of the edges {v1, w1} and {v2, w2}, there are now 2d new edges
between Th({v1, v2}, L) and Th({w1, w2}, L) as can be seen in Figure 3.

v1 v2

w1 w2
f

h

⇒

Apply
rewriting

rule

Th({v1, v2}, L)

Th({w1, w2}, L)

...

. . .

Figure 3 Sketch of the effect of the generalized rewriting rule on the 2-face f .

It holds that if {v1, v2} is a downwards edge, Th({v1, v2}, L) = S
(0)
L(v1) ∪ S

(2)
L(v2). If {v1, v2}

is an upwards edge, Th({v1, v2}, L) = S
(1)
L(v1) ∪ S

(3)
L(v2). Analogously, the edge {w1, w2} is

replaced by the respective union of sets. In either case, this is guaranteed to be an USO by
the conditions (i) and (ii) in Definition 3.4.

The edges between the USOs Th({v1, v2}, L) and Th({w1, w2}, L) copy their orientation
either from the edge {v1, w1} or from the edge {v2, w2}. Which of these edges is copied
depends on whether the resulting edge is incident to a vertex in Th({v1}, L) or Th({v2}, L).
This depends on how the sets S

(0)
j ∪ S

(2)
j′ (and S

(1)
j ∪ S

(3)
j′ respectively) are split into their

parts, i.e., which vertices of the d-USOs they describe lie in which set. Note that these unions
are split the same way, no matter j and j′.

▶ Example 3.6. The following is a generalized rewriting rule for d = 2.

S
(0)
1 = S

(1)
1 = {10}

S
(2)
1 = S

(3)
1 = {12, 33, 31}

S
(0)
2 = S

(1)
2 = {10}

S
(2)
2 = S

(3)
2 = {02, 22, 30} 10

12

31

33

S
(0)
1 ∪ S

(2)
1

10

02

30

22

S
(0)
2 ∪ S

(2)
2

We apply this rewriting rule to dimension h = 1 of the bow K = {01, 20, 03, 22} with the
labeling function L(01) = 2, L(03) = 1, L(20) = 2 and L(22) = 1. This means, we replace the
first coordinate of each vertex. The result is T1(K, L) = {101, 300, 020, 220, 103, 122, 312, 332}.

EuroCG’24
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01

03

20

22
h = 1

bow
⇒

Apply
rewriting

rule

101

103

020

122

220

300

312

332

4 Universality of the Construction

Our construction is universal, meaning it is sufficiently general to generate all USOs, using
only the 1-dimensional USOs, and the 2-dimensional “bow” as base cases.

▶ Theorem 4.1 (Universality). Starting with the set of both 1-dimensional USOs {0, 2} and
{1, 3}, one can generate every USO of dimension n ≥ 1 by repeated application of generalized
rewriting rules to the bow {01, 20, 03, 22}, where every set S

(m)
j used in a rewriting rule is a

subset of some set of strings describing an USO already obtained before.

To prove this theorem, we show the following lemma in the full version [1], which states
that for any n-dimensional USO there exists a generalized rewriting rule which creates this
USO by only using (n − 1)-dimensional USOs and the bow. From Lemma 4.2, Theorem 4.1
follows as a direct consequence.

▶ Lemma 4.2. Let K be an n-dimensional USO. Then there exists a generalized rewriting
rule

(
S

(0)
1,2 , S

(1)
1,2 , S

(2)
1,2 , S

(3)
1,2

)
, where each S

(m)
j is a (partial) (n − 1)-dimensional USO, and

K = T1(bow = {01, 20, 03, 22}, L), for L(01) = 2, L(03) = 1, L(20) = 2, L(22) = 1.

Proof (sketch). With the input labelling L, each set S
(0)
1,2 and S

(2)
1,2 is used to rewrite exactly

one string of the bow. Furthermore, each of these strings has a unique digit in the second
coordinate. We ignore the unused sets S

(1)
1,2 and S

(3)
1,2 , and define S

(0)
1,2 and S

(2)
1,2 by simply

splitting the strings of our target USO K depending on their last digit (and discarding that
last digit), i.e., depending on the two n-facets of K and the edges between them:

S
(0)
1 : rewrites 03, contains vertices of the upper n-facet of K with an upwards n-edge.

S
(0)
2 : rewrites 01, contains vertices of the lower n-facet of K with an upwards n-edge.

S
(2)
1 : rewrites 22, contains vertices of the upper n-facet of K with an downwards n-edge.

S
(2)
2 : rewrites 20, contains vertices of the lower n-facet of K with an downwards n-edge.

Thus, when applied to the bow, we end up with exactly our target USO. It remains to prove
that these sets form a valid generalized rewriting rule. For this, we can show that S

(0)
1 ∪ S

(2)
1

and S
(0)
2 ∪ S

(2)
2 are the two n-facets of K, while the other set combinations are the n-facets

of K after applying a partial swap. For details we refer to the full version [1]. ◀

5 Future Work

Unfortunately, our rewriting rules exhibit a similar weakness to the phase flips of Schurr.
While they are universal and each step in the universality proof is very systematic, our
construction does not yet provide a suitable way to enumerate all USOs. This is in part
because checking conditions (i) and (ii) of Definition 3.4 is computationally expensive. As
future work, we suggest searching for more interesting special cases of (generalized) rewriting
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rules, or for other more systematic ways to enumerate USOs. Our framework could also be
further generalized to rewrite multiple dimensions at once, similar to the approach taken by
Mackey [15] to find the 8-dimensional counterexample to Keller’s conjecture.
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