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Abstract
Arrangements of pseudolines are classic objects in discrete and computational geometry. They
have been studied with increasing intensity since their introduction almost 100 years ago. The
study of the number Bn of non-isomorphic simple arrangements of n pseudolines goes back to
Goodman and Pollack, Knuth, and others. It is known that Bn is in the order of 2Θ(n2) and finding
asymptotic bounds on bn = log2(Bn)

n2 remains a challenging task. In 2011, Felsner and Valtr showed
that 0.1887 ≤ bn ≤ 0.6571 for sufficiently large n. The upper bound remains untouched but in 2020
Dumitrescu and Mandal improved the lower bound constant to 0.2083. Their approach utilizes the
known values of Bn for up to n = 12.

We tackle the lower bound with a dynamic programming scheme. Our new bound is bn ≥ 0.2526
for sufficiently large n. The result is based on a delicate interplay of theoretical ideas and computer
assistance.

1 Introduction

Levi [12] introduced arrangements of pseudolines as a natural generalization of line arrange-
ments in 1926. An arrangement of pseudolines in the Euclidean plane R2 is a finite family of
simple curves, called pseudolines, such that each curve approaches infinity in both directions
and every pair intersects in exactly one point where the two curves cross. More generally, we
call a collection of pseudolines partial arrangement if every pair intersects in at most one
crossing-point. Pseudolines which do not intersect are said to be parallel. Note that, while
for partial arrangements of proper lines the relation ’parallel’ is transitive, this is no longer
true in partial pseudoline arrangements.

In this article, the focus will be on simple arrangements, that is, no three or more
pseudolines intersect in a common point (called multicrossing). Moreover, we consider all
arrangements to be marked, that is, they have a unique marked unbounded cell, which is
called north-cell. Two arrangements are isomorphic if one can be mapped to the other by an
orientation preserving homeomorphism of the plane that also preserves the north-cell.

While it is known that the number Bn of non-isomorphic arrangements of n pseudolines
grows as 2Θ(n2), it remains a challenging problem to bound the multiplicative factor of the
leading term of log2 Bn = Θ(n2). Our focus will be on finding better estimates on the lower
bound constant c− := lim infn→∞

log2 Bn

n2 . One can analogously define the upper bound
constant c+ := lim supn→∞

log2 Bn

n2 but it seems to be open whether c+ and c− coincide.
In the 1980’s Goodman and Pollak [9] investigated pseudopoint configurations, which are

dual to pseudoline arrangements, and established the lower bound c− ≥ 1
8 . An alternative

and simpler construction for c− ≥ 1
12 can be found in Matoušek’s textbook [13, Chapter 6].
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Figure 1 Left: An arrangement of 3 bundles of parallel lines and a collection of interior-disjoint
patches (highlighted red) such that each multicrossing point is covered by a patch. Right: A partial
pseudoline arrangement with the same parallel bundles obtained by rerouting within the patches.

Concerning the upper bound, Edelsbrunner, O’Rourke and Seidel [6] showed c+ < ∞. In
the 1990’s Knuth [10, Section 9] improved the bounds to c− ≥ 1

6 and c+ < 0.7925, and he
conjectured that c+ ≤ 0.5. The upper bound was lowered to c+ < 0.6974 by Felsner [7], and in
2011, Felsner and Valtr [8] further narrowed the gap by showing c− > 0.1887 and c+ < 0.6571.
In 2020 Dumitrescu and Mandal [5] proved the currently best lower bound c− > 0.2083.

In this article, we make a substantial step on the lower bound by proving c− > 0.2526.

▶ Theorem 1.1. The number Bn of non-isomorphic simple arrangements of n pseudolines
satisfies the inequality Bn ≥ 2cn2−O(n log n) with c > 0.2526.

2 Outline

Our approach is in the spirit of several previous bounds. We consider a specific partial
arrangement L of n lines consisting of k bundles L1, . . . , Lk of parallel lines. We then define
a class of local perturbations to L and consider the number of arrangements that can be
obtained by these perturbations. This number is a lower bound on Bn, and it can be improved
by recursively applying the same construction to each of the parallel classes Li.

The main difference between the approaches lies in the number of bundles k and the
notion of locality. Matoušek and also Felsner and Valtr used three bundles but the locality
was increased from considering just a triple intersection with its two simple resolutions to the
full intersection pattern of three bundles. Dumitrescu and Mandal [5] increased the number
k of bundles to up to 12 but still restricted to local resolutions of multicrossings.

Our approach combines higher values of k with an increased locality for the perturbations.
As illustrated in Figure 1, we allow reroutings of the arrangement within designated regions,
which we call patches. When rerouting the arrangement within a patch P , the order of the
crossings along the pseudolines may change. The boundary information of P fully determines
which pairs of pseudolines cross within P , but the order of crossings along the pseudolines
is not determined in general. Outside of P , the arrangement remains unaffected, which
allows us to count the number of reroutings for each patch independently. The total number
of perturbations is obtained as the product of the numbers computed for the individual
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Figure 2 An illustration of how to recursively compute the number of reroutings for a patch P .
When cutting along segment 1, highlighted purple, there are intersections with the segments 3, 4,
and 7. As the segments 3 and 7 do no cross within P , there are only three possibilities for placing
the three crossings along the segment 1, namely 4–3–7 (right top), 3–4–7 (right center) and 3–7–4
(right bottom).

patches. The number of possibilities within a patch are computed recursively via dynamic
programming; Figure 2 gives an illustration. Details are given in [11].

To eventually use computer assistance, we choose patches of high regularity and reasonably
small complexity. In fact, since our construction is highly regular, it is sufficient to determine
the rerouting possibilities only for a small number of patch-types. Only a negligible fraction
of patches along the boundaries are different. As we only want to find an asymptotic lower
bound on Bn, the small number of irregular patches along the boundary of the regions will
not be used in the counting.

To eventually prove Theorem 1.1, we perform the following two steps:

In the first step (Section 3) we specify the parameters of the construction: We construct
k = 6 bundles of

⌊
n
k

⌋
parallel lines (see [11] for a description of the approach with k = 4

bundles) and cover the multicrossing points by patches. By resolving the multicrossing
points within the patches, and taking the product over all patches we obtain an improved
lower bound on the number Fk(n) of partial arrangements with k bundles of

⌊
n
k

⌋
parallel

pseudolines.

In the second step (Section 4), we account for crossings in bundles of pseudolines which
had been parallel before. The product of the so-computed possibilities yields the improved
lower bound on the number Bn of simple arrangements on n pseudolines.

EuroCG’24
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3 Step 1: bundles of parallel lines, patches, and perturbations

For the start we fix an integer k and construct an arrangement L of k bundles of
⌊

n
k

⌋
parallel

lines as in [5]. If n is not a multiple of k, the remaining lines are discarded, or not used in
the counting. We then cover all multicrossing points by a family of disjoint regions, called
patches, and reroute the line segments within the patches so that all multicrossing points
will eventually be resolved and the arrangement becomes simple.

3.1 Construction with 6 bundles
In this section we consider a partial arrangement L of n lines consisting of 6 bundles of

⌊
n
6

⌋
parallel lines L1, . . . , L6 following [5]. See Figure 3 for an illustration. The construction
comes with four types of regions with multicrossings:

Ri for i ∈ {3, 4, 5} only contains multicrossings of order i and
R6 contains multicrossings of order 3 and 6.

Note that multicrossings of order 3 occur in R3 and R6.
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Figure 3 Construction with 6 bundles as in [5].

For each of the four regions Ri we will use a different type of patch Pi that is based on a
regular tiling of the plane to ensure regularity; see Figure 4.

We have to determine the number µi of patches of type i. Since the number of crossings of
each order is asymptotically quadratic in n and each patch contains only a constant number
of crossings, the number µi of patches of type i is also quadratic. Again, it is important
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to note that the patches along the boundary of Ri behave differently. However, since there
are only linearly many of these deformed patches, they only affect lower order error terms.
Hence we can omit them in the calculations.

To obtain asymptotically tight estimates on the µi’s, we make use of the numbers λi(n)
of i-crossing points, which were determined by Dumitrescu and Mandal [5, Table 2]:

λ3(n) = 5n2−O(n)
144 , λ4(n) = n2−O(n)

144 , λ5(n) = n2−O(n)
144 , λ6(n) = n2−O(n)

144 .

For i = 4, 5, 6, the number λi coincides with µi · #{i-fold crossings in Pi} + O(n) because
only the region Pi contains i-crossings for i = 4, 5, 6. For i = 3, however, the situation
is a bit more complicated because P3 and P6 both contains 3-crossings. More specifically,
P6 contains twice as many 3-crossings as 6-crossings. With the multiplicities given in the
caption of Figure 4 we obtain:

µ3(P3, n) = λ3(n)−2·λ6(n)
#{3-crossings in P3} − O(n) = 3n2

144·100 − O(n)
µ4(P4, n) = λ4(n)

#{4-crossings in P4} − O(n) = n2

144·32 − O(n)
µ5(P5, n) = λ5(n)

#{5-crossings in P5} − O(n) = n2

144·12 − O(n)
µ6(P6, n) = λ6(n)

#{6-crossings in P6} − O(n) = n2

144·7 − O(n)

To compute the numbers F (Pi) of all possible perturbations within the patch type Pi for
i = 3, 4, 5, 6, we ran our program and obtained:

F (P3) = 1956055471674766249002559523437101670400
F (P4) = 10233480626615962155895931163981261674
F (P5) = 32207077855497546508132740267
F (P6) = 8129606100972933137253330355173

We provide a computer-assisted framework [1] that can fully automatically compute F (P )
for a given patch P , which is given as an IPE input file [2]. See [11] for more details. The
presented terms were computed within a few CPU hours on cluster nodes of TU Berlin with
up to 1TB of RAM. We also provide simpler patches for which the program only needs few
CPU seconds and low RAM. Those, however, give slightly worse bounds.

From Fk(n) ≥
∏k

i=3 F (Pi)µi(n), we can now derive:

▶ Proposition 3.1. F6(n) ≥ 2cn2−O(n) with c > 0.2105.

More specifically, by writing ci := limn→∞
µi(n)

n2 · log2(F (Pi)), we can see the contributions of
the patches P3, P4, P5 and P6 to the leading constant c = c3+c4+c5+c6 from Proposition 3.1:

c3 ≈ 0.0272, c4 ≈ 0.0267, c5 ≈ 0.0548, c6 ≈ 0.1019.

EuroCG’24
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(a) (b)

(c) (d)

Figure 4 The four types of patches for our construction on k = 6 bundles:
(a) For R6 we use a hexagonal tiling where each patch P6 contains exactly 7 crossings of order 6 and
14 crossings of order 3.
(b) For R5 we use a hexagonal tiling where each patch P5 contains exactly 12 crossings of order 5.
(c) For R4 we use a rectangular tiling where each patch P4 contains exactly 32 crossings of order 4.
(d) For R3 we use a rhombic tiling where each patch P3 contains exactly 100 crossings of order 3.
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4 Step 2: resolving parallel bundles

With the second and final step, we want to obtain a simple arrangement of pairwise intersecting
pseudolines from a partial arrangement of k bundles of m =

⌊
n
k

⌋
parallel pseudolines. To do

so, we use a recursive scheme as in [8, 5] to make each pair of parallel pseudolines cross: For
each i = 1, . . . , k, we consider a disk Di such that

(1) Di intersects all parallel pseudolines of the bundle Li and no other pseudolines, and
(2) no two disks overlap.

Within each disk Di we can place any of the Bm arrangements of m pseudolines. This
makes all the pseudolines of a bundle cross. Figure 5 gives an illustration for the case k = 3.

B1

B2

B3

D3

D2

D1

Figure 5 Left: A partial arrangement of 3 bundles of parallel pseudolines and a collection of
interior-disjoint disks (highlighted blue) such that each bundle is covered by one disk.
Right: A proper pseudoline arrangement obtained by rerouting within the disks.

Since all D′
is are independent and there are Bm possibilities to reroute within each Di,

Bn ≥ Fk(n)︸ ︷︷ ︸
Step 1

· (Bm)k︸ ︷︷ ︸
Step 2

holds, where m =
⌊

n
k

⌋
. With the following lemma we can derive c− ≥ k

k−1 c where c is the
constant obtained in Section 3. The construction with k = 6 bundles gives the lower bound
c− > 0.2526, and therefore completes the proof of Theorem 1.1.

▶ Lemma 4.1. If Fk(n) ≥ 2cn2−O(n) for some c > 0 then Bn ≥ 2
k

k−1 cn2−O(n log n).

5 Discussion

We performed quite some experiments to optimize the set of parameters. To obtain the new
lower bound constant c− > 0.2526 presented in Theorem 1.1, we started with the k = 6
parallel bundles construction from [5] and covered the multicrossings with a specific selection
of patches, which were inspired by regular tilings. Already the construction with k = 4
bundles gives F4(n) ≥ 2cn2−O(n) with c > 0.1608 and c− > 0.2144 (see [11]), which is already
an improvement to the previous best bound by Dumitrescu and Mandal [5]. While the
results from [5] suggest that larger values of k give better bounds, the computations get

EuroCG’24
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more and more complex. In fact, as the number k increases, the complexity of the patches
increases. Since our program can only deal with patches containing about 30 to 40 segments
in reasonable time, depending on the structure of crossings within it, there is a trade-off
between the number of crossings within a patch and the number of bundles k in practice.
This was also the reason why we use different types of patch for the four regions.

In the future we plan to investigate constructions with k = 8 and k = 12 bundles which
as depicted in [5, Figures 9 and 13] come with more types of regions. It remains a challenging
part to find a good tiling/patches for each of them.

Also note that as long as one fixes k, the counting approach is implicitly limited by Fk(n),
which is much smaller than Bn. Since F3(n) = 2cn2+o(n2) with c = log2(3)

2 − 2
3 ≈ 0.1258

is known [8], it would be interesting to determine limn→∞
log2 Fi(n)

n2 for i = 4, . . . , 12. In
particular, we wonder how far from the truth the constant in Proposition 3.1 is.

References
1 Supplemental data. https://github.com/fcorteskuehnast/counting-arrangements.
2 Otfried Cheong. The Ipe extensible drawing editor. http://ipe.otfried.org/.
3 Fernando Cortés Kühnast. On the number of arrangements of pseudolines. Bachelor’s

thesis, Technische Universität Berlin, Germany, 2023. https://fcorteskuehnast.github.
io/files/bachelor_thesis.pdf.

4 Justin Dallant. Improved Lower Bound on the Number of Pseudoline Arrangements.
arXiv:2402.13923, 2024.

5 Adrian Dumitrescu and Ritankar Mandal. New lower bounds for the number of pseudoline
arrangements. Journal of Computational Geometry, 11:60–92, 2020. doi:10.20382/jocg.
v11i1a3.

6 Herbert Edelsbrunner, Joseph O’Rourke, and Raimund Seidel. Constructing arrangements
of lines and hyperplanes with applications. SIAM Journal on Computing, 15(2):341–363,
1986. doi:10.1137/0215024.

7 Stefan Felsner. On the Number of Arrangements of Pseudolines. Discrete & Computational
Geometry, 18(3):257–267, 1997. doi:10.1007/PL00009318.

8 Stefan Felsner and Pavel Valtr. Coding and Counting Arrangements of Pseudolines. Discrete
& Computational Geometry, 46(3), 2011. doi:10.1007/s00454-011-9366-4.

9 Jacob E. Goodman and Richard Pollack. Multidimensional Sorting. SIAM Journal on
Computing, 12(3):484–507, 1983. doi:10.1137/0212032.

10 Donald E. Knuth. Axioms and Hulls, volume 606 of LNCS. Springer, 1992. doi:10/bwfnz9.
11 Fernando Cortés Kühnast, Stefan Felsner, and Manfred Scheucher. An Improved Lower

Bound on the Number of Pseudoline Arrangements. arXiv:2402.13107, 2024.
12 Friedrich Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade.

Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig,
Mathematisch-Physische Klasse, 78:256–267, 1926.

13 Jiří Matoušek. Lectures on Discrete Geometry. Springer, 2002. doi:10.1007/
978-1-4613-0039-7.

https://github.com/fcorteskuehnast/counting-arrangements
http://ipe.otfried.org/
https://fcorteskuehnast.github.io/files/bachelor_thesis.pdf
https://fcorteskuehnast.github.io/files/bachelor_thesis.pdf
http://arXiv.org/abs/2402.13923
https://doi.org/10.20382/jocg.v11i1a3
https://doi.org/10.20382/jocg.v11i1a3
https://doi.org/10.1137/0215024
https://doi.org/10.1007/PL00009318
https://doi.org/10.1007/s00454-011-9366-4
https://doi.org/10.1137/0212032
https://doi.org/10/bwfnz9
http://arXiv.org/abs/2402.13107
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-1-4613-0039-7

	Introduction
	Outline
	Step 1: bundles of parallel lines, patches, and perturbations
	Construction with 6 bundles

	Step 2: resolving parallel bundles
	Discussion

