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Abstract
Given a set of objects O in the plane, the corresponding intersection graph is defined as follows. A
vertex is created for each object and an edge joins two vertices whenever the corresponding objects
intersect. We study here the case of unit segments and polylines with exactly k bends. In the
recognition problem, we are given a graph and want to decide whether the graph can be represented
as the intersection graph of certain geometric objects. In previous work it was shown that various
recognition problems are ∃R-complete, leaving unit segments and polylines as few remaining natural
cases. We show that recognition for both families of objects is ∃R-complete.
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1 Introduction

Many real-life problems can be mathematically described in the language of graphs. For
instance, Cellnex Telecom owns more than 2000 cell towers in Switzerland. We want to
assign each tower a frequency such that no two towers that overlap in coverage use the
same frequency. This becomes a graph coloring problem. Every cell tower becomes a vertex,
overlap indicates an edge and a frequency assignment corresponds to a proper coloring of
the vertices, see Figure 1.

In many contexts, we have additional structure on the graph that may or may not help us
to solve the underlying algorithmic problem. For instance, it might be that the graph arises
as the intersection graph of unit disks in the plane (each unit disk gives a vertex, and two
vertices are adjacent if their corresponding disks overlap). In that case, the coloring problem
can be solved more efficiently [10], and there are better approximation algorithms for the
clique problem [11]. This motivates a systematic study of geometric intersection graphs.

It is known for a host of geometric shapes that it is ∃R-complete to recognize their
intersection graphs [28, 14, 25, 27]. The class ∃R consists of all of those problems that are
polynomial-time equivalent to deciding whether a polynomial p ∈ Z[X1, . . . , Xn] has a root.
We will introduce ∃R in more detail below. ∃R-completeness is known for the recognition
problems of intersection graphs for segments, disks, unit disks, rays, grounded segments,
downward rays, and a few other examples.
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Figure 1 A fictional illustration of mobile coverage of Switzerland using cell towers.

In this work, we focus on two geometric objects; unit segments and polylines with exactly
k bends. Although we consider both types of geometric objects natural and well studied, to
the best of our knowledge the complexity of their recognition problem was left open.

1.1 Definition and Results

Given a finite set of geometric objects O, we denote by G(O) = (V, E), the corresponding
intersection graph. The set of vertices is the set of objects (V = O) and two objects are
adjacent (uv ∈ E) if they intersect (u ∩ v ̸= ∅). We are interested in intersection graphs that
come from different families of geometric objects.

Examples for a family of geometric objects are segments, disks, unit disks, unit segments,
rays, and convex sets, to name a few of the most common ones. In general, given a geometric
body O ⊂ R2 we denote by O the family of all translates of O. Similarly, we denote by O

the family of all translates and rotations of O. For example, the family of all unit segments
can be denoted as u , where u is a unit segment.

Classes of geometric objects O naturally give rise to classes of graphs C(O): Given a
family of geometric objects O, we denote by C(O) the class of graphs that can be formed by
taking the intersection graph of a finite subset from O.

If we are given a graph, we can ask if this graph belongs to a geometric graph class.
Formally, let C be a fixed graph class, then the recognition problem for C is defined as
follows. As input, we receive a graph G and we have to decide whether G ∈ C. We denote
the corresponding algorithmic problem by Recognition(C). For example the problem of
recognizing unit segment graphs can be denoted by Recognition(C(u )). We will use the
term Unit Recognition for this problem. Furthermore, we define PolyLine Recognition
as the recognition problem of intersection graphs of polylines with k bends.

We can also say that Recognition(C(O)) asks about the existence of a representation
of a given graph. A representation or realization of a graph G using a family of objects O
is a function r : V 7→ O such that r(v) ∩ r(w) ̸= ∅ ⇐⇒ vw ∈ E. For simplicity, for a set
V ′ ⊆ V , we define r(V ′) =

⋃
v∈V ′ r(v).
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Results. We show ∃R-completeness of the recognition problems of two very natural
geometric graph classes.

▶ Theorem 1.1. Unit Recognition is ∃R-complete.

▶ Theorem 1.2. PolyLine Recognition is ∃R-complete, for any fixed k ≥ 1.

1.2 Discussion
To supply the appropriate context for our results, we give a comprehensive overview over
important geometric graph classes and the current knowledge about the complexity of their
recognition problems in Figure 2.
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Figure 2 Each box represents a different geometric intersection graph class. Those marked in
green can be recognized in polynomial time. Those in blue are known to be ∃R-complete. The ones
in gray are NP-complete, and the orange ones are the new results presented in this paper. Relevant
references: [12, 14, 21, 22, 23, 24, 25, 27, 28, 30, 32, 33, 36, 43]

Refining the Hierarchy. We see our main contribution in refining the hierarchy of
geometric graph classes for which recognition complexity is known. Both unit segments as
well as polylines with k bends are natural objects that are well studied in the literature.
However, the recognition of the corresponding graph classes was not studied previously.
Polylines with an unbounded number of bends are equivalent to strings1, while polylines

1 It is possible to show that polylines with an unbounded number of bends are as versatile as strings with
respect to the types of graphs that they can represent, since the number of intersections of any two
strings can always be bounded from above [36, 37].
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with 0 bends are just segments. Polylines with k bends thus naturally slot in between strings
and segments, and their corresponding graph class is thus also an intermediate class between
the class of segment intersection graphs and string graphs, as can be seen in Figure 2. By
showing that recognition for polylines with k bends is ∃R-complete for all constant k, we
see that the switch from ∃R-completeness (segment intersection graphs) to NP-membership
(string graphs) really only happens once k is infinite. Similarly, unit segment intersection
graphs slot in between segment and ray intersection graphs. Intuitively, recognition of a class
intermediate to two classes that are ∃R-hard to recognize should also be ∃R-hard, and our
Theorem 1.1 confirms this intuition in this case.

Large Coordinates. One of the consequences of ∃R-completeness is that there are
no short representations of solutions known. Some representable graphs may only be
representable by objects with irrational coordinates, or by rational coordinates with nominator
and denominator of size at least 22nc

, for some fixed c > 0. In other words, the numbers
to describe the position might need to be doubly exponentially large [27] for some graphs.
For “flexible” objects like polylines, rational solutions can always be obtained by slightly
perturbing the representation. For more “sturdy” objects like unit segments this may not be
possible, however it is known that for example unit disks admit rational solutions as well [28].

Unraveling the Broader Story. Given the picture of Figure 2, we wish to get a
better understanding of when geometric graph recognition problems are ∃R-complete and
when they are contained in NP. Figure 2 indicates that ∃R-hardness comes from objects
that are complicated enough to avoid a complete combinatorial characterization. Such
characterizations are known for example for unit interval graphs, interval graphs and circle
chord graphs. On the other hand, if the geometric objects are too flexible, the recognition
problem is in NP. The prime example is string graphs [36]. We want to summarize this as:
recognition problems are ∃R-complete if the underlying family of geometric objects is at a
sweet spot of neither being too simplistic nor too flexible.

Studying the figure further we observe two different types of ∃R-complete families. The
first type of family encapsulates all rotations O of a given object O (i.e., segments, rays,
unit segments etc.). The second type of family contains translates and possibly homothets of
geometric objects that have some curvature themselves (i.e., disks and unit disks). However
in case we fix a specific object without curvature, i.e., a polygon, and consider all translations
of it then the recognition problem also lies in NP [30]. Therefore, broadly speaking, curvature
or rotation seem to be properties needed for ∃R-completeness and the lack of it seems to
imply NP-membership. We wish to capture parts of this intuition in the following conjectures:

▶ Conjecture 1. Let O be a convex body in the plane with at least two distinct points. Then
Recognition(O ) is ∃R-complete.

▶ Conjecture 2. Let O be a convex body in the plane. Then Recognition(O ) is ∃R-
complete if and only if O has curvature.

1.3 Existential Theory of the Reals
The class of the existential theory of the reals ∃R (pronounced as ‘ER’) is a complexity class de-
fined through its canonical problem ETR, which also stands for Existential Theory of the Reals.
In this problem we are given a sentence of the form ∃x1, . . . , xn ∈ R : Φ(x1, . . . , xn), where Φ
is a well-formed quantifier-free formula consisting of the symbols {0, 1, x1, . . . , xn, +, ·, ≥, >

, ∧, ∨, ¬}, and the goal is to check whether this sentence is true.
The class ∃R is the family of all problems that admit a polynomial-time many-one

reduction to ETR. It is known that NP ⊆ ∃R ⊆ PSPACE [13]. The reason that ∃R is an
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important complexity class is that a number of common problems, mainly in computational
geometry, have been shown to be complete for this class. Schaefer established the current
name and pointed out first that several known NP-hardness reductions actually imply
∃R-completeness [33]. Early examples are related to recognition of geometric structures:
points in the plane [29, 42], geometric linkages [34, 1], segment graphs [25, 27], unit disk
graphs [28, 21], ray intersection graphs [14], and point visibility graphs [14]. In general,
the complexity class is more established in the graph drawing community [26, 16, 35, 18].
Yet, it is also relevant for studying polytopes [31, 17], Nash-Equilibria [6, 38, 20, 8, 9], and
matrix factorization problems [15, 40, 41, 39]. Other ∃R-complete problems are the Art
Gallery Problem [3, 44], covering polygons with convex polygons [2], geometric packing [5]
and training neural networks [4, 7].

2 Proof Techniques

Figure 3 The pseudoline arrangement on the left is combinatorially equivalent to the (truncated)
line arrangement on the right; hence, it is stretchable.

The techniques used in this paper are similar to previous work. Due to space constraints
we only give some rough proof sketches, all the details can be found in the full version of
the paper. ∃R-membership can be established straightforwardly by constructing concrete
formulae or invoking a characterization of ∃R using real verification algorithms, similar
to the characterization of NP [19]. For ∃R-hardness, we are in essence reducing from
the SimpleStretchability problem. In this problem, we are given a simple pseudoline
arrangement as an input, and the question is whether this arrangement is stretchable. A
pseudoline arrangement A is a set of n curves that are x-monotone. Furthermore, any
two curves intersect exactly once and no three curves meet in a single point. We assume
that there exist two vertical lines on which each curve starts and ends. The problem is to
determine whether there exists a combinatorially equivalent (truncated) line arrangement.
See Figure 3 for an example.

Given the initial pseudoline arrangement A, we construct a graph that is representable
by unit segments iff A is stretchable. This graph is created by enhancing A with more curves
(see Figure 4) and taking their intersection graph. Figures 5 to 7 give some intuition on
the proof that if A is stretchable, this graph is representable by unit segments: The line
arrangement certifying stretchability is first squeezed into a canonical form, then all features
can be represented easily. On the other hand, if this graph is representable, the unit segments
representing the vertices corresponding to A witness stretchability of A. To prove this, we
show that cycles can be used to enforce a certain order of intersections of objects with the
cycle. For this, we can use the same proof for unit segments and polylines.

Knowing that the connectors (green in Figure 4) must intersect the cycle in the correct

EuroCG’24
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Figure 4 A (black), enhanced with probes (red), connectors (green) and a cycle (yellow).

order in any representation, the intersection pattern of the pseudolines and the probes (red)
guarantees that unit segments representing the pseudolines must have the same combinatorial
structure as A, finishing the proof. The ideas of order-enforcing cycles and probes have
already been used in different contexts [14].

a

x = 0

Figure 5 Stretching and then squeezing a pseudoline arrangement.

pseudoline

probes

other pseudolines

connectors

Figure 6 Representing connectors and probes by unit segments.

The ∃R-hardness proof for PolyLine Recognition follows this previous proof for
unit segments closely, and only adds some additional order-enforcing cycles. The enhanced
pseudoline arrangement for polylines is shown in Figure 8. For each pseudoline we create a
twin. Using the 2k additional order-enforcing cycles we enforce that in any realization of the
graph by polylines, each polyline representing a pseudoline must intersect its twin within
that cycle. We can then show that if two polylines intersect 2k times (with both polylines
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connector segments

Figure 7 Attaching the connectors to the cycle using unit segments in a sawtooth pattern.

visiting these intersection points in the same order), they must in total use at least 2k − 1
bends. This ensures that at least one of the k-polylines must spend all of its k bends to
realize these intersections. Thus, this polyline is actually a straight line in the region labelled
“canvas” in Figure 8. Using the same arguments as for unit segments we can then see that
the arrangement formed by these straight lines is combinatorially equivalent to A, and thus
A is stretchable.

Canvas

Figure 8 A twinned and enhanced with probes, connectors and 2k + 1 cycles (yellow). Weaving
the twinned pseudolines ensures that at least one of the two twins contains no bends in the canvas.

EuroCG’24
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