
The Complexity of Geodesic Spanners using
Steiner Points
Sarita de Berg1, Tim Ophelders1,2, Irene Parada3, Frank Staals1,
and Jules Wulms2

1 Department of Information and Computing Sciences, Utrecht University, the
Netherlands
S.deBerg@uu.nl, T.A.E.Ophelders@uu.nl, F.Staals@uu.nl

2 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
J.H.H.M.Wulms@tue.nl

3 Department of Mathematics, Universitat Politècnica de Catalunya, Spain
Irene.Parada@upc.edu

Abstract
A geometric t-spanner on a set S of n point sites in a metric space P is a subgraph of the complete
graph on S such that for every pair of sites p, q the distance in G is a most t times the distance
d(p, q) in P . We call a connection between two sites in the spanner a link. In some settings, such as
when P is a simple polygon with m vertices and a link is a shortest path in P , links can consist of
Θ(m) segments and thus have non-constant complexity. The total spanner complexity is a recently-
introduced measure of how compact a spanner is. In this paper, we study what happens if we are
allowed to introduce k Steiner points to reduce the spanner complexity. We study such Steiner
spanners in simple polygons, polygonal domains, and on edge-weighted trees.

Surprisingly, we show that Steiner points have only limited utility. For a spanner that uses k

Steiner points, we provide an Ω(nm/k) lower bound on the worst-case complexity of any (3 − ε)-
spanner, and an Ω(mn1/(t+1)/k1/(t+1)) lower bound on the worst-case complexity of any (t − ε)-
spanner, for any constant ε ∈ (0, 1) and integer constant t ≥ 2. These lower bounds hold in all
settings.

On the positive side, for trees we show how to build a 2t-spanner that uses k Steiner points of
complexity O(mn1/t/k1/t + n log(n/k)), for any integer t ≥ 1. We generalize this result to forests,
and then apply it to obtain a 2

√
2t-spanner in a simple polygon or a 6t-spanner a in polygonal

domain with total complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n).

Related Version A full version of the paper is available at https://arxiv.org/abs/2402.12110.

1 Introduction

Consider a set S of n point sites in a metric space P . In applications such as (wireless)
network design [3], regression analysis [10], vehicle routing [7, 14], and constructing TSP
tours [5], it is desirable to have a compact network that accurately captures the distances
between the sites in S. Spanners provide such a representation. Formally, a geometric t-
spanner G is a subgraph of the complete graph on S, so that for every pair of sites p, q

the distance dG(p, q) in G is at most t times the distance d(p, q) in P [12]. The quality of
a spanner can be expressed in terms of the spanning ratio t and a term to measure how
“compact” it is. Typical examples are the size of the spanner, that is, the number of edges
of G, its weight (the sum of the edge lengths), or its diameter [13].

When the sites represent physical locations, there are often other objects (e.g. build-
ings, lakes, roads, mountains) that influence the shortest path between the sites. In such
settings, we need to explicitly incorporate the environment. We consider the case where
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this environment is modeled by a polygon P with m vertices, and possibly containing holes.
The distance between a pair of points p, q ∈ P is then given by their geodesic distance: the
length of a shortest path between p and q that is fully contained in P . This setting has been
considered before. For example, Abam, Adeli, Homapou, and Asadollahpoor [1] present a
geodesic (

√
10 + ε)-spanner of size O(n log2 n) when P is a simple polygon, and a geodesic

(5 + ε)-spanner of size O(n
√

h log2 n) when the polygon has h > 1 holes. Abam, de Berg,
and Seraji [2] even obtained a (2+ε)-spanner of size O(n log n) when P is actually a terrain.
To avoid confusion between the edges of P and the edges of G, we will from hereon use the
term links to refer to the edges of G.

As argued by de Berg, van Kreveld, and Staals [8], each link in a geodesic spanner may
correspond to a shortest path containing Ω(m) polygon vertices. Therefore, the spanner
complexity, defined as the total number of line segments that make up all links in the
spanner, more appropriate measures how compact a geodesic spanner is. The above spanners
of [1, 2] all have worst-case complexity Ω(mn), hence they present an algorithm to construct
a 2

√
2t-spanner in a simple polygon or a 6t-spanner in a polygon with holes with complexity

O(mn1/t + n log2 n), for any integer t > 1.1 These complexity bounds are still relatively
high. De Berg, van Kreveld, and Staals [8] also show that these results are almost tight.
In particular, for sites in a simple polygon, any geodesic (3 − ε)-spanner has worst-case
complexity Ω(nm), and for any constant ε ∈ (0, 1) and integer constant t ≥ 2, a (t − ε)-
spanner has worst-case complexity Ω(mn1/(t−1) + n).

Problem statement. A very natural question is then if we can reduce the total complexity
of a geodesic spanner by allowing Steiner points. That is, by adding an additional set S
of k vertices in G, each one corresponding to a (Steiner) point in P . For the original sites
p, q ∈ S we still require that their distance in G is at most t times their distance in P

(i.e. dG(p, q) ≤ td(p, q)), but the graph distance from a Steiner point p′ ∈ S to any other
site is unrestrained. Allowing for such Steiner points has proven to be useful in reducing
the weight [4, 9] and size [11] of spanners. In our setting, it allows us to create additional
“junction” vertices, thereby allowing us to share high-complexity subpaths. See Figure 1
for an illustration. Indeed, if we are allowed to turn every polygon vertex into a Steiner
point, Clarkson [6] shows that, for any ε > 0, we can obtain a (1 + ε)-spanner of complexity
O((n + m)/ε). However, the number of polygon vertices m may be much larger than the
number of Steiner points we can afford. Hence, we focus on the scenario in which the number
of Steiner points k is (much) smaller than m.

Our contributions. Surprisingly, we show that in this setting Steiner points have only
limited utility. In the full version, we show that there is a set of n sites in a simple polygon
with m = Ω(n) vertices for which any (2 − ε)-spanner (with k < n/2 Steiner points) has
complexity Ω(mn2/k2). Similarly, we give an Ω(mn/k) and Ω(mn1/(1+t)/k1/(1+t)) lower
bound on the complexity of a (3 − ε)- and a (t − ε)-spanner, respectively. These results
dash our hopes for a near linear complexity spanner with “few” Steiner points and constant
spanning ratio.

These lower bounds actually hold in a more restricted setting. Namely, when the metric
space is simply an edge-weighted tree that has m vertices, and the n sites are all placed in

1 De Berg, van Kreveld, and Staals [8] claim that the refinement by Abam, de Berg, and Seraji [2] can be
applied to obtain a (2t + ε)-spanner of the same complexity (increased by a constant factor dependent
on ε). However, some details of how this refinement influences the complexity are missing.
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Figure 1 A spanner in a simple polygon that uses two Steiner points (red squares). By adding
the two Steiner points, we no longer need multiple links that pass through the middle section of P .

leaves of the tree. In Section 2, we show that in this setting we can efficiently construct
a spanner whose complexity is relatively close to optimal. In particular, our algorithm
constructs a 2t-spanner of complexity O(mn1/t/k1/t + n log(n/k)). A slight extension of
this algorithm allows us to deal with a forest as well.

This algorithm for constructing a spanner on an edge-weighted tree turns out to be the
crucial ingredient for constructing low-complexity spanners for point sites in simple polygons.
In particular, in Section 3, we combine some of the techniques developed by de Berg, van
Kreveld, and Staals [8] and the Steiner spanner for a forest to build a 2

√
2t-spanner of

complexity O(mn1/t(log k)1+1/t/k1/t + n log2 n). The main challenge here is to argue that
the links used still have low complexity, even when they are now embedded in the polygon.
For k = O(1) our spanner thus matches the result of de Berg, van Kreveld, and Staals [8].
In the full version, we extend these results to polygonal domains, where we get a 6t-spanner
of similar complexity. Omitted proofs are contained in the full version.

2 Steiner spanners for trees

In this section, we consider spanners on an edge-weighted rooted tree T . We allow only
positive weights. We denote by n the number of leaves and by m the number of vertices
in T . The complexity of a link between two sites (or Steiner points) p, q ∈ T is the number
of edges in the shortest path π(p, q), and the distance d(p, q) is equal to the sum of the
weights on this (unique) path. In the full version, we prove several lower bounds on the
complexity of any spanner that uses k Steiner points. Among these is a general lower bound
of Ω(mn1/(t+1)/k1/(t+1)) for any (t − ε)-spanner. The goal in this section is to construct a
spanner of complexity close to this lower bound. We denote by T (v) the subtree of T rooted
at vertex v. For an edge e ∈ T with upper endpoint v1 and lower endpoint v2, we denote by
T (e) := T (v2) ∪ {e} the subtree of e rooted at v1. The following lemma states that we can
build a low complexity spanner for a tree (without using Steiner points).

▶ Lemma 2.1 (de Berg et al. [8]). For any integer t ≥ 1, we can build a 2t-spanner for T

of size O(n log n) and complexity O(mn1/t + n log n) in O(n log n + m) time.

Spanner construction. To construct a Steiner spanner G, we start by partitioning the sites
in k sets S1, . . . Sk by an in-order traversal of the tree. The first ⌈n/k⌉ sites encountered are
in S1, the second ⌈n/k⌉ in S2, etc. After this, the sites are reassigned into k new disjoint
sets S′

1, . . . S′
k. For each of these sets, we consider a subtree T ′

i ⊆ T whose leaves are the
set S′

i. There are four properties that we desire of these sets and their subtrees.

EuroCG’24
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1. The size of S′
i is O(n/k).

2. The trees T ′
i cover T , i.e.

⋃
i T ′

i = T .
3. The trees T ′

i are disjoint apart from Steiner points.
4. Each tree T ′

i contains only O(1) Steiner points.

As we prove later, these properties ensure that we can construct a spanner on each subtree
T ′

i to obtain a spanner for T . We obtain sets S′
i and the corresponding trees T ′

i as follows.
We color the vertices and edges of the tree T using k colors {1, . . . , k} in two steps. In

this coloring an edge or vertex is allowed to have more than one color. First, for each set
Si, we color the smallest subtree that contains all sites in Si by color i. Note that after this
step there are no uncolored vertices that have an incident descendant edge that is colored.
In the next step, we color the remaining uncolored edges and vertices. These edges and
their (possibly already colored) upper endpoints are colored using a bottom-up approach.
We assign each uncolored edge and its upper endpoint the color with the lowest index i that
is assigned also to its lower endpoint.

After coloring T , we place a Steiner point si at the root of tree Ti formed by all edges
and vertices of color i for i ∈ {1, . . . , k}. Observe that it may happen that more than one
Steiner point is assigned to some vertex. Slightly abusing our notation, we denote the vertex
that the Steiner point si is placed at by si as well.

For each Steiner point si, we define a subtree T ′
i ⊆ T . The sites in T ′

i will be the set S′
i.

The tree T ′
i is a subtree of T (si). When si is the only Steiner point at the vertex, then

T ′
i = T (si) \

⋃
j(T (sj) \ {sj}) for sj a descendant of si. In other words, we look at the tree

rooted at si up to and including the next Steiner points, see Figure 2(a). When si is not
the only Steiner point at the vertex, we include only subtrees T (e) of si (up to the next
Steiner points) that start with an edge e that has color i and no color j > i. See Figure 2(b).
Whenever si has the lowest or highest index of the Steiner points at si, we also include all
T (e′) that start with an edge e′ of color j < i or j > i, respectively.

By creating T ′
i in this way, si is not a leaf of T ′

i . We therefore adapt T ′
i by adding an

edge of weight zero between the vertex at si and a new leaf corresponding to si. On each
subtree T ′

i , we construct a 2t-spanner using the algorithm of Lemma 2.1. These k spanners
connect at the Steiner points, which we formally prove in the spanner analysis.

Analysis. To prove that G is indeed a low complexity 2t-spanner for G, we first show that
the four properties stated before hold for S′

i and T ′
i . We often apply the following lemma,

that limits the number of colors an edge can be assigned by our coloring scheme.

▶ Lemma 2.2. An edge can have at most two colors.

Proof. First of all, observe that an edge can receive more than one color only in the first
step of the coloring. Suppose for contradiction that there is an edge e in T that has three
colors i < j < ℓ. Let v be the lower endpoint of e. Then there must be three sites pi ∈ Si,
pj ∈ Sj , pℓ ∈ Sℓ in T (v). Because these sets are defined by an in-order traversal, pi must
appear before pj in the traversal. Similarly, pj appears before pℓ. Additionally, there must
be a site p′

j ∈ Sj in T \ T (v), otherwise the color j would not be assigned to e. The site p′
j

must appear before pi or after pℓ in the traversal. In the first case, pi must be in Sj as it
appears between two sites in Sj . In the second case, we find the contradiction pℓ ∈ Sj . ◀

▶ Lemma 2.3. The sets S′
i and trees T ′

i adhere to the four stated properties.

We are now ready to prove that our algorithm computes a spanner with low complexity.
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Figure 2 The tree Ti is the subtree whose edges and vertices have color i. A Steiner point
(square) is placed at the root of Ti. The shaded areas show the trees T ′

i . The examples show the
case when the Steiner points are (a) at different vertices or (b) share a vertex.

▶ Theorem 2.4. Let T be a tree with n leaves and m vertices. For any integer t ≥ 1, we can
build a 2t-spanner G for T of size O(n log(n/k)) and complexity O(mn1/t/k1/t +n log(n/k))
in O(n log(n/k) + m + K) time, where K is the output size.

Proof sketch. Let ni and mi denote the number of leaves and vertices in a subproblem T ′
i .

Properties 1 and 4 imply that ni = O(n/k), and property 3 implies that
∑

i mi = O(m).
Lemma 2.1 then implies the size and complexity of G. To bound the spanning ratio, consider
the path π(p, q) between two sites p, q. Properties 2 and 3 imply that this path exits a
subtree T ′

i and enters another subtree only at Steiner points. As within each subtree there
is a 2t-spanner, this is also the spanning ratio of G. ◀

The output size K is either the size or complexity of G, depending on whether we report the
edges implicitly or explicitly. In the full version, we extend the result to a forest of trees.

3 Steiner spanners in simple polygons

We consider the problem of computing a t-spanner using k Steiner points for n point sites in
a simple polygon P with m vertices. To obtain a low-complexity spanner we combine ideas
from [2] and [8] with the forest spanner of Section 2.

We partition the polygon P recursively into two subpolygons Pℓ and Pr by a vertical
line segment λ such that roughly half of the sites lie in either subpolygon. For the line
segment λ, we then consider the shortest path tree SPTλ. This shortest path tree includes
all sites in S and vertices of P . The segment λ is split into multiple edges at the projections
of the sites. See Figure 3 for an example. The tree is rooted at the lower endpoint of λ.
Observe that there are O(m + n) vertices in SPTλ.

Let SPT i,j denote the shortest path tree of the j-th subproblem at the i-th level of the
recursion. We exclude all vertices from SPT i,j that have no site as a descendant. This
ensures that all leaves of the tree are sites. Let F = ∪i,jSPT i,j be the forest consisting of all
trees SPT i,j . A site in S or vertex of P can occur in multiple trees SPT i,j , but they are seen
as distinct sites and vertices in the forest F . For this forest we construct a 2t-spanner GF .
A Steiner point in GF corresponds to either a vertex of P or a point on λ. Let S denote

EuroCG’24
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λ

p

p

λ
SPT i,j

Figure 3 The shortest path tree of λ in P ′ and its SPT i,j . The grey nodes and edges are not
included in SPT i,j , but can be assigned to a T ′

i as indicated by the colored backgrounds. The
squares show the Steiner points in SPT i,j and P ′. The sites in P ′ are colored as the trees T ′

i .

the set of Steiner points. To obtain a spanner G in the simple polygon, we add a link (p, q),
p, q ∈ S ∪ S, to G whenever there is a link in GF between (a copy of) p and q.

To bound the complexity of the links in G, we show that any path in a subtree T ′
i as

defined in Section 2 uses vertices of P in that subtree only. This implies that the bound on
the complexity of the forest spanner also holds for the complexity of the links in the polygon.
As the number of sites and vertices in F is increased by a factor O(log n) compared to n

and m, we obtain the following theorem.

▶ Theorem 3.1. Let S be a set of n point sites in a simple polygon P with m vertices, and t ≥
1 be any integer constant. For any k ∈ {1, . . . , n}, we can build a geodesic 2

√
2t-spanner with

at most k Steiner points, size O(n log n log(n/k)), and complexity O(mn1/t(log k)1+1/t/k1/t+
n log2 n) in O(n log2 n + m log n + K) time, where K is the output size.
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