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Abstract
Let S be a set of n points in the Euclidean plane. A simple polygon of S is a simple polygon such
that every vertex is a point of S. A simple polygon P of S is an at most k-out polygon if at most k

points of S are outside P and the other points are either vertices of P or inside P . In this paper, we
consider the problem of enumerating all the at most k-out polygons of S. We propose an algorithm
that enumerates all the at most k-out polygons in O(n3 log n)-delay and O(n2) space.

1 Introduction

Let S be a set of n points in the Euclidean plane and general position, i.e., no three points
are collinear. A simple polygon of S is a simple polygon such that every vertex is a point in
S. In this paper, we focus on enumeration (or listing) problems of simple polygons of S.

For several classes of simple polygons of S, enumeration problems have been studied. A
simple polygon of S is a non-crossing spanning cycle of S if every point in S is a vertex
of the polygon. The non-crossing spanning cycles are appealing objects in the area of
computational geometry and have been studied in the contexts of counting [6, 8, 15], random
generation [1, 12, 13, 17], and enumeration [8, 15]. It was an open problem whether there
exists an output-polynomial1 time enumeration algorithm for non-crossing spanning cycles.
Yamanaka et al. [16] proposed a new class of simple polygons, which is a relaxed version of
the non-crossing spanning cycles. A surrounding polygon of S is a simple polygon such that
every point in S is either a vertex of the polygon or inside the polygon. They also proposed
an algorithm that enumerates all the surrounding polygons of S in O(n2 log n) time for each.
The running time was improved to O(n2) time for each [14]. Very recently, by using the
enumeration algorithm of the surrounding polygons, Eppstein [5] showed that non-crossing
spanning cycles of a point set can be enumerated in output-polynomial time.

Empty convex polygons are also an important class of simple polygons of S. A simple
polygon of S is an empty convex polygon if the polygon is convex and every point is either a
vertex of the polygon or outside the polygon. The empty convex polygons have been studied
in the contexts of counting [3, 7, 11, 10] and enumeration [4]. Terui et al. [14] proposed a new
class of simple polygons, which is a generalization of the empty convex polygons. A simple
polygon of S is an empty polygon if every point in S is either a vertex of the polygon or
outside the polygon. They proposed an algorithm that enumerates all the empty polygons
of S in O(n2) time for each.

In this paper, we propose a new class of simple polygons of S. A simple polygon P of
S is an at most k-out polygon if there are at most k points outside P and the other points
are either vertices of P or inside P . See Figure 1 for examples. The class of at most k-out

1 An enumeration algorithm is output-polynomial if the algorithm enumerates all the objects in
polynomial-time of the input and output size.
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Figure 1 (a) A given point set S and (b), (c) two at most 3-out polygons of S.

polygons is a generalization of the class of surrounding polygons in the sense that the set of
at most k-out polygons of S coincides with (1) the set of surrounding polygons of S when
k = 0 and (2) the set of simple polygons of S when k = n − 3. We design an algorithm
that enumerates all the at most k-out polygons of S in polynomial delay2. Our enumeration
algorithm is based on the reverse-search technique by Avis and Fukuda [2].

Due to space limitations, all the proofs are omitted.

2 Preliminaries

Let S be a set of n points in the Euclidean plane. Throughout this paper, we assume that
S is in general position, i.e., no three points are collinear. The upper-left point of S′ ⊆ S is
the point with the minimum x-coordinate among S′. If ties exist, we choose the point with
the maximum y-coordinate among them.

A sequence P = ⟨p1, p2, . . . , pt⟩, (t ≤ n), of points in S is a simple polygon of S if
the alternating sequence ⟨p1, (p1, p2), p2, (p2, p3), . . . , pt, (pt, p1)⟩ of points and line segments
forms a simple polygon. Let P = ⟨p1, p2, . . . , pt⟩ be a simple polygon of S. We suppose
that the vertices of P appear in counterclockwise order starting from the upper-left vertex
p1 among {p1, p2, . . . , pt}. We denote by in(P ) ⊆ S and out(P ) ⊆ S the sets of the points
inside and outside P , respectively. Note that each of in(P ) and out(P ) does not include any
vertex on P . We denote by pi ≺ pj if i < j holds, and we say that pj is larger than pi on
P . pred(pi) and succ(pi) denote the predecessor and successor of pi of P , respectively. Note
that the successor of pt is p1. For two edges (pi, succ(pi)) and (pj , succ(pj)) of P , we say
that (pj , succ(pj)) is larger than (pi, succ(pi)) if i < j holds. Suppose that P has 4 or more
vertices. A vertex pi of P is embeddable if the triangle consisting of pred(pi), pi, and succ(pi)
does not intersect the interior of P and includes no point in out(P ). An embedment of an
embeddable vertex pi of P is to remove two edges (pred(pi), pi) and (pi, succ(pi)) and insert
the edge (pred(pi), succ(pi)). We denote by emb(P, pi) the simple polygon obtained from P

by applying the embedment of pi to P . See Figure 2 for examples. A point p ∈ out(P ) is
insertable to an edge (pi, succ(pi)) of P if the triangle consisting of p, pi, and succ(pi) does not
intersect the interior of P and includes no point in out(P ). For a point p ∈ out(P ) insertable
to an edge (pi, succ(pi)) of P , the insertion of p to (pi, succ(pi)) is to remove (pi, succ(pi))
and insert the two edges (pi, p) and (p, succ(pi)). We denote by ins(P, (pi, succ(pi)), p) the
simple polygon obtained from P by applying the insertion of p to (pi, succ(pi)) on P . See
Figure 3 for examples.

2 An enumeration algorithm is polynomial delay if the algorithm enumerates all the objects such that
the delay time of any two consecutive outputs is bounded by a polynomial of the input size.
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Figure 2 (a) A simple polygon of a point set S = {p1, p2, . . . , p11}, where p4 and p8 are embed-
dable vertices. (b) The simple polygon of S obtained from the polygon of (a) by embedding p4. (c)
The simple polygon of S obtained from the polygon of (a) by embedding p8.
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Figure 3 (a) An at most 2-out polygon of a point set with no embeddable vertices and out(P ) =
{p9, p11}. (b) The polygon obtained from the polygon of (a) by inserting p11 to (p3, p4). (c) The
polygon obtained from the polygon of (a) by inserting p9 to (p6, p7).

The convex hull, denoted by CH(S), of S is the simple polygon with the smallest area
that contains all the points in S. A simple polygon P of S is an at most k-out polygon of S

if |out(P )| ≤ k holds. Figure 1 shows examples of at most k-out polygons. We denote the
set of the at most k-out polygons of S by S≤k(S).

3 Enumeration of at most k-out polygons

Let S be a set of n points in the Euclidean plane. In Section 3.1, we define a tree structure
on S≤k(S), called a family tree. By traversing the family tree, we enumerate all the polygons
in S≤k(S). In Section 3.2, we design an algorithm to traverse the family tree.

3.1 Family tree of at most k-out polygons
Let P = ⟨p1, p2, . . . , pt⟩ (t ≤ n) be a polygon in S≤k(S) \ {CH(S)}. Suppose that p1 is the
upper-left vertex of {p1, p2, . . . , pt} and the vertices of P are arranged in the counterclockwise
order. Let p ∈ out(P ) be a point insertable to an edge (pi, succ(pi)). Then, we define
the distance of (pi, succ(pi)) from p as the Euclidean distance between the midpoint of
(pi, succ(pi)) and p. The distance from p to (pi, succ(pi)) is denoted by dist((pi, succ(pi)), p).
Note that, if p is not insertable to an edge (pi, succ(pi)), the distance from p to (pi, succ(pi))
is not defined. We denote the closest edge of P among the edges insertable from p by
cloe(P, p). If ties exist, the largest edge is cloe(P, p).

We denote the set of the points insertable to at least one edge of P by iout(P ) ⊆ out(P ).
A point p ∈ iout(P ) is the closest outside point, denoted by clop(P ), of P if

dist(cloe(P, p), p) = min
q∈iout(P )

{dist(cloe(P, q), q)}

EuroCG’24
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P par(P) par(par(P))

par(par(par(P))) par(par(par(par(P))))

Figure 4 A parent sequence of at most 2-out polygon P .

holds. If ties exist, the point with the largest x-coordinate and y-coordinate values is chosen
as the closest outside point.

▶ Lemma 3.1. Let P be a polygon in S≤k(S) \ {CH(S)}. There exists either an embeddable
vertex of P or an insertable point in out(S).

We denote by larg(P ) the largest embeddable vertex of P . For convenience, we define
larg(P ) := ∅ if P has no embeddable vertex. Then, we define the parent of P as follows:

par(P ) :=

{
emb(P, larg(P )) if P has an embeddable vertex,
ins(P, cloe(P, clop(P )), clop(P )) otherwise.

▶ Lemma 3.2. Let P be an at most k-out polygon in S≤k(S) \ {CH(S)}. Then, the parent
par(P ) of P is an at most k-out polygon of S, always exists and is unique.

By repeatedly finding the parents from P , we obtain a sequence of at most k-out polygons
of S. The parent sequence PS(P ) = ⟨P1, P2, . . . , Pℓ⟩ of P is a sequence of at most k-out
polygons such that the first polygon is P itself and Pi is the parent of Pi−1 for each i =
2, 3, . . . , ℓ. See Figure 4 for an example. As we can see in the following lemma, the last
polygon in a parent sequence is always CH(S).

▶ Lemma 3.3. For a polygon P ∈ S≤k(S) \ {CH(S)}, the last polygon of PS(P ) is CH(S).

From Lemma 3.3, for any at most k-out polygon, the last polygon of its parent sequence
is the convex hull of S. By merging the parent sequences for all the at most k-out polygons
in S≤k(S), we have a tree structure rooted at CH(S). We call such a tree the family tree of
S≤k(S). An example of the family tree is shown in Figure 5.

3.2 Enumeration algorithm of at most k-out polygons
A pair (pi, p) of a vertex pi of P and a point p ∈ in(P ) is digable if the triangle consisting
of pi, p, and succ(pi) lies inside P and does not contain any point of S. A dig operation
to a digable pair (pi, p) removes the edge (pi, succ(pi)) and inserts the two edges (pi, p)
and (p, succ(pi)). dig(P, pi, p) denotes the resulting polygon. Note that dig(P, pi, p) is also
a polygon in S≤k(S). A vertex pi of P is removable if (1) |out(P )| < k holds, (2) the
triangle consisting of pred(pi), pi, and succ(pi) lies inside P , and (3) the triangle does not
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Input points

Figure 5 An example of a family tree

contain any point of S. A remove operation to a removable vertex pi removes the two edges
(pred(pi), pi) and (pi, succ(pi)), and inserts an edge (pred(pi), succ(pi)) to P . rmv(P, pi)
denotes the resulting polygon. Note that rmv(P, pi) is also a polygon in S≤k(S).

It can be observed that dig(P, pi, p) and rmv(P, pj) are children of P if P = par(dig(P, pi, p))
and P = par(rmv(P, pj)) holds, respectively. We say that a digable pair (pi, p) and a remov-
able vertex pj are active if dig(P, pi, p) and rmv(P, pj) are children of P , respectively. Now,
we have the following lemma.

▶ Lemma 3.4. Let P = ⟨p1, p2, . . . , pt⟩, (t ≤ n), be an at most k-out polygon of a set of n

points. Let (pi, p) be a digable pair, where pi is a vertex of P and p ∈ in(P ), and let pj be a
removable vertex of P . Then,

1. (pi, p) is active if p = larg(dig(P, pi, p)) holds and
2. pj is active if rmv(P, pj) has no embeddable vertex, pj = clop(rmv(P, pj)) holds, and

(pred(pj), succ(pj)) = cloe(rmv(P, pj), pj).

As stated in the following lemma, we can check whether a given pair (pi, p) and a given
vertex pj of P are active, respectively.

▶ Lemma 3.5. Let P be an at most k-out polygon of a set S of n points.

1. Given a pair (pi, p), where pi is a vertex of P and p ∈ in(P ), and given larg(P ), one can
check whether (pi, p) is active in O(log n) time and

2. given a vertex pi and the number of the embeddable vertices, denoted by #emb(P ), of P ,
we can check whether pi is active in O(n2 log n) time

with O(n2)-time preprocessing and O(n2)-additional space for triangular range queries on S

and O(n log n)-time preprocessing and O(n)-additional space for ray shooting queries on P .

EuroCG’24
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Algorithm 1: Enum(S, k)
Construct the convex hull CH(S) of the input point set S;
Preprocess S for triangular range queries;
Find-Children(CH(S), ∅, 0);

Algorithm 2: Find-Children(P = ⟨p1, p2, . . . , pt⟩, pj , #emb(P ))
Output P ;
Preprocess P for ray shooting queries;
if pj = ∅ then q = p0;
else q = pred(pj);
/* Note that pj = larg(P ) and p0 is a sentinel vertex satisfying p0 ≺ pi

for each i = 1, 2, . . . , t. */
foreach point pi with q ≺ pi do

foreach point p ∈ in(P ) do
if the pair (pi, p) is active then
Find-Children(dig(P, pi, p), p, #emb(dig(P, pi, p)));

foreach vertex pi of P do
if pi is active then Find-Children(rmv(P, pi), ∅, #emb(rmv(P, pi)));

Now, we are ready to describe the pseudo-codes of our enumeration algorithm. Algo-
rithm 1 is the main routine and Algorithm 2 is a subroutine to enumerate children.

Algorithm 1 first constructs the convex hull CH(S) of the input point set S. Then, it
executes a preprocess to S for efficiently answering triangular range queries. Note that the
preprocess for triangular range queries is executed only once in our algorithm. Algorithm 2
first outputs P and executes a preprocess to the given polygon P for efficiently answering
ray shooting queries. The preprocess is done once for a recursive call. Next, the algorithm
enumerates all the children of P by dig and remove operations. Note that the above two
preprocesses allow us to use Lemma 3.5. Hence, we can check whether or not candidate
pairs and vertices are active. We have our main theorem.

▶ Theorem 3.6. Let S be a set of n points in the Euclidean plane, and let k be an integer
with 0 ≤ k ≤ n − 3. One can enumerate all the at most k-out polygons in S≤k(S) in
O(n3 log n|S≤k(S)|) time and O(n2) space.

By applying the alternative output method [9], we can enumerate in polynomial-delay.

▶ Corollary 3.7. Let S be a set of n points in the Euclidean plane, and let k be an integer
with 0 ≤ k ≤ n − 3. One can enumerate all the at most k-out polygons in S≤k(S) in
O(n3 log n)-delay and O(n2) space.

4 Conclusions

We have designed an algorithm that enumerates all the polygons in S≤k(S) in O(n3 log n)-
delay and O(n2) space, where S is the set of n points in Euclidean plane and general position.
Our future work include improving the running time of the algorithm.
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