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Abstract
This paper introduces LITE (Lattice Integrated Topological Embedding), a novel approach

to converting persistence diagrams into finite-dimensional vectors using discrete measure-based
functionals. Our primary focus in this work is on identity and frequency-based transforms but we do
not restrict our framework to them. Our comparative studies reveal that LITE is competitive with,
and often superior to, topological data analysis methods from the literature in common benchmark
classification tasks. This work offers a new viewpoint for data scientists, challenges prevailing
diagram vectorization techniques, and lays groundwork for simpler, more effective use of persistence
diagrams in machine learning.

Related Version arXiv:2312.17093

1 Introduction

Topological Data Analysis (TDA) has emerged as a transformative approach in data science,
providing useful insights into the underlying structure of complex datasets through the
capture of their topological features. The effectiveness of machine learning algorithms,
particularly in pattern recognition and feature extraction, underscores the importance of
understanding data geometry. TDA offers a more sophisticated exploration of this geometric
landscape, leading to numerous successful applications across various fields. Notable examples
include neuroscience [2, 9], materials science [24], and environmental science [11].

Persistent homology, a core methodology in TDA, systematically keeps track of the ap-
pearing and disappearing of topological characteristics across a sequence of nested topological
spaces [12, 25]. These topological features are typically represented through persistence
diagrams (PDs). However, the space of these diagrams is unstructured: they vary in the
number of points they contain, and operations like addition and scalar multiplication are not
clearly defined. This lack of structure [4, 18], poses significant challenges in integrating PDs
into machine learning workflows, where such a space is often crucial for diverse techniques
including classification, neural networks, and feature selection.

Precise Problem Formulation. The unstructured nature of PDs, hinders their straight-
forward integration into traditional machine learning pipelines. This necessitates the de-
velopment of innovative embedding techniques to effectively transform these diagrams into
elements within a space suitable for machine learning workflows.

1.1 Related Work and Contribution
To address the unstructured nature of persistence diagram spaces, two main methods have
been highlighted in literature: vectorization and kernel-based methods. Vectorization includes
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Persistence Images [1] and Persistence Landscapes [3], with their multi-parameter extensions
for increased robustness [5, 23], and modern techniques like ATOL, which quantizes diagram
spaces, and PersLay, introducing a NN architecture for vectorization. The kernel-based
approach crafts specific kernels, such as the multi-scale [19], weighted Gaussian [16], and
sliced Wasserstein kernels [7], offering performance comparable to vectorization methods,
despite representational and scalability challenges.

This work contributes to the computational geometry literature by introducing LITE,
a new vectorization framework in TDA that conceives PDs as measures in R2

+, discretizes
these measures on a lattice, and transforms them into finite-dimensional vectors through
identity and frequency-based transforms. Our approach, distinguished by its simplicity and
effectiveness, challenges the prevailing trends in TDA literature on embedding diagrams into
vector spaces. We achieve results comparable to those in the TDA literature on classical
graph classification benchmark tasks, and with frequency-based transforms, we even often
surpass them.

1.2 Basic Definitions

In the realm of computational geometry, persistent homology is a key technique for analyzing
topological features across scales. It utilizes a filtration process, forming a sequence of nested
topological spaces X0 ⊆ X1 ⊆ · · · ⊆ Xn = X, to dissect the dataset’s topological structure at
various levels of granularity. This analysis is typically represented using PDs. These diagrams
are multisets of points in the extended half-plane Ω = {(x, y) ∈ R2|x ≤ y}, including the
diagonal ∂Ω = {(x, x) ∈ R2} with infinite multiplicity. Each point (x, y) in the diagram
corresponds to a topological feature, with x and y indicating the birth and death of the
feature, respectively. The persistence of a feature is quantified as y − x, representing its
lifespan within the filtration. For our analysis, we assume that all features in our PDs exhibit
finite persistence. To compare PDs, we use the p-Wasserstein distance. For diagrams D1
and D2, it is mathematically defined as:

Wp (D1, D2) =
(

inf
γ

∑
x∈D1

∥x − γ(x)∥p
p

) 1
p

Here, γ ranges over all bijections between D1 and D2, and ∥ · ∥p denotes the p-norm on R2.
In [8], an alternative interpretation of persistence diagrams is presented, defining them as

measure expressed by µ =
∑

x∈D m(x)δx, where δ is the Kronecker delta, D ⊂ Ω is locally
finite, and m(x) ∈ N is the multiplicity of each x, for all x ∈ D. This results in µ being a
locally finite measure supported on Ω with an integer mass on each point of its support.

Following [10], we define the p-persistence of a measure µ, for finite p ≥ 1, as Persp(µ) :=∫
Ω d(x, ∂Ω)p dµ(x). Here, the term d(x, ∂Ω) := infy∈∂Ω d(x, y) signifies the distance from a

point x ∈ Ω to its orthogonal projection onto the diagonal ∂Ω. We define Mp as the set
of all persistence measures with finite p-persistence. Similar to PDs, we use the p-Optimal
Partial Transport distance to compare persistence measures, which we omit defining here
due to space constraints. When the measures have the same mass over the space Ω, this
metric coincides with the p-Wasserstein distance. For detailed information, see our extended
arXiv version [15] and [13] for an introduction to the field.
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2 Methodology

This section presents the LITE vectorization process, outlined in Algorithm 1. All proofs are
provided in extended version on arXiv [15].

Algorithm 1 Lattice Integrated Topological Embedding (LITE)
Require: f : Transform Function with Hyperparameters, Grid {N, M}, Finesse ∆, PDs list

1: Discretize PDs on grid
2: Compute Functional on grid

Ensure: Embedding of PDs

2.1 Discretized Persistence Diagrams
The framework of our work is rooted in the computation of discretized persistence diagrams
(PDs), where measures are confined to allocating mass exclusively at points on a lattice
measure space Γp, as detailed in Lemma 2.1. The discretization process consists of two main
steps: a shifting step, where we transform the measure µ ∈ Mp induced by a persistence
diagram using τ(µ) = (x1, x2 − x1) for all (x1, x2) such that µ(x1, x2) ̸= 0, to convert birth-
death coordinates to birth-persistence coordinates; and a mapping step, utilizing Proposition
2.2 to obtain a persistence measure ν⋆ on Γp.

▶ Definition 2.1. Let GN,M be a regular grid on R2
+ consisting of points {(xi, yj) | xi =

i∆, yj = j∆, i = 0, . . . , N − 1, j = 0, . . . , M − 1} where ∆ is the grid finesse. Define S as the
σ-algebra containing all subsets of GN,M , and µ : S → [0, ∞] as a measure such that for
any A ∈ S, µ(A) =

∑
(xi,yj)∈A mij ∈ Mp where mij is an integer mass assigned to the point

(xi, yj). The triple Γp = (GN,M , S, µ) constitutes a discrete measure space.

▶ Proposition 2.2. Let Γp ⊂ Mp be a discrete measure space as outlined in Definition
2.1. For a persistence diagram D and a measure µ =

∑
x∈τ(D) m(x)δx ∈ Mp, consider the

1-Wasserstein distance W1 between µ any ν ∈ Γp. Consider the optimization problem

ν⋆ = arg min
ν′∈Γp

W1(µ, ν′), s.t. ν′(GN,M ) = µ(D) .

If we choose ν =
∑

x∈τ(D) m(Θ(x))δΘ(x), where Θ : R2
+ → GN,M is a mapping that assigns

each point x ∈ τ(D) to the closest point in GN,M minimizing ∥x − x′∥1, then it holds that
ν = ν⋆ is the solution to the optimization problem.

2.2 Functionals on Persistence Measures
In this study, we define a functional Ψµ(f) for µ ∈ Γp as Ψµ(f) :=

∫
Ω f(x, ·)dµ(x) =∑

x∈D m(x)f(x, ·), utilizing the discrete nature of µ. This functional maps from lattice
measure space Γp to a function space F(Γp). Here we focus on three functions for frequency
and time-frequency distribution, f(x, ·): the Gabor Transform and the Wavelet Transform
for time-frequency distributions, along with the Fourier Transform for frequency analysis.
These transforms map to the frequency domain, situating F(Γp) as a vector space. We
additionally employ the identity transform f(x, ·) = x. The rationale for these transforms
is detailed in our extended work on arXiv [15]. All these transforms output coefficients or
magnitude-phase numbers on a lattice. We convert these into vectors by flattening the lattice
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into a one dimensional array.

While it is possible to establish the stability of our vectorization method for a fixed
∆ > 0, assuming that for all x ∈ D and x′ ∈ D′, the condition ∥x − x′∥ > ∆ holds, proving
stability with a universal constant for general PDs is not feasible. This limitation arises due
to the existence of scenarios where points from PDs can be made arbitrarily close but still
are mapped to different bins in the grid.

3 Results

In this section, we concisely demonstrate how LITE preserves topological information, rivaling
state-of-the-art methods in TDA. Our experiments focus on two classification tasks: graph-
based and point cloud classification from dynamical systems. Experimental setups and
implementation details of our methods for the Graph Classification tasks are reported in our
arXiv version, [15].

3.1 Graph Classification
We evaluated our methods using established graph classification benchmarks. This included
social graph datasets IMDB-B and IMDB-M, as well as chemoinformatics and bioinformatics
datasets COX2, DHFR, MUTAG, and PROTEINS, all sourced from [22].

The highest accuracies achieved with our frequency transforms (LITE) as well as the
accuracy for the identity transform (LITE-IdT) are presented in Table 1.

Dataset SV† P† MP† Perslay⋆ ATOL⋆ BBA† LITE (Our) LITE-IdT (Our)
Mean⋆ Max† Mean⋆ Max†

MUTAG 88.3 79.2 86.1 89.8 88.3 90.4 89.8 91.7 89.2 90.7
COX2 78.4 76.0 79.9 80.9 79.4 81.2 80.6 82.4 79.4 80.4
PROTEINS 72.6 65.4 67.5 74.8 71.4 74.7 72.8 73.6 72.2 73.2
DHFR 78.4 70.9 81.7 80.3 82.7 80.5 81.8 83.1 81.2 82.7
IMDB-B 72.9 54.0 68.7 71.2 74.8 69.4 68.4 69.8 67.2 68.3
IMDB-M 50.3 36.3 46.9 48.8 47.8 46.7 43.7 44.4 43.1 44.3
Table 1 Comparative Analysis of Classification Accuracy with topological methods on Benchmark

Graph Datasets. Note: Symbol † compare with Max metric, while ⋆ with Mean due to different
experimental setup.

Aligning with [6], [21], and [14], we benchmark our frequency transforms against leading
TDA methods (SV [22], P[1, 3], MP [5, 7, 16, 19], Perslay [6], ATOL [21] and BBA [14],
see arXiv version [15] for more details on these methods). In Table 1, our results with the
frequency transforms are at the state-of-the-art for the Biomedical benchmark datasets, con-
sistently outperforming traditional methods like P and MP, and rivaling advanced techniques
like ATOL, PersLay1, SV, and BBA. Remarkably, the identity transform often surpasses
P, MP, SV and ATOL in biomedical tasks, challenging current embedding approaches in
TDA literature. Our method’s effectiveness, using simple grid discretization, critiques the
trend towards complex vectorizations, suggesting straightforward techniques might be more

1 Direct comparison with Perslay for IMDB, PROTEINS is limited due to Perslay’s unique preprocessing [21].
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efficient. Although our methods demonstrate very good performance overall, it should be
acknowledged that for the Social datasets, they are slightly below the current best methods.2

3.2 Dynamical systems (Orbit5K Dataset)
The Orbit5K dataset, used in TDA for classifying DNA microarray flows, features chaotic
trajectories in the unit cube [0, 1]2 with topologies varying by a parameter ρ > 0 (see Figure
1). For each ρ class in the Orbit5K dataset, we form point clouds by iterating the following
recursive equations for a sequence of 1000 points, beginning from a random initial point
(x0, y0) in [0, 1]2:

xn+1 = xn + ρyn(1 − yn) mod 1,

yn+1 = yn + ρxn+1(1 − xn+1) mod 1.

We generated 700 training and 300 testing datasets for each ρ ∈ {2.5, 3.5, 4, 4.1, 4.3} class,
conducting a one-versus-one classification and using persistence diagrams for both H1 and
H0 homologies, following the approach described in [17]. We employ vanilla random forest
classifier as in the graph classification tasks and the same transforms with hyperparameter
settings (see extended version on arXiv). We additionally adopt a regular square grid of
64×64 and 128×128 for all transforms in this learning task. Our highest accuracy results are
in Table 2, with the timings of the various algorithms to vectorize the persistence diagrams
of the dataset presented in Table 3.

Figure 1 Representative Point Cloud Samples from the Orbit5K Dataset.

Aligning with [6] and [14], our comparison includes four kernel methods (PSS-K [20],
PWG-K [16], SW-K [7], PF-K [17]), one neural network (Perslay from [6]), Persistence Images
(PI from [1]), and a rectangle-based classification (BBA from [14]). Our frequency-based
methods surpass most of the kernel methods, PI, BBA and Perslay in performance, though
they fall slightly behind the NN. The identity transform outperforms certain kernel methods
and is comparable to PI, but generally shows suboptimal performance. Regarding the timings
of some of the vectorization methods, from Table 3, it is clear that our method is the
most efficient among all the others in the table, providing a significant improvement in the
computational time.

PSS-K PWG-K SW-K PF-K PI Perslay BBA LITE (Our) LITE-IdT (Our)
72.38 76.63 83.6 85.9 82.5 87.7 83.3 84.6 82.0
Table 2 Comparative Classification Accuracy on the Orbit5K Dataset.

2 Our work replicates the biomedical dataset results from [21], but applying their code to social networks
yielded a 4% lower performance, in comparison to what we reported directly from thier work in Table 1.

EuroCG’24



14:6 Lattice Integrated Topological Embedding

PSS-K PWG-K SW-K PF-K PI LITE-FOUR LITE-GABOR
126.8 14.07 10.08 68.56 73.90 9.15 10.12

LITE-coif1 LITE-coif2 LITE-coif3 LITE-db1 LITE-sb2 LITE-db3 LITE-IdT
9.53 10.25 10.33 9.21 9.33 9.50 8.84

Table 3 Comparative timings in seconds averaged over 5 runs required by various methods to
vectorize the Orbit5K Dataset. For LITE and PI, a grid of 1 × 32 for the diagram of H0 and 32 × 32
for the H1 diagram has been used. For the PSS-K, PF-K, and PWG-K methods, an RBF kernel
approximation has been used to speed up computations.

4 Conclusions and further work

Our study introduces a novel vectorization framework for persistence diagrams using
functional-based, particularly frequency, transforms. This method is effective and often
outperforms existing TDA vectorization techniques in various graph and synthetic dynamical
particle classifications. Its simplicity and potential for enhancement, including the use of
neural networks for the function transform f(x, ·) to improve performance and applicability,
are promising directions for future research.
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