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Abstract
We consider the Set Cover Problem for geometric neighborhoods: Given a family R = {R1, . . . , Rn}
of n connected regions in the plane, find as few lines as possible, such that each region is intersected
by some line. Even special cases of this problem are known to be NP-complete, and a spectrum of
work has focused on theoretical results such as approximation algorithms; previous practical work
has been limited, and included the case in which each Ri is a single point, and the task is to decide
whether a small number of lines suffice. We present exact methods for a variety of more general
scenarios, including provably optimal solutions for sets with up to 2000 points, and near-optimal
solutions for sets of polygons with up to 650 polygonal regions and a total of about 4000 vertices.

1 Introduction

The Set Cover Problem (SCP) is an NP-complete problem of fundamental importance,
both in theory and practice. For general instances, the greedy algorithm [7] provides an
O(log n)-approximation algorithm, which is best possible in the worst case, unless P=NP.
Many variants of the SCP are geometric, e.g., using line segments, rays, convex polygons or
star-shaped polygons for covering point sets, lines or other geometric objects. The geometry
of an SCP may be helpful: For covering discrete point sets by lines with a limited number
of directions we can get constant-factor approximation algorithms [13]. The underlying
geometry can also give rise to additional difficulties: As shown by Abrahamsen et al. [1], the
Art Gallery Problem (which amounts to covering a simple polygon by a minimum number
of star-shaped subpolygons) is ∃R-complete, making it unlikely that it even belongs to NP.

Our Contributions

We study practically useful methods for covering a set R of n geometric regions by a smallest
number of lines, see Figure 1 for examples. In particular, we provide the following results.

Different methods for efficiently computing a discrete set of candidate lines that limit
the size of the ensuing set cover instance.
Exact approaches for near-optimal solutions for covering points or polygons with lines.
An experimental evaluation for a wide spectrum of benchmark instances.

Related Work

There is a large body of work on geometric Set Cover and Hitting Set problems, so we only
point to a very limited selection of most closely related work; for a more extensive overview,
see the relatively recent paper by Fekete et al. [13], who considered covering a finite set of
points in the plane by a minimum number of lines with a limited number of different slopes.
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PLC: n=400, OPT=76 GLC: n=50, OPT=9 GLC: n=100, OPT=16

GLC: n=225, OPT=28

Figure 1 Small example instances that were solved optimally. From left to right: A PLC instance
with 400 points and an optimal solution with 76 lines. Three GLC instances (randomly generated
squares on a grid, randomly generated polygons in a circle, and the TSPLIB tsp225 [5] instance)
and their optimal solutions.

The Point Line Cover (PLC) problem [22] asks for a smallest set of lines to cover a given
set of points. It was shown to be NP-hard [25], APX-hard [6] and Max-SNP Hard [23].
Grantson and Levcopoulos [18] developed an O(log OPT ) algorithm for the PLC. Hassin
and Megiddo [19] studied hitting geometric objects with the fewest lines having a small
number of distinct slopes. Gaur and Bhattacharya [15] considered covering points with
axis-parallel lines in d dimensions. Many other problems related to finding a small set of
lines that hit a given set of objects have also been studied; see, e.g., [8, 9, 12, 16, 17, 21, 24].

When considering the coverage of geometric regions (i.e., neighborhoods) instead of dis-
crete points, Aronov et al. [3] provide an O(log log OPT )-approximation for hitting set for
axis-aligned rectangles and axis-aligned boxes in 3D, based on ϵ-nets. Hitting a set of unit
disks has been considered for finding a minimum number of relays for connecting a given set
of relays [10]. While the simple greedy approximation algorithm is efficient and worst-case
optimal, a logarithmic approximation factor is not good enough in practice. Estivill-Castro
et al. [11] evaluated implementations for the PLC, but only considered cases in which the
optimal solution is known to be small, i.e., OPT ≤ 7.

2 Preliminaries

Given a point set P ⊂ R2 of size n, the Point Line Cover Problem (PLC) asks for a
smallest set of lines that covers all points in P. We denote the set of all possible lines as L.
In the General Line Cover Problem (GLC), we are given a set of disjunct regions R
and ask for a smallest set of lines that intersect all regions in at least one point. It is easy to
see that a line intersects a region iff it intersects its convex hull, so we can restrict ourselves
to convex regions; moreover, we focus on compact, disjoint regions with O(1) complexity.

3 Computing a Candidate Set L

Computing optimal solutions can be subdivided into two steps, as follows.

1. Compute a discrete set L of candidate lines that contains an optimal line cover.
2. Solve the resulting Set Cover instance.

In theory, the first step is comparatively easy, while the second is NP-hard. However,
the focus on practical computation implies that merely polynomial-time computation of a
candidate set is insufficient, especially when aiming for small input for the ensuing SCP. A
variety of possible approaches for solving those SCP instances is considered in Section 4.
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3.1 Point Line Cover
For the PLC, Gajentaan and Overmars [14] showed that determining whether a set of n

points in the plane has three collinear points is 3SUM-hard. Even though subquadratic
algorithms for 3SUM exist [2, 4], the improvements over O(n2) are often times marginal.
We propose an O(n2) algorithm for determining L for a given set of points P. The algorithm
iterates over all combinations of two points pi, pj ∈ P and calculates a tuple tij = (m, b)
with m being the gradient of the line ℓ between pi, pj and b being the y value of ℓ at x = 0.
While iterating, we calculate a hash h(tij) to identify every line in L. This allows us to add
all collinear points to a set within a single pass over all point pairs.

3.2 General Line Cover
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Figure 2 (Left) Four tangents from Lemma 3.1. The red tangents are interior, the blue ones
exterior. In this example each polygon has four tangential points. (Right) Rotating tangent algo-
rithm to compute L.

Tangent Lines. For two disjoint compact, convex regions in the GLC, we can reduce
the set of candidate lines to two exterior tangents using Lemma 3.1. Even neglecting the
required time for computing a pair of tangents for regions with a significant number of
vertices, the runtime for computing L remains O(n3). This makes this precomputation
prohibitively expensive, even before computing the SCP solution. See Section 5 for an
experimental evaluation.

▶ Lemma 3.1. Let ri and rj be two disjoint compact, convex regions in the plane.
1. There are four extremal lines that intersect both ri and rj.
2. It suffices to consider exterior tangents as potential lines.

Proof. The first claim is relatively straightforward by considering degrees of freedom and
events during continuous modification of a stabbing line.

For the second claim, consider a set of intersected regions r1, . . . , rs (in this order) and
an interior tangent between ri1 and ri2 with i1 < i2; w.l.o.g., let t have positive slope. For
any tangential position, we distinguish between regions on the left and right; w.l.o.g., let ri1

be to the left and ri2 to the right of t.
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Now rotate t continuously in clockwise direction while maintaining tangential position
relative to ri1 . Then all intersections remain intact, until a tangential event with a region
ri3 ̸= ri1 happens.

We distinguish:
1) If i3 > i1, then ri3 is to the left, and we have an exterior tangent for ri1 and ri3 that

stabs r1, . . . , rs.
2) If i3 < i1, then ri3 is to the right. Then we continue analogously, rotating t counter-

clockwise around ri3 until we get an event at a region ri4 , with further case distinction.
2.1) If i4 > i3, then ri3 is to the right, and we have an exterior tangent for ri3 and ri4

that stabs r1, . . . , rs.
2.2) If i4 < i3, then ri4 is to the right. This brings us back to the same situation we

had with ri1 and ri2 , but with i4 < i1, so we can continue in this manner, leading
to a sequence i1, i2, i3, i4, . . . of event regions. If the current tangential index ij ever
increases, we have identified an exterior tangent; however, the available index set is
finite, so a decrease below ij = 1 guarantees an exterior tangent.

◀

Rotating Tangents. A more efficient method for computing a candidate set of tangent
lines L is illustrated in Figure 2 (right). This Rotating Tangent (RT) algorithm considers
a tangent line that rotates continuously around a compact convex region Ri, and exploits
the fact that it intersects another disjoint compact in a contiguous circular arc of directions.
This induces a circular arc graph for each of the regions; any maximal clique in this graph
corresponds to a maximal subset of intersected regions [20].

Therefore, we can compute all maximal subsets containing a given region in linear time
after presorting the events. Computing the tangents and initializing the sweep lines for all
polygons takes O(n2); presorting and computing all sets during the sweep takes O(n2 log n).

Eliminating Subsets. With either method, the resulting L may produce a family that
contains proper subsets. In principle, these could be eliminated post-construction in worst
case O(n5); more efficient practical methods (e.g., using k-d trees or other decompositions)
could be employed. This turned out to have limited benefit, as some of the methods for the
SCP already deal with subsets in a relatively effective manner during their solution process.

4 Solving Set Cover Instances

Now we consider different approaches for finding a subset of L that covers all regions.
Throughout this section, we adopt a standardized notation for the underlying Set Cover
problems, where the objective is to cover elements in E by selecting sets from S.

Integer Programming

An Integer Programming formulation is shown in Figure 3; in the worst case, this can result
in n2 sets with 2 elements. Alternatively, we remove all 2-sets from S, i.e., S ′ = {Si | Si ∈
S, |Si| > 2} and introduce new binary variables yj for j ∈ E, see the right side of Figure 3.
Constraints are satisfied by choosing a set or its newly introduced variable for covering; the
latter option incurs a penalty term of 1

2 for covering remaining point pairs by lines.
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min
∑

Si∈S
xi

s.t.
∑

Si∈S
j∈Si

xi ≥ 1 ∀j ∈ E

xi ∈ {0, 1} ∀Si ∈ S

min
∑

Si∈S′

xi + 1
2

∑
j∈E

yj

s.t.
∑

Si∈S′

j∈Si

xi + yj ≥ 1 ∀j ∈ E

xi ∈ {0, 1} ∀Si ∈ S ′

yj ∈ {0, 1} ∀j ∈ E

Figure 3 Two possible Integer Programming formulations for PLC and GLC. (Left) Basic set
cover IP. (Right) Formulation without sets of size 2.

min
∑

Si∈S
xi

s.t.
∨

Si∈S
j∈Si

xi ∀j ∈ E

xi ∈ B ∀Si ∈ S

min 2 ·
∑

Si∈S′

xi +
∑
j∈E

yj

s.t.
∨

Si∈S′

j∈Si

xi ∨ yj ∀j ∈ E

xi ∈ B ∀Si ∈ S ′

yj ∈ B ∀j ∈ E

Figure 4 Two possible Constraint Programming formulations for PLC and GLC. (Left) Con-
straint programming formulation. (Right) Formulation without sets of size 2.

Constraint Programming Formulation

The IP can be directly converted into a Constraint Programming formulation, see Figure 4.
For a formulation without sets of size 2, we multiply the objective function by a factor of 2
to ensure that the values remain integer.

Large Neighborhood Search

We also tested a Large Neighborhood Search (LNS): Iteratively remove a subset from the
current solution until a certain number of elements are uncovered, then solve the restricted
set cover problem with an exact solver for the improved IP formulation. In this process, the
neighborhood size is adapted to ensure optimal solvability.

5 Experimental Results

Our implementation uses exact number types and predicates and was tested on a work-
station with an AMD Ryzen 9 7900 (12 × 3.7 GHz) CPU and 98GB of RAM1. IP solvers
are denoted by IP (Figure 3 left) and IP-2SET (Figure 3 right), CP-SAT solvers as CP-
SAT (Figure 4 left) and CP-SAT-2SET (Figure 4 right). We used IP-2SET as the exact
solver within the LNS algorithm, denoted by LNS (IP-2SET). To account for the lack of

1 Source code and data: https://gitlab.ibr.cs.tu-bs.de/alg/geometric-covering
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Figure 5 Solvers executed on the plc_points instance set with a 600s time limit. (Left) Quality
of the lower bounds produced by the different solvers in comparison with the best lower bound.
(Right) Upper bound quality (gaps to best lower bound) of all implemented solvers.
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Figure 6 Solvers and line construction algorithms executed on the glc_polygons_sm instance
set without any time limit (until OPT was found). (Left) Runtime of the RT and TL approach for
computing all lines for the set cover problem. (Right) Proportion of time in the full solving process
spent during line construction.

publicly available benchmarks, we generated instance sets plc_points, glc_polygons_sm,
glc_polygons, glc_squares within a fixed-size canvas as follows: For the PLC, we randomly
computed lines and chose points on these lines. For the GLC, we placed random point clouds
(at locations randomly chosen or according to point locations in TSPLIB [5] instances) and
used their convex hull while ensuring no intersections occurred. This yielded several hundred
instances; see Figure 1 for examples.

5.1 Point Line Cover
Figure 5 compares the lower bounds from all approaches to the best lower bound found by
any method. As the LNS solver can only produce lower bounds for small neighborhoods
and CP-SAT exceeded the memory limits, they were excluded from this evaluation. Fig-
ure 5 shows that the IP-2SET can reliably find the best lower bounds of all implemented
approaches, even though set cover seems to be suited for SAT-based solvers. The right side
of Figure 5 shows that the initial greedy solution already provides reasonably good solutions
for all tested instances. CP-SAT-2SET performed worse than the IP-based approaches.
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Depending on the instance, either IP-2SET or the LNS-based approach yielded the best
upper bounds, with LNS performing poorly on instances with more than 5000 points.

5.2 General Line Cover
Covering Set Computation

See Figure 6 for a comparison between the two methods for subset computation: RT is
considerably faster than the TL approach, despite producing a slightly larger set of candidate
lines. Moreover, subset elimination can drastically reduce the number of lines for the SCP
solver. However, this has almost no effect on the ensuing SCP computation times.
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Figure 7 Solvers executed with a 600s time limit. (Left) Upper bound quality (gaps to best
lower bound) for convex polygons (glc_polygons). (Right) Upper bound quality (gaps to best lower
bound) for square instances (glc_squares).

Upper bounds

Figure 7 compares the performance of the best solvers from the previous section on two
benchmark sets (i) convex polygons of various sizes and (ii) squares, see Figure 1 for examples
and solutions. In Figure 7, we can see that IP-2SET again beats the other approaches, while
LNS produces similarly good and sometimes better upper bounds than the integer program.
Overall, the gap between the upper and lower bounds is slightly smaller for the unit square
instances, and the performance of all approaches is worse than for the PLC.

6 Conclusion

We have shown that geometric covering problems can be practically solved to near optimality
for a wide range of instances. A spectrum of further refinements remains to be studied. This
includes specialized methods for congruent regions (such as squares or disks, which arise from
error bounds for imprecise data), but also higher-dimensional scenarios. As Estivill-Castro
et al. [11] showed, there are FPT-type practical approaches for finding PLC solutions with
only few lines; it is conceivable that similar ideas can be extended to GLC instances.
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