
Covering line segments with drones: the minmax
criterion∗

José-Miguel Díaz-Bañez, José Manuel Higes, Alina Kasiuk, and
Inmaculada Ventura

Departamento de Matemática Aplicada II, Universidad de Sevilla
{dbanez, jhiges, akasiuk, iventura}@us.es

Abstract
We are given a set of line segments (e.g., tubes in a solar plant) to be inspected by drones. The
limited capacity of the batteries imposes periodical visits (tours) to a fixed base station. The
objective is to assign a set of tours for each drone so that the segments are covered as quickly as
possible, i.e. to minimize the maximum time spent by the drones. In this paper, we prove that this
problem is NP-hard even when the segments are positioned on a line and the scenario involves two
drones. An approximation algorithm is proposed with constant factor ranging form 1 to 2.

1 Introduction

As technology advances, unmanned aerial vehicles (UAVs), commonly referred to as drones,
are assuming an ever-expanding role in the inspection of industrial structures. For example,
the manual inspection of high-voltage power transmission lines or solar plants are both
time-consuming and expensive [6]. Hence, the use of drones equipped with cameras enables
efficient fault detection.

In the case of Concentrated Solar Power plants (CSP), which represent a growing
technology for electricity production through renewable energies, the plant comprises an
array of receiver tubes subjected to high thermal stress. Therefore, the identification of
broken glass envelopes is crucial to maintain the proper functioning of the CSP plant [5]. In
this context, promptly detecting a fault enables the company to take immediate action in
the repair process. In this paper, we tackle the problem of minimizing the time required for
a team of drones to effectively traverse a set of tubes, represented as line segments. This
problem falls within the domain of arc routing problems (ARPs), which involve determining a
set of tours with the minimum total cost while traversing a set of links (arcs or edges) known
as required links in a graph [4]. However, in contrast to vehicles in classical ARPs, a drone
has the flexibility to enter a line through any of its points, traverse a portion of that line,
exit through another of its points, and subsequently travel directly to any point on another
line, and so forth. Hence, employing drones for service in ARPs introduces substantial
modifications to the conventional methods of modeling and solving these problems [2].

In a recent paper [1], the authors study a problem focused on minimizing the total time
required for one drone to cover a set of line segments positioned along a given line. Here, the
total time is defined as the sum of the lengths of the necessary tours. The drone has limited
battery endurance, maintains a constant flying speed, and returns to a base station when
its battery is running low. They show that this one-dimensional variant can be solved in
polynomial time. They also address the problem of minimizing the number of tours needed
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to cover all the segments. In this paper, we consider the same one-dimensional covering
problem, with a focus on minimizing the maximum distance (time) traveled by the drones of
the team—essentially, reducing the time required for the team to cover the segments. This
objective is meaningful when the company aims to expedite the task and promptly repair
the broken tubes.

1.1 Problem Statement
Let α = {a1, a2, · · · , an} be a set of disjoint line segments on a line. For i = 1, 2, · · · , n,
ai = [xi, yi], with x1 < y1 < x2 < y2 < · · · < xn < yn. We are given a team of k identical
drones that must traverse all the segments. The drones are constrained by finite battery
endurance, maintain uniform velocity during flight, and execute takeoff and battery recharging
protocols at a fixed point B, the designated base station, situated exterior to the line. We
assume that the recharging time is negligible as the batteries are replaced instantly. Let
L > 0 denote the maximum distance achievable by a drone when initiating and concluding
its trajectory (tour) at the fixed point B. For a tour labeled as t, we refer to its length as ℓ(t).
The length of a collection of tours, denoted as T = {t1, · · · , tm}, is represented as ℓ(T ). It is
calculated as the sum of the lengths of individual tours, that is,

∑m
i=1 ℓ(ti). Our objective is

to determine a set of tours for each drone in such a way that we minimize the maximum
length traveled by any drone (the makespan) while ensuring that all segments are covered.
Formally, the Minmax problem for k drones can be stated as follows:
▶ Problem 1.1. Minmax-k: compute a set of tours for each drone, T1, T2, · · · , Tk, such
that:

α ⊂ T1 ∪ T2 ∪ · · · ∪ Tk and, (1)
max

j=1,··· ,k
ℓ(Tj) is minimized. (2)

See Figure 1 for an example of a set of tours covering line segments with k = 2 drones.

B

Figure 1 Covering tours for two drones. Blue and red tours correspond to different drones.

The problem of minimizing the maximal number of tours (instead of total length)
performed by the k drones can be easily addressed using the approach of [1]. Indeed, let m

be the minimum number of tours required by just a drone to cover all segments in the set S.
Thus, ⌈ m

k ⌉ is the solution, and the problem can be solved in O(n + m) time with a greedy
approach proposed in [1]. In the same paper, it has been demonstrated that the Minsum
problem, that is, minimizing the total length of a set of tours performed by a single drone
can also be solved in polynomial time. This can be easily extended to solve the Minsum
problem for k drones by allowing one drone to perform all the tours while the others remain
inactive. In this paper, we prove that transitioning from the Minsum problem to the Minmax
criterion for two drones results in an NP-hard problem. Then, an approximation algorithm
with factor ranging from 1 to 2 is proposed.
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2 NP-Hardness

It is known that the two way-balanced partition problem is NP-complete [3]: Given a finite
set of positive integers S = {si}n

i=1, determine if there is a subset A ⊂ S of cardinality ⌊n/2⌋,
with

∑
si∈A si =

∑
sj∈S\A sj .

We can prove that the following variant is NP-hard:

▶ Problem 2.1. Minmax partition problem: Given a finite set of positive integers S =
{si}2n

i=1, determine a subset A ⊂ S of cardinality n, with M2 =
∑

si∈A si ≥ M1 =
∑

sj∈S\A sj ,
such that M2 is minimum for all possible subsets of S of cardinality n.

In this section, we outline the key ideas for proving the NP-hardness of the Minmax-2
problem through a reduction from Problem 2.1. The following result will be one crucial tool
in our construction:

▶ Proposition 2.2. For a set of positive numbers S = {si}2n
i=1 and two positive constants

K, C > 0, define the set S′ = {s′
i}2n

i=1 with s′
i = Ksi + C. Then a subset A ⊂ S is a solution

to Problem 2.1 for S if and only if the subset A′, defined by s′
i ∈ A′ if si ∈ A, is a solution

to Problem 2.1 for the set S′.

2.1 Construction
The following construction can be done in polynomial time. Given a line, an exterior point
B, and a positive constant L > 0, let O be the projection point of the base B on the
line located as in Figure 2. Let {si}2n

i=1 be a set of positive integers and assume w.l.o.g.
R = maxi{si} = s2n. Take ϵ a small number less than 1/3, for example ϵ = 10−8.

Step 1: For i = 0, · · · , 2n, determine a sequence of right hand points yi, with ci = d(yi, B),
that satisfies:

c0 > max
(

L

2 − ϵL

4n
, L − y0 − L

3 ,

√
5L

6

)
,

yi+1 − yi + ci + ci+1 = L,

c2
i+1 = y2

i+1 +
(

L

3

)2
.

B

O

L/3 L/2

y0

c0 c1 c2 ci ci+1

y1 yi yi+1 · · ·y2

Figure 2 Diagram for Step 1. Right hand points yi.

Step 2: Determine the number sequence:

{s′
i = Ksi + 2c2n}2n

i=1 with K = L − 2c2n

R
.
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Step 3: For i = 1, · · · , 2n, determine the sequence of right hand points xi, with bi =
d(xi, B) that satisfies:

ci + (yi − xi) + bi = s′
i,

b2
i = x2

i +
(

L

3

)2
.

Step 4: For i = 1, · · · , 2n, draw the subsequence of right hand segments [xi, yi] for i even,
and left hand segments [−yi, −xi] for i odd (Figure 3).

B

L/2

O

L/3

x2 y2 x2n y2n−y2n−1 − x2n−1 −y3 − x3 x4 y4−y1 − x1

b2 b4 b2nb1b3b2n−1

c2nc4c2c3 c1c2n−1

Figure 3 Diagram for step 4. Final construction.

▶ Theorem 2.3. The Minmax-2 problem is NP-hard.

Proof. We will provide a brief outline of the proof. The problem Minmax-2 is clearly in NP.
Given a set of positive integers S = {si}2n

i=1, perform the above construction in polynomial
time. Set K = L−2c2n

R and C = 2c2n. We can prove that the following facts are true for our
construction:

Statement 1: The solution of the Minsum problem for one drone in our construction is
determined by a the set of tours T = {ti}2n

i=1 with each tour ti covering exactly the i-th
segment. Notice that the length of each tour ti is s′

i = Ksi + C by Step 3.
Statement 2: The tours of any solution {T1, T2} for the Minmax-2 problem in the
construction correspond to tours ti derived from a solution to the Minsum problem for a
single drone.

Now, given a solution A for Problem 2.1 for S, K and C, define the set S′ and A′ as in
Proposition 2.2 and take a solution of the Minsum problem for one drone (by applying the
polynomial time algorithm of [1] to our construction). By Statement 1, each tour ti of this
solution covers exactly the i-th segment and has length s′

i. Thus, assigning each tour ti to
T2 if and only if s′

i ∈ A′, we will have a solution of the Minmax-2 problem by Statement 2,
the minimality of A′ and the fact that s′

i is the length of the tour ti.
In the other direction, given a solution for the Minmax-2 problem in our construction,

{T1, T2}, assign s′
i ∈ A′ if and only if ti ∈ T2 (assume w.o.l.g that ℓ(T2) ≥ ℓ(T1)). By

Statement 2, the length of each ti is s′
i; therefore we obtain a solution of Problem 2.1 for S′

and, by Proposition 2.2, we can consequently derive a solution for S. ◀
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3 An approximation algorithm

Greedy tour distribution for two drones, G2D-algorithm: In [1], an algorithm based on
dynamic programming to compute a set of tours T = {t1, · · · , tm} solving the minsum
problem for one drone was proposed. Getting T as the initial step, the G2D-algorithm just
distribute the tours of T into two sets, T1 and T2, so that, in each step, the difference between
the sum of the lengths of the tours in each set is |ℓ(T2) − ℓ(T1)| = aL with 0 ≤ a ≤ 1. To do
it, given T = {t1, · · · , tm}, add for i = 1 the tour t1 to T1 and in each subsequent step i > 1
add the tour ti ∈ T to the set T1 or T2 with minimum total length.

▶ Observation 3.1. Assume w.l.o.g. that ℓ(T2) ≥ ℓ(T1) in G2D-algorithm; then, for some
a ∈ [0, 1], ℓ(T2) = ℓ(T1) + aL.

▶ Theorem 3.2. Let {T ∗
1 , T ∗

2 } be any solution of the Minmax-2 problem and let {T1, T2} be
the final distribution of the G2D-algorithm. Assume ℓ(T1) ≤ ℓ(T2) and ℓ(T ∗

1 ) ≤ ℓ(T ∗
2 ). Then:

a) ℓ(T1) + aL

2 ≤ ℓ(T ∗
2 ) ≤ ℓ(T1) + aL

b) If a = 0, then {T1, T2} is optimal for the Minmax-2 problem.

c) If a ∈ (0, 1], then ℓ(T2) ≤ ∆ · ℓ(T ∗
2 ), with ∆ = Γ + 2

Γ + 1 and Γ = 2ℓ(T1)
ℓ(T2) − ℓ(T1) .

▶ Observation 3.3. By the results of [1], G2D-algorithm computes T1 and T2 in O(n2) +
O(nm) time, where n is the number of segments and m the total number of tours.

▶ Observation 3.4. As ℓ(T1) increases (for example, if ℓ(T ) is large) then ∆ tends to 1.

▶ Observation 3.5. G2D-algorithm can be generalized for k > 2 drones with the same
time complexity; we just have to properly distribute the m tours of T into k sets T1, · · · , Tk.
The approximation factor is ∆ = Γ + k

Γ + 1 with Γ = k · ℓ(T1)
ℓ(Tk) − ℓ(T1) , where T1 is the set with

minimum total length and Tk the set with maximum total length.

4 Conclusions and future research

We have proved that covering a set of line segments on a line with drones using the minmax
criterion is NP-hard, even when considering only two drones. We found a reduction from a
variant of the finite partition problem. It is highly likely that we can extend this result to
the Minmax-k problem for k > 2 drones by drawing connections to the multiway number
partition problem and employing similar ideas as presented in Section 2.

Another avenue for future research is the enhancement of the G2D-algorithm. After
getting {T1, T2} (assume ℓ(T2) ≥ ℓ(T1)), two tools can be employed for further improvement.
With the Cutting technique, the idea is to break one tour of T2 into two sub-tours and
reducing the cost by allocating one sub-tour to the other drone as illustrated in Figure 4 (a).

On the other hand, the Enlarging technique can be applied when a tour ti ∈ T1 with
a length strictly less than L is found to be in contact with a tour tj ∈ T2. Then we can
simultaneously enlarge the tour ti and reduce the length of the tour tj (Figure 4 (b)). We
plan to conduct a series of experiments to test how much the approximation factor improves
with these tools.
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Figure 4 (a) Cutting a red tour. (b) Enlarging a blue tour and reducing a red tour.
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