
Bipartite Dichotomous Ordinal Graphs∗ †

Patrizio Angelini1, Sabine Cornelsen2, Carolina Haase3,
Michael Hoffmann4, Eleni Katsanou5, Fabrizio Montecchiani6, and
Antonios Symvonis5

1 John Cabot University, Rome, Italy
pangelini@johncabot.edu

2 Department of Computer and Information Science,
University of Konstanz, Germany
sabine.cornelsen@uni-konstanz.de

3 Trier University, Germany
haasec@uni-trier.de

4 Department of Computer Science,
ETH Zürich, Switzerland
hoffmann@inf.ethz.ch

5 School of Applied Mathematical and Physical Sciences,
National Technical University of Athens, Greece
ekatsanou@mail.ntua.gr, symvonis@math.ntua.gr

6 Engineering Department, University of Perugia, Italy
fabrizio.montecchiani@unipg.it

Abstract
A dichotomous ordinal graph consists of an undirected graph G = (V, Es ∪ Eℓ) with an ordered
partition of the set of edges into a set Es of short edges and a set Eℓ of long edges. A geometric
representation of a dichotomous ordinal graph is a straight-line drawing Γ of G such that the short
edges of G are exactly those edges that have length at most one in Γ.

We characterize for which bipartite graphs all ordered partitions of the edge set admit a geometric
representation as a dichotomous ordinal graph. On the one hand, such a representation always exists
if the graph is a subgraph of K3,m, for an arbitrary m, or a subgraph of K4,6. On the other hand, there
exist dichotomous ordinal K4,7 and K5,5 that do not admit a geometric representation. Moreover,
any bipartite dichotomous ordinal graph admits a geometric representation if the short edges induce
an outerplanar graph and any dichotomous ordinal graph admits a geometric representation if the
short edges induce a subgraph of the rectangular grid.

1 Introduction

A dichotomous ordinal graph consists of an undirected graph G = (V, Es ∪ Eℓ) with a
partition of the edges into a set Es of short edges and a set Eℓ of long edges. A geometric
representation of a dichotomous ordinal graph is a straight-line drawing Γ of G such that the
short edges of G are exactly those edges that have length at most one in Γ. Fig. 1 shows
two straight-line drawings of the same dichotomous ordinal graph. The drawing in (a) is a
geometric representation of it, whereas the drawing in (b) is not.
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Figure 1 valid (a) and invalid (b) drawing of a dichotomous ordinal triangle △uvw; short edge
uv (blue) and long edges uw and vw (red/dashed)

Related Results. It is NP-hard to decide whether a dichotomous ordinal graph admits a
geometric representation, even if the underlying graph is a complete graph and the short
edges induce a planar graph [1, Lemma 1] or the underlying graph is a complete bipartite
graph [10, Theorem 4]. In the latter case, the problem is even known to be ∃R-complete [10].

Angelini et al. [2] investigated for which graphs G any ordered partition of the edges
admits a geometric representation as a dichotomous ordinal graph. This is the case if G is
a double-wheel (a simple cycle and two additional vertices connected to all vertices of the
cycle), 2-degenerate (can be reduced to the empty graph by repeatedly removing vertices of
degree at most two), subcubic (each vertex has degree at most three), or 4-colorable and the
short edges induce a caterpillar (tree such that the removal of degree one vertices yields a
path). On the negative side, they [2] proved that if G is the double-wheel plus one edge, then
there exists a partition of the edge set of G into short and long edges that doesn’t admit a
geometric representation as a dichotomous ordinal graph.

Closely related is the notion of ordinal embeddings. Given a set of objects x1, . . . , xn in an
abstract space together with a set of ordinal constraints of the form dist(xi, xj) < dist(xk, xl),
we are asked to compute a set of points p1, . . . , pn in the d-dimensional Euclidean space
Rd such that, by preserving as many ordinal constraints as possible, it returns a good
approximation of the displacement of x1, . . . , xn. Ordinal embeddings were first studied in
the 60’s by Shepard [11, 12] and Kruskal [8, 9] in the context of psychometric data analysis.
Recently, there have been applications in the field of Machine Learning [14]. The computation
of ordinal embeddings is also known in the literature as non-metric multi-dimensional scaling.
For an extensive literature review on ordinal embeddings refer to [15].

Of particular interest in relation to our work is the application of ordinal embeddings in
the problem of recognizing Euclidean Multidimensional preferences [3, 5, 10] in the field of
Computational Social Science. The objects are either voters or alternatives, which, together
with the ordinal constraints (i.e., the voters’ preferences), naturally define a bipartite graph.
However, the goal is to find an embedding in Rd where all constraints are satisfied rather
than to seek for an approximation. Efficient algorithms exist when d = 1 [4, 5], while for any
d ≥ 2 the problem is as hard as the existential theory of the reals [10]. The case where a voter
either likes or dislikes a preference has also been studied [6, 10]. Note that, in this setting,
an embedding that employs short and long edges can fully represent the likeness/dislikeness
of voters to alternatives. This is precisely the problem this paper is devoted to.

Our Results. A dichotomous ordinal graph G = (U ∪ W, Es ∪ Eℓ) is bipartite if Es ∪ Eℓ ⊆
U × W . We study in particular complete bipartite dichotomous ordinal Kn,m, i.e., bipartite
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graphs G = (U ∪ W, Es ∪ Eℓ) with |U | = n, |W | = m, and Es ∪ Eℓ = U × W . We show
that subgraphs of dichotomous ordinal K3,m, m ∈ N or K4,6 always admit a geometric
representation (Theorem 2.1) while there are dichotomous ordinal K4,7 (Theorem 2.2) and
K5,5 (Theorem 2.3) that do not admit a geometric representation. Further, a bipartite
dichotomous ordinal graph always admits a geometric representation if the short edges induce
an outerplanar graph (Theorem 3.1) or a subgraph of the grid (Theorem 3.2). In both cases,
the subgraph of short edges can even be drawn without edge crossings. However, there are
bipartite dichotomous ordinal graphs that do not admit a geometric representation even
though the subgraph of short edges is planar (Theorems 2.2 and 2.3).

Preliminaries. Let G = (V, ES ∪ Eℓ) be a dichotomous ordinal graph and assume that there
exists a set of long edges whose removal creates different connected components. We can draw
these connected components far apart. Now the long edges of G between different connected
components will be drawn with a length greater than one. This yields the following.

▶ Observation 1. A dichotomous ordinal graph admits a geometric representation if and only
if each subgraph induced by a connected component of the short edges does.

2 Complete Bipartite Graphs — A Characterization

A convenient way to reason about geometric representations for bipartite graphs is in terms of
arrangements of unit circles. Consider a bipartite dichotomous ordinal graph G = (U ∪ W, E)
and suppose that the vertices of U are already drawn as points in the plane. Then, to obtain
a geometric representation for G the task is to place each w ∈ W such that for each u ∈ U

the point w lies in the unit disk centered at u if and only if the edge uw is short; see Fig. 2a.
A related question is the existence of a representation of a graph as a unit disk graph,

where vertices are represented by unit disks, and they are connected by an edge if and only
if the corresponding disks intersect. The main difference compared to dichotomous ordinal
graphs lies in the different types of edges. In a unit disk representation, there are only two
types: edge and non-edge, and all of them have to be faithfully represented. In a geometric
realization of dichotomous ordinal graphs, there are three types of edges: long, short, and
non-edges, and we have no constraints concerning the last type.

Let U = {u1, . . . , un}, let Ci denote the unit circle centered at ui, and let Di denote
the corresponding unit disk. Let C denote the arrangement of C1, . . . , Cn. With every
vertex w ∈ W we associate a subset V (w) ⊆ U such that u ∈ V (w) if and only if the edge uw

is short. We refer to V (w) as a singleton, a pair, or a triple if V (w) contains one, two, or
three vertices, respectively. A subset X ⊆ U is realized by a drawing of U if there is a cell r

in C such that r ⊆ Di if and only if ui ∈ X. Then there exists a geometric realization for G if
and only if there exists a drawing/placement of U such that V (w) is realized for all w ∈ W .

▶ Theorem 2.1. Every dichotomous ordinal K3,m, for m ∈ N, and every dichotomous
ordinal K4,m, for m ≤ 6, admits a geometric representation.

Proof. For K3,m we can draw U = {u1, u2, u3} so that all eight subsets of U are realized;
see Fig. 2a. For |U | ≥ 4 such a universal placement is not possible because an arrangement
of n circles has at most n(n − 1) + 2 cells [13]. So an arrangement of four circles has at
most 14 cells, whereas a four-element set has 16 subsets. However, for |U | = 4 and |W | ≤ 6
we can always obtain a geometric representation as follows. Let V (W ) ⊂ 2U denote the set
of subsets of U that are associated to some vertex of W .
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Figure 2 Regions for the other side.

If there are at least three pairs in V (W ), then, given that |V (W )| ≤ |W | ≤ 6, the number
of triples plus the number of singletons in V (W ) together is at most three. Thus, as |U | = 4,
there exists a vertex u ∈ U such that {u} /∈ V (W ) and U \ {u} /∈ V (W ). So we can use the
drawing depicted in Fig. 2b, where we assign u to the central circle. As all subsets of U

other than {u} and U \ {u} are realized, this is a valid geometric representation of G.
Otherwise, there are at most two pairs in V (W ). We use the drawing depicted in Fig. 2c,

where we assign the vertices of U to the circles so that both pairs in V (W ) appear consecutively
in the circular order of circles. (This works regardless of whether or not these pairs share a
vertex.) As all subsets of U other than the two pairs that correspond to opposite circles in
the drawing are realized, this is a valid geometric representation of G. ◀

▶ Theorem 2.2. There is a dichotomous ordinal K4,7 that does not admit a geometric
representation.

Proof Sketch. Let U = {u1, u2, u3, u4} and W = {w1, . . . , w7} denote the vertex partition.
For each wi, we can specify an associated set Ui ⊆ U (such that exactly the edges between wi

and Ui are short; see Fig. 3a). We choose all four subsets of size three and the three subsets
of size two that contain u4, and distribute them among the vertices of W arbitrarily. In any
geometric representation, each set Ui corresponds to a cell in the induced arrangement C
of unit circles. Two more cells are required implicitly: The outer cell, which corresponds
to ∅ ⊂ U , and a cell that corresponds to the whole set U and is required by Helly’s Theorem [7]
because disks are convex and we specified all triples to be among the sets Ui. Using these
properties of C we can show that it cannot be realized using unit circles. ◀

▶ Theorem 2.3. There is a dichotomous ordinal K5,5 that does not admit a geometric
representation.

Proof Sketch. Let U = {u1, . . . , u5} and W = {w1, . . . , w5} denote the vertex partition. To
each wi ∈ W , we associate a set Ui ⊆ U of “short neighbors” (see Fig. 3b):

Ui = {ui, ui⊕1, u5}, for 1 ≤ i ≤ 4, and U5 = U \ {u5},

where i ⊕ 1 = (i mod 4) + 1. In any geometric representation, each set Ui corresponds to a
cell in the induced arrangement C of unit circles. Using the existence of these cells we can
analyze C geometrically and show that it cannot be realized using unit circles. ◀

3 Short Outerplanar Graphs and Short Subgraphs of the Grid

We show that every bipartite dichotomous ordinal graph admits a geometric representation
if the subgraph Gs induced by the short edges is outerplanar or a subgraph of the grid. In
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Figure 3 A dichotomous ordinal K4,7 and K5,5, respectively, that does not admit a geometric
representation. The drawn edges are the short edges. Edges between vertices labeled u on one hand
and w on the other hand, that are not drawn, are long.

the first case, we construct a planar drawing of Gs in which the BFS-layers are drawn on
horizontal lines. See Fig. 4b. In the second case, we suitably perturb the grid. See Fig. 5.

▶ Theorem 3.1. A bipartite dichotomous ordinal graph admits a geometric representation if
the subgraph induced by the short edges is outerplanar.

Proof Sketch. Let G = (V, Es ∪ Eℓ) be a bipartite dichotomous ordinal graph such that
Gs = (V, Es) is outerplanar. By Observation 1, we may assume that Gs is connected. We
root Gs at an arbitrary vertex r. Let Vk, k = 0, . . . be the BFS layers of Gs rooted at r,
i.e., V0 = {r}, V1 is the set of neighbors of r, and Vk+1, k ≥ 1 is the set of neighbors of the
vertices in Vk that are not already in Vk−1. We say that w is a child of v and v is a parent of
w if vw is an edge of Gs, v ∈ Vk and w ∈ Vk+1 for some k. By outerplanarity, each vertex
has at most two parents. We construct a planar drawing of Gs with the following properties.

The root r is drawn with y-coordinate y0 = 0. All vertices in layer Vk, k > 0 are on a
horizontal line ℓk with y-coordinate yk strictly between k − 1 and k.
The distance between a vertex and its children is at most 1 while the distance between
two vertices on consecutive layers is greater than 1 if they are not adjacent in Gs.
For each vertex v there is a vertical strip Sv such that (a) v is in Sv, (b) Sw is contained
in the union of the strips of w’s parents, (c) Su and Sv are internally disjoint if u and v

are on the same layer.
Special care has to be taken if a vertex w ∈ Vk+1 has two parents u and v, i.e., if w closes an
internal face. In that case, we want to draw w on line ℓk+1, on the common boundary of Su

and Sv, and with distance exactly one to both u and v. ◀

▶ Theorem 3.2. A dichotomous ordinal graph G = (V, Es ∪ Eℓ) admits a geometric repre-
sentation if the set of short edges induces a subgraph of the grid.

Proof Sketch. Extend Gs = (V, Es) by the remaining grid edges and require the new edges
to be long. Use the construction in Fig. 5 to place the vertices. Then the short edges are
shorter than n2 +1/2, while the long edges have length at least n2 +1. Scale the drawing. ◀
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Figure 4 How to construct a geometric realization of a bipartite dichotomous ordinal graph if
the short edges induce an outerplanar graph.
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shortest possible long edge
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Figure 5 For each grid point (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ n there are four possible points. If i > 1,
the x-coordinate is in2 if the edge between (i − 1, j) and (i, j) is short and in2 + i otherwise. If
j > 1, the y-coordinate is jn2 if the edge between (i, j − 1) and (i, j) is short and jn2 + j otherwise.

4 Conclusion

We leave open the questions whether bipartite dichotomous ordinal graphs always admit a
geometric realization in any of the following cases: (i) the underlying graph is planar; (ii) the
underlying graph is 3-degenerate; or (iii) the graph induced by the short edges is a 2-tree.
Questions (i) and (ii) are open even for non-bipartite dichotomous ordinal graphs.
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