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Abstract
The edge-length ratio of a planar straight-line drawing Γ of a graph G is the largest ratio between
the lengths of every pair of edges of Γ. If the ratio is measured by considering only pairs of edges
that are incident to a common vertex, we talk about local edge-length ratio. The (local) edge-length
ratio of a planar graph is the infimum over all (local) edge-length ratios of its planar straight-line
drawings. It is known that the edge length ratio of outerplanar graphs is upper bounded by a
constant, while there exist graph families with non-constant outerplanarity that have non-constant
lower bounds to their edge-length ratios. In this paper we prove an Ω(

√
n) lower bound on the local

edge-length ratio (and hence on the edge-length ratio) of the n-vertex 2-outerplanar graphs. We
also prove a constant upper bound to the edge length ratio of Halin graphs.

1 Introduction

Let Γ be a planar straight-line drawing of a planar graph G = (V, E). For any edge e ∈ E, let
|e|Γ be the length of the segment representing e in Γ. The edge-length ratio of Γ, denoted as
ρ(Γ), is the maximum ratio between the lengths of every two edges in Γ; the local edge-length
ratio ρℓ(Γ) of Γ is the maximum ratio between the lengths of two adjacent edges. Formally,

ρ(Γ) = max
(u,v),(z,w)∈E

|(u, v)|Γ
|(z, w)|Γ

, ρℓ(Γ) = max
(u,v),(v,w)∈E

|(u, v)|Γ
|(v, w)|Γ

.

The edge-length ratio ρ(G) of G is the infimum of ρ(Γ) over the set D(G) of all planar
straight-line drawings Γ of G, i.e., ρ(G) = infΓ∈D(G) ρ(Γ). Analogously, the local edge-length
ratio ρℓ(G) of G is defined as ρℓ(G) = infΓ∈D(G) ρℓ(Γ).

We remark that since the publication of the first book on graph drawing [7], minimizing
the maximum edge length provided that the shortest edge has length one (i.e. minimizing
the edge-length ratio) is among the most relevant optimization goals, because of its impact
on the readability of the computed visualization. Eades and Wormald [9] prove that deciding
whether a biconnected planar graph has edge-length ratio one is NP-hard, and Cabello et
al. [5] extend this result to triconnected instances. Borrazzo and Frati [4] prove that the
edge-length ratio of n-vertex planar 3-trees is Ω(n). As for n-vertex planar 2-trees, Blažej
et al. [3] prove an Ω(log n) lower bound. Notably, both the lower bound by Borrazzo and
Frati and the lower bound by Blažej et al. use graph families whose outerplanarity grows
as a function of n. In contrast, Lazard et al. [10] show that graphs with outerplanarity one
(i.e. outerplanar graphs) have a constant upper bound to their edge-length ratio.
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18:2 Bounds on the Edge-length Ratio of 2-outerplanar Graphs

A natural question that stems from the previous literature is whether outerplanarity
one is a hard cutoff for achieving constant edge-length ratio. We answer this question in
the affirmative, proving that graphs with outerplanarity two, i.e. the 2-outerplanar graphs,
have unbounded edge-length ratio. Nonetheless we prove a constant upper bound on the
edge-length ratio of a well-studied family of 2-outerplanar graphs. Our results are as follows.

We describe a family of n-vertex 2-outerplanar graphs whose local edge-length ratio is in
Ω(

√
n) which implies a lower bound also for the edge-length ratio of these graphs. It is

worth noticing that while graph families with O(1) local edge-length ratios are known [3],
no family with ω(1) local edge-length ratio was previously known.
We show that Halin graphs have edge-length ratio at most 3. We remark that Halin
graphs are well-known subjects of study in the graph drawing literature; see e.g. [2, 6, 8].

Our approach for the lower bound builds upon ideas of Borrazzo and Frati [4]. Our
upper bound is proved by translating the problem of computing drawings with bounded
edge-length ratio to a topological question about (a variant of) level planarity with limited
edge span. As a byproduct, the proof regarding the edge-length ratio upper bound of Halin
graphs fixes an imprecision in the literature about the span of their weakly leveled planar
drawings. For reasons of space some proofs are omitted or sketched.

2 Lower Bound
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Figure 1 (a) Definition of the graph Gk. (b) Graph G4 (c) Example of a graph G of Theorem 2.3.

We define a family of 2-outerplanar graphs Gk, for every k ≥ 1, such that Gk has
n = 2k + 1 vertices. The graph G1 is a 3-cycle C1. Assume that Gk−1 has been defined
and that its outer face is a 3-cycle Ck−1 whose vertices are denoted as a, bk−1, and ck−1;
then Gk is obtained by adding two vertices bk and ck, and the edges (a, bk), (a, ck), (bk, ck),
(bk, bk−1), (ck, ck−1), and (ck, bk−1), embedded as shown in Fig. 1a. Note that Gk is 2-
outerplanar and has 2k + 1 vertices (see Fig. 1b for an example with k = 4). Let Γ be an
embedding-preserving planar straight-line drawing of Gk. For i = 1, 2, . . . , k, we denote by
∆i the triangle that represents Ci in Γ and by p(∆i) its perimeter. We assume that the
shortest edge over all triangles ∆i has length 1; if not, we scale the drawing so to achieve this
condition. The next lemma is a consequence of results by Borrazzo and Frati [4, pp.140-142].

▶ Lemma 2.1. Let Γ be an embedding-preserving planar straight-line drawing of Gk, for
k ≥ 2; then p(∆i) > p(∆i−1) + γ, with γ = 0.3.

We first prove a lower bound on ρℓ(Gk) that holds if we consider only drawings that
preserve the planar embedding of Gk. We then remove this restriction.
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▶ Lemma 2.2 (⋆). Let Γ be an embedding-preserving planar straight-line drawing of Gk, for
k ≥ 2; then ρℓ(Γ) ≥

√
3k
40 .

Sketch. If k ≤ 40
3 the the statement is trivially true, since ρℓ(Γ) ≥ 1. Thus, we can assume

that k > 40
3 . By using induction, Lemma 2.1, and the fact that p(∆1) > γ, we can prove

that p(∆i) > γ · i, for every i = 1, 2, . . . k. Let L denote the length of the longest edge e1 of
the triangle ∆k incident to a. We have that L ≥ p(∆k)

4 > γ·k
4 = 3k

40 . Let e2 be the shortest
edge of Γ. Edge e2 is incident to vertex a or to a neighbor v of a. If e2 is incident to a, then
ρℓ(Γ) ≥ |e1|Γ

|e2|Γ
≥ 3k

40 . Otherwise, edge e3 = (v, a) has vertex a in common with e1 and vertex
v in common with e2. By definition we have |e1|Γ ≤ ρℓ(Γ)|e3|Γ ≤ ρℓ(Γ)2|e2|Γ = ρℓ(Γ)2 and
ρℓ(Γ) ≥

√
|e1|Γ ≥

√
3k
40 . ◀

To prove the next theorem we construct a 2-outerplanar graph with n = 4k vertices such
that, in every embedding, it contains a copy of Gk embedded as in Lemma 2.2 (see Fig. 1c).

▶ Theorem 2.3 (⋆). For every integer k ≥ 2, there exists a 2-outerplanar graph G with
n = 4k vertices such that ρℓ(G) ≥

√
3n
160 .

3 Edge-length Ratio of Halin Graphs

A k-span weakly level planar drawing (k-SWLP drawing) Γ is a straight-line planar drawing
whose vertices lie on a set of horizontal equispaced lines, called levels, and whose edges
intersect at most k + 1 levels. Notice that, in a k-SWLP drawing edges between vertices
that are consecutive in the same level are allowed. We assume that the levels are numbered
from top to bottom and that the distance between consecutive levels is 1. An edge that
intersects k + 1 levels has span k. A graph is k-SWPL if it has a k-SWLP drawing.
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Figure 2 (a) A 2-SWLP drawing Γ; (b) The 5-SWLP drawing Γ′ obtained from Γ.

▶ Lemma 3.1 (⋆). If G is a k-SWLP graph for some k ≥ 1, then ρ(G) ≤ 2k + 1.

Proof. Let Γ be a k-SWLP drawing of G. We first transform Γ into a (2k + 1)-SWLP
drawing such that every edge has span at least one, i.e., no edge has both end-vertices on
the same level. To this aim we split each level i into two levels, numbered 2i and 2i + 1,
and assign the vertices of level i alternating between 2i and 2i + 1. Let Γ′ be the resulting
drawing (see Fig. 2 for an example). For an arbitrarily chosen value ε > 0, we squeeze
horizontally the drawing Γ′ so that its width is ε. After this squeezing, for every edge e we
have 1 ≤ |e|Γ′ ≤ 2k + 1 + ε. It follows that ρ(Γ) ≤ 2k + 1 + ε and ρ(G) ≤ 2k + 1. ◀
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In the remainder we exploit Lemma 3.1 to prove a constant upper bound on the edge-
length ratio of Halin graphs. A Halin graph (see Figs. 3a and 4b) is a 3-connected embedded
planar graph G such that, by removing the edges along the boundary C of its outerface, one
gets a tree T whose internal vertices have degree at least 3 and whose leaves are incident to
the outerface of G. We call T the characteristic tree of G and we call C the adjoint cycle of
G. A Halin graph G is trivial if it is a wheel graph, i.e., if T has only one non-leaf vertex.

Bannister et al. [1, Thm. 17] state that all Halin graphs are 1-SWLP which, together with
Lemma 3.1, would imply an upper bound of 3 to their edge-length ratio. Unfortunately, K4
is a Halin graph that is not 1-SWLP and the proof technique of [1] fails even for instances
of Halin graphs different from K4. Namely, let T be the characteristic tree of the Halin
graph of Fig. 3a. According to the proof of Theorem 17 of [1] a leveling of T is computed as
follows: Choose a leaf of T as the root and assign it to level 0; at Step i, assign to level i + 1
the previously-unassigned nodes that are either children of nodes at level i or that belong to
a path from one such children to its leftmost or rightmost leaf descendant in T . However,
for any possible choice of the root of T , one obtains the leveling of Fig. 3b that has an edge
between two non-consecutive vertices on a same level.

r

(a)

r

(b)

Figure 3 (a) A Halin graph; the vertices are grouped according to a leveling obtained with the
technique in [1] choosing r as the root; (b) the corresponding level drawing.
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Figure 4 (a) The external path of a tree T ; (b) A Halin graph G; the thick edges form the
characteristic tree T , while the thin edges from the adjoint cycle C; the tufts of T are highlighted
with gray areas. (c) The pruned tree T ∗ of T .



E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, F. Montecchiani, S. Wismath 18:5

We now prove that all Halin graphs except K4 are 1-SWLP (Lemmas 3.3 and 3.4), which
by Lemma 3.1 implies an upper bound of 3 to the edge-length ratio of these graphs. Let
T be an ordered rooted tree. The external path of T is defined as follows. If T is a single
vertex r, then the external path of T coincides with r; otherwise it is the path connecting the
parent pl of the leftmost leaf of T and the parent pr of the rightmost leaf of T (see Fig. 4a).

Let G be a non-trivial Halin graph. A tuft of the characteristic tree T of G is a maximal
set of at least two leaves having the same parent, and such that this parent is adjacent to
exactly one other internal vertex of T (in Fig. 4b the tufts are highlighted with gray areas).
The pruned tree T ∗ of T is obtained by removing all leaves from T (see Fig. 4c).

▶ Lemma 3.2 (⋆). Let G be a Halin graph distinct from K4 and let T be the characteristic
tree of G. The number of tufts of T is equal to the number of leaves of the pruned tree of T .

T

r

vl vr

(a)

Taux

vl vr

(b)

Figure 5 (a) A decomposition in characteristic paths of the characteristic tree of the Halin graph
of Fig. 4b; (b) The corresponding auxiliary tree Taux.

▶ Lemma 3.3 (⋆). Let G be a non-trivial Halin graph and let T be the characteristic tree
of G rooted at any non-leaf vertex. Let vl be the leftmost leaf and vr be the rightmost leaf of
T . If both vl and vr belong to a tuft, then G \ (vl, vr) has a 1-SWLP drawing Γ such that vl

is the first vertex of the topmost level and vr is the last vertex of the same level.

Sketch. We simplify the characteristic tree T of G by collapsing into single vertices a set
of suitably defined paths called characteristic paths and illustrated in Fig. 5. The external
path of T is a characteristic path. For each vertex v of a characteristic path π and for each
child w of v that is not in π, let T ′ be the tree rooted at w. The external path of T ′ is a
characteristic path of T . Denote by Taux the tree obtained by collapsing the characteristic
paths into vertices; for a vertex v of Taux that corresponds to a path π of T , we say that π

is the pertinent path of v. We compute first a 1-SWLP drawing Γaux of Taux (see Fig. 6a).
The level of each vertex is equal to its depth in Taux and the order of the vertices in each
level is given by the left-to-right order of Taux. We now replace each vertex of Taux by its
pertinent path, thus obtaining a 1-SWLP drawing ΓT of T (see Figs. 6b and 6c). It is easy
to see that all the edges of the adjoint cycle that are distinct from (vl, vr) can be added
to the drawing without crossings and with no span increase. We finally move vl and vr to
the topmost level. Let vl = v1, v2 . . . , vk = vr be the leaves of T in the order they appear
counterclockwise along the adjoint cycle C of G. Since vl belongs to a tuft, v2 is a sibling
of vl and they are both drawn on level 1. Also, their parent is the first vertex on level 0.
Thus, vl can be moved to the left of the leftmost vertex of level 0 without crossings and with
no span increase. By a symmetric argument, vr can be moved to the right of the righmost
vertex of level 0 (see Fig. 6c). ◀

Lemma 3.3 allows us to compute a drawing of a Halin graph except for one edge. In the
next lemma we explain how to cope with this issue.
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Figure 6 (a) A 1-SWLP drawing Γaux of Taux; (b) A 1-SWLP drawing of T obtained from Γaux

by replacing each vertex with its pertinent path; (c) A 1-SWLP drawing of G \ (vl, vr) with the
properties of Lemma 3.3; (d) A 1-SWLP drawing of a trivial Halin graph.

vl vr

τ1
τ2

V1

V2

(a)

vl vr

(b)

Figure 7 Illustration of Lemma 3.4, Case 1: (a) A Halin graph G; (b) A 1-SWLP drawing of G.

▶ Lemma 3.4 (⋆). Every Halin graph G distinct from K4 has a 1-SWLP drawing.

Proof. Let T be the characteristic tree of G and C be its adjoint cycle. If G is trivial, a
1-SWLP drawing of G is computed as in Fig. 6d. Otherwise, T has at least one edge and,
by Lemma 3.2, at least two tufts. A leaf not belonging to any tuft is a single leaf.

Case 1: T has at least one single leaf. We remove a maximal set V1 of consecutive single
leaves along C (see Fig. 7a). By Lemma 3.3 we compute a drawing of the resulting graph
such that the leaf vl preceding V1 walking clockwise along C and the leaf vr following V1
walking clockwise along C, are the first and the last vertex, respectively, on the topmost
level. To construct a 1-SWLP drawing of G, we put the single leaves of V1 on a new level
above the topmost in the order they appear along C. See Fig. 7b.

Case 2: T has no single leaves. If T ∗ has at most 1 internal vertex, then T ∗ is a single
edge or it is a star with at least three edges; a 1-SWLP drawing of G can be constructed as
in Figs. 8a and 8b. Otherwise, T ∗ has one edge e∗ whose end-vertices are both non-leaves.
Further, e∗ is shared by two faces each having an edge belonging to C. Removing these two
edges and e∗ (possibly smoothing the end-vertices of e∗ if they have degree two after the
removal) we get two subgraphs Ga and Gb of G (Fig. 8c) for which we compute two 1-SWLP
drawings according to Lemma 3.3 (Figs. 8d and 8e). We then combine the two drawings by
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mirroring vertically and horizontally one of them. This allows us to add the three removed
edges without crossings and without span increase (Fig. 8f). ◀

. . .
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Figure 8 Illustration of Lemma 3.4, (a)-(b) Case 2a; (c)-(f) Case 2b.

▶ Theorem 3.5. If G is a Halin graph, then ρ(G) ≤ 3.

4 Open Problems

(i) Is the bound of Theorem 2.3 asymptotically tight? (ii) Study other sub-families of 2-
outerplanar graphs that have constant (local) edge-length ratio.
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