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Abstract
We study the Vapnik–Chervonenkis dimension (VC-dimension) of range spaces, where the ground
set consists of either polygonal curves in Rd or polygonal regions in the plane that may contain holes
and the ranges are balls defined by an elastic distance measure, such as the Hausdorff distance, the
Fréchet distance and the dynamic time warping distance (DTW). We show for the Fréchet distance
of polygonal curves and the Hausdorff distance of polygonal curves and planar polygonal regions
that the VC-dimension is upper-bounded by O(dk log(km)), where k is the complexity of the center
of a ball, m is the complexity of the polygonal curve or region in the ground set, and d is the ambient
dimension. For d ≥ 4 this bound is tight in each of the parameters d, k and m separately. For DTW
of polygonal curves, our analysis directly yields an upper-bound of O(min(dk2 log(m), dkm log(k))).

Related Version arXiv:2308.05998

1 Introduction

The Vapnik–Chervonenkis dimension (VC-dimension) [15] is a measure of complexity for
range spaces. Knowing the VC-dimension of a range space can be used to determine sample
bounds for various computational tasks. These include sample bounds on the test error of
a classification model in statistical learning theory [14] or sample bounds for an ε-net [11]
or an (η, ε)-approximation [10] in computational geometry. Sample bounds based on the
VC-dimension have been successfully applied in the context of kernel density estimation [12],
neural networks [2, 13], coresets [5, 8, 9], clustering [1, 3] and other data analysis tasks.

We study range spaces, where the ground set consists of polygonal curves or polygonal
regions and the ranges consist of balls defined by the Hausdorff distance. Previous to our work,
Driemel, Nusser, Phillips and Psarros [7] derived almost tight bounds on the VC-dimension
in the setting of polygonal curves. At the heart of their approach lies the definition of a set of
boolean functions (predicates) which can be used to determine if a query curve is contained
in a ball of given radius around a center curve. Their proof of the VC-dimension bound uses
the worst-case number of operations needed to determine the truth values of each predicate.

In this paper, we extend the known set of predicates to be able to decide the Hausdorff
distance between polygonal regions with holes in the plane. We give an improved analysis
for the VC-dimension that considers each predicate as a combination of sign values of
polynomials. This approach does not use the computational complexity of the distance
evaluation, but instead uses the underlying structure of the range space defined by a system
of polynomials directly. Our techniques extend to other elastic distance measures, such as
the Fréchet distance and the dynamic time warping distance (DTW).
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1.1 Preliminaries
Let X be a set. We call a set R where any r ∈ R is of the form r ⊆ X a range space with
ground set X. We say a subset A ⊆ X is shattered by R if for any A′ ⊆ A there exists
an r ∈ R such that A′ = r ∩ A. The VC-dimension of R (denoted by V Cdim(R)) is the
maximal size of a set A ⊆ X that is shattered by R. We define the ball with radius ∆ and
center c under the distance measure dρ on a set X as bρ(c, ∆) = {x ∈ X | dρ(x, c) ≤ ∆}. We
study range spaces with ground set (Rd)m of the form

Rρ,k = {bρ(c, ∆) | ∆ ∈ R+, c ∈ (Rd)k}.

Let R be a range space with ground set X, and F be a class of real-valued functions defined
on Rd × X. For a ∈ R let sgn(a) = 1 if a ≥ 0 and sgn(a) = 0 if a < 0. We say that
R is a t-combination of sgn(F ) if there is a boolean function g : {0, 1}t → {0, 1} and
functions f1, . . . , ft ∈ F such that for all r ∈ R there is a parameter vector y ∈ Rd such that
r = {x ∈ X | g(sgn(f1(y, x)), . . . , sgn(ft(y, x))) = 1}.

Central to our approach is the following well-known theorem for bounding the VC-
dimension of such range spaces. The theorem can be proven by investigating the complexity
of arrangements of zero sets of polynomials (see full version [4]).

▶ Theorem 1.1 ([2], Theorem 8.3). Let F be a class of functions mapping from Rd × X to
R so that, for all x ∈ X and f ∈ F the function y → f(y, x) is a polynomial on Rd of degree
no more than l. Suppose that R is a t-combination of sgn(F ). Then we have

V Cdim(R) ≤ 2d log2(12tl).

Let ∥·∥ denote the standard Euclidean norm. Let X, Y ⊆ Rd for some d ∈ N. The directed
Hausdorff distance from X to Y is defined as d−→

H
(X, Y ) = supx∈X infy∈Y ∥x − y∥ and the

Hausdorff distance between X and Y is defined as dH(X, Y ) = max{d−→
H

(X, Y ), d−→
H

(Y, X)}.

If a set X consists of a single point p ∈ Rd, we may write p instead of {p} to simplify the
notation, e.g. dH(p, Y ) instead of dH({p}, Y ). Let d, m ∈ N. A sequence of vertices
p1, . . . , pm ∈ Rd defines a polygonal curve P by connecting consecutive vertices to create
the edges p1, p2, . . . , pm−1, pm. We may think of P as an element of Xd

m := (Rd)m and write
P ∈ Xd

m. We may also think of P as a continuous function P : [0, 1] → Rd by fixing m

values 0 = t1 < . . . < tm = 1, and defining P (t) = λpi+1 + (1 − λ)pi where λ = t−ti

ti+1−ti
for

ti ≤ t ≤ ti+1. We call P a closed curve if p1 = pm and we call P self-intersecting if there
exist s ∈ [0, 1], t ∈ (0, 1) with s ≠ t such that P (s) = P (t). In the case that P is a closed
curve in R2 which is not self-intersecting, we call the union of P with its interior a simple
polygonal region S (without holes). We denote with ∂S the boundary of S, which is P .
Given a simple polygonal region S0 and a set of pairwise disjoint simple polygonal regions
S1, . . . , Sh in the interior of S0, we also consider the set S = S0 − (S1 ∪ · · · ∪ Sh) a polygonal
region and we call S1, . . . , Sh the holes of S.

Let s, t ∈ Rd. We denote with ℓ(st) the line supporting st. We define the stadium
centered at st with radius ∆ ∈ R+ as D∆(st) = {x ∈ Rd | ∃p ∈ st, ∥p − x∥ ≤ ∆}. Let
e1, e2 ∈ Xd

2 be two edges. We define the double stadium of the edges e1 and e2 with radius
∆ as D∆,2(e1, e2) = D∆(e1) ∩ D∆(e2).

Let X be a set of subsets (called sites) of R2. The Voronoi region reg(A) consists
of all points p ∈ R2 for which A is the closest among all sites in X, i.e. reg(A) = {p ∈
R2 | d−→

H
(p, A) < d−→

H
(p, U) for all U ∈ X \ {A}}. The Voronoi diagram is vd(X) =

R2\∪A∈Xreg(A). We call the set bisec(A, B) = {p ∈ R2 | d−→
H

(p, A) = d−→
H

(p, B)} the bisector
of A and B. The Voronoi edge of A, B is defined as ve(A, B) = vd(X)∩bisec(A, B) and the
Voronoi vertices of A, B, C are defined as vv(A, B, C) = vd(X)∩ bisec(A, B)∩ bisec(B, C).
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new ref. old

discrete
polygonal

curves

DTW
O(dk2 log(m)) Thm. 4, [4]

-
O(dkm log(k)) Thm. 4, [4]

Hausdorff O(dk log(km)) Thm. 2, [4]
O(dk log(dkm)) [7]

Fréchet O(dk log(km))(∗) Thm. 3, [4]

continuous
polygonal

curves

Hausdorff O(dk log(km)) Thm. 3.5
O(d2k2 log(dkm)) [7]

Fréchet O(dk log(km))(∗) Thm. 27, [4]

weak Fréchet O(dk log(km))(∗) Thm. 27, [4] O(d2k log(dkm)) [7]

polygons R2 Hausdorff O(k log(km)) Thm. 3.6 -
Table 1 Overview of VC-dimension bounds. Results marked with (∗) were independently obtained

by Cheng and Huang [6].

2 Results

For the Hausdorff distance of polygonal regions (with holes) in the plane, we show that
the VC-dimension of RdH ,k is bounded by O(k log(km)). For the Fréchet distance and the
Hausdorff distance of polygonal curves, in the discrete and the continuous case, we show
that for the VC-dimension of Rρ,k our techniques imply the same bound of O(dk log(km)).
Parallel and independent to our work, Cheng and Huang [6] obtained the same result for the
Fréchet distance using very similar techniques. The bounds improve upon the upper bounds
of [7] in all of the considered cases. An overview of our results with references to theorems
and comparison to [7] and the independent results from [6] is given in Table 1. By the lower
bound Ω(max(dk log(k), log(dm))) for d ≥ 4 in [7], the new bounds for polygonal curves are
tight in each of the parameters k, m and d separately. For the Dynamic time warping
distance, we show a new bound of O(min(dk2 log(m), dkm log(k))). The proofs for Fréchet
and DTW are very similar to the ones used for the Hausdorff distance and we discuss them
in the full version [4].

3 Analysis for the Hausdorff distance

To bound the VC-dimension of range spaces of the form RdH ,k, we define geometric predicates.
The truth values of these predicates have to uniquely determine distance queries with dH . We
give predicates such that the directed Hausdorff distance query d−→

H
(P, Q) ≤ ∆ is determined

by them. The other direction d−→
H

(Q, P ) ≤ ∆ is analogous. We will show that our predicates
can be viewed as combinations of simple predicates.

▶ Definition 3.1. Let F be a class of functions mapping from Rdm × Rdk+1 to R so that,
for all f ∈ F the function (x, y) → f(x, y) is a polynomial of constant degree. Let P be
a function from Rdm × Rdk+1 to {0, 1}. We say that the predicate P is simple if P is a
t-combination of sgn(F ) with t ∈ O(1).

In our proof of the VC-dimension bounds we will use the following corollary to Theorem 1.1.

▶ Corollary 3.2. Suppose that for a given dρ there exists a polynomial p(k, m) such that for
any k, m ∈ N the space Rρ,k with ground set Rdm is a t-combination of simple predicates
with t = p(k, m). Then V Cdim(Rρ,k) is in O(dk log(km)).
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vv(A,B,C)

ve(B,C)ve(A,C)

ve(A,B)

Figure 1 Degenerate case: vv(A, B, C) consist of a whole arc and ve(A, B) contains a region.

Let P ∈ Xd
m with vertices p1, . . . , pm and Q ∈ Xd

k with vertices q1, . . . , qk be two polygonal
curves. Let further ∆ ∈ R+. By [7] the directed Hausdorff distance query d−→

H
(P, Q) ≤ ∆ is

uniquely determined by the following predicates.
(P1): Given an edge e1 of Q and a vertex p of P , this predicate returns true iff there
exists a point q on e1, such that ∥q − p∥ ≤ ∆.
(P2): Given an edge of P , pjpj+1, and two edges e1, e2 of Q, this predicate is equal to
ℓ(pjpj+1) ∩ D∆,2(e1, e2) ̸= ∅.

Examples for the predicates P1 and P2 are depicted in Figure 3 (they are also used for
polygonal regions).

▶ Lemma 3.3 (Lemma 7.1, [7]). For any two polygonal curves P, Q, given the truth values
of all predicates of the type P1, P2 one can determine whether d−→

H
(P, Q) ≤ ∆.

In the case of polygonal regions that may contain holes, we define some of the predicates
based on the Voronoi vertices of the edges of the boundary of the polygonal region. Since
degenerate situations can occur if Voronoi sites intersect in a point p (see Figure 1), we
restrict the predicates to the subset of the Voronoi vertices that are relevant to our analysis.

▶ Definition 3.4. Let a = a1a2, b = b1b2 and c = c1c2 be edges of a polygonal region that
may contain holes. Consider their vertices and supporting lines A = {{a1}, {a2}, ℓ(a)},
B = {{b1}, {b2}, ℓ(b)} and C = {{c1}, {c2}, ℓ(c)}. Let X ∈ A, Y ∈ B and Z ∈ C. If either
X, Y or Z is a subset of one of the others, we set V0(X, Y, Z) = ∅ otherwise let

V0(X, Y, Z) = {v ∈ R2 | d−→
H

(v, X) = d−→
H

(v, Y ) = d−→
H

(v, Z)}

be the set of points with the same distance to all sets X, Y and Z. The set of Voronoi-
vertex-candidates V (a, b, c) of the line segments a, b and c is defined as

V (a, b, c) =
⋃

X∈A,Y ∈B,Z∈C

V0(X, Y, Z).

By only considering Voronoi-vertex-candidates, we restrict ourselves to a finite set of vertices
that includes all relevant Voronoi vertices and does not include the degenerate cases. Let P

and Q be two polygonal regions that may contain holes. Let further ∆ ∈ R+. The distance
d−→

H
(p, Q) for points p ∈ P can be maximized at points in the interior of P or at points at

the boundary of P (see Figure 2 for the two cases). Since these cases are different to analyze,
we split the query into two general predicates.
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p

Q

P

q

Figure 2 Illustration of the two cases: The point p on the boundary of P maximizes d−→
H

(p, Q).
The point q in the interior of Q that is a Voronoi vertex of the edges of P maximizes d−→

H
(q, P ).

(B) (Boundary): This predicate returns true if and only if d−→
H

(∂P, Q) ≤ ∆.
(I) (Interior): This predicate returns true if d−→

H
(P, Q) ≤ ∆. This predicate returns false

if d−→
H

(P, Q) > d−→
H

(∂P, Q) and d−→
H

(P, Q) > ∆.

Note that it is not defined what (I) returns if d−→
H

(P, Q) = d−→
H

(∂P, Q) and d−→
H

(P, Q) > ∆.
This does not matter, since the correctness of d−→

H
(P, Q) ≤ ∆ is still equivalent to both (B)

and (I) being true.
Since (B) and (I) are very general, we define more detailed predicates that can be used

to determine feasible truth values of (B) and (I). To determine (B), we need the following
predicates in combination with P1 and P2 (defined earlier for curves):

(P3): Given a vertex p of P , this predicate returns true if and only if p ∈ Q.
(P4): Given an edge e1 of P and an edge e2 of Q, this predicate is equal to e1 ∩ e2 ̸= ∅.
(P5): Given a directed edge e1 of P and two edges e2 and e3 of Q, this predicate is true
if and only if e1 ∩ e2 ≠ ∅, e1 ∩ e3 ≠ ∅ and e1 intersects e2 before or at the same point
that it intersects e3.
(P6): Given a directed edge e1 of P and two edges e2 and e3 of Q, this predicate is true
if and only if e1 ∩ e2 ̸= ∅ and if there exists a point b on e3 such that ∥a − b∥ ≤ ∆ where
a is the first intersection point of e1 ∩ e2.
(P7): Given a directed edge e1 of P and two edges e2 and e3 of Q, this predicate is true
if and only if e1 ∩ e2 ̸= ∅ and if there exists a point b on e3 such that ∥a − b∥ ≤ ∆ where
a is the last intersection point of e1 ∩ e2.

Using Voronoi-vertex-candidates, we define the detailed predicates for determining (I):
(P8): Given 4 edges e1, e2, e3, e4 of Q and a point v from the set of Voronoi-vertex-
candidates V (e1, e2, e3), this predicate returns true if and only if there exists a point
p ∈ e4, such that ∥v − p∥ ≤ ∆.
(P9): Given 3 edges e1, e2, e3 of Q and a point v from the set of Voronoi-vertex-candidates
V (e1, e2, e3), this predicate returns true if and only if v ∈ Q.
(P10): Given 3 edges e1, e2, e3 of Q and a point v from the set of Voronoi-vertex-
candidates V (e1, e2, e3), this predicate returns true if and only if v ∈ P .

Examples for the predicates P3, . . . P10 are depicted in Figure 3.
In the full version [4], we show that given the truth values of all these predicates one can

determine a feasible truth value for predicates of the type (B) and (I). The proof for (B) is
very similiar to the proof of Lemma 7.1 in [7] for polygonal curves. In the proof for (I), we
show by contradiction that if the distance is realized only in the interior and at no Voronoi

EuroCG’24
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P3 P4 P5

P6/P7 P6 P7

p
e1

e2

e1

e2 e3

e1

e2

e3

ba

e1

e2

e3
e1

e2

e3a b a b

P8 P9 P10

v v v

p

e1 e2

e3e4

e1 e2

e3

e1 e2

e3

P1 P2

p

e1

e2

pj
pj+1

`(pjpj+1)q e1

Figure 3 Illustration of the predicates P1, . . . , P10 : In all depicted cases the predicates are true.

vertex, then you can always increase the distance of Q to a point p in the interior of P by
moving p to a Voronoi vertex or to the boundary.

Furthermore, we give a detailed proof in the full version [4], that all predicates P1, . . . , P10
can be determined by a polynomial number of simple predicates. In that technical proof, we
explicitly determine for each predicate, how it can be divided into sign values of polynomials.
Corollary 3.2 then implies the following bounds on the VC-dimension.

▶ Theorem 3.5. Let RdH ,k be the range space of balls centered at polygonal curves in Xd
k

with ground set Xd
m. V Cdim(RdH ,k) is in O(dk log(km)).

▶ Theorem 3.6. Let RdH ,k be the range space of balls centered at polygonal regions that may
contain holes in (R2+1)k with ground set (R2+1)m. The third dimension encodes a label that
associates each vertex with its boundary component. V Cdim(RdH ,k) is in O(k log(km)).
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