
Optimal In-Place Compaction of Sliding Cubes
Irina Kostitsyna1,2, Tim Ophelders∗2,3, Irene Parada4, Tom Peters2,
Willem Sonke2, and Bettina Speckmann2

1 KBR at NASA Ames Research Center, USA
irina.kostitsyna@nasa.gov

2 TU Eindhoven, The Netherlands
[t.peters1|w.m.sonke|b.speckmann]@tue.nl

3 Utrecht University, The Netherlands
t.a.e.ophelders@uu.nl

4 Universitat Politècnica de Catalunya, Spain
irene.parada@upc.edu

Abstract
The sliding cubes model is a well-established theoretical framework that supports the analysis of
reconfiguration algorithms for modular robots consisting of face-connected cubes. As is common
in the literature, we focus on reconfiguration via an intermediate canonical shape. Specifically, we
present an in-place algorithm that reconfigures any n-cube configuration into a compact canonical
shape using a number of moves proportional to the sum of coordinates of the input cubes. This
result is asymptotically optimal and strictly improves on all prior work. Furthermore, our algorithm
directly extends to two dimensions and any dimension higher than three.

Related Version A full version of the paper is available at arxiv.org/abs/2312.15096.

1 Introduction

Modular robots consist of a large number of comparatively simple robotic units. These units
can attach and detach to and from each other, move relative to each other, and in this way
form different shapes or configurations. This shape-shifting ability allows modular robots
to robustly adapt to previously unknown environments and tasks. In this paper, we study
the sliding cube model, a well-established theoretical framework that supports the analysis
of reconfiguration algorithms for modular robots consisting of face-connected cubes.

Almost 20 years ago, Dumitrescu and Pach [5] showed that the sliding cube model in
2D (or sliding square model) is universally reconfigurable. More precisely, they presented
an algorithm that transforms any two given configurations with n squares into each other
in O(n2) moves. This algorithm transforms any given configuration into a canonical shape
(a horizontal line) and then reverts the procedure to reach the final configuration. Recently,
Akitaya et al. [3] presented Gather&Compact: an input-sensitive in-place algorithm which
uses O(Pn) moves, where P is the maximum among the perimeters of the bounding boxes
of the initial and final configurations. The authors also show that minimizing the number
of moves required to reconfigure is NP-hard.

Until recently, the most efficient algorithm for the reconfiguration problem in 3D was
the algorithm by Abel and Kominers [1], which uses O(n3) moves to transform any n-
cube configuration into any other n-cube configuration. As is common in the literature,
this algorithm reconfigures the input into an intermediate canonical shape. Stock et al. [7]

∗ T. Ophelders is partially supported by the Dutch Research Council (NWO) under project no.
VI.Veni.212.260.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2312.15096

20:2 Optimal In-Place Compaction of Sliding Cubes

(a) (b)

Figure 1 Moves in the sliding cube model: (a) slide and (b) convex transition.

recently announced a worst-case bound of O(n2) moves for the Abel and Kominers algorithm.
Furthermore, their paper presents an in-place reconfiguration algorithm, which runs in time
proportional to a measure of the size of the bounding box times the number of cubes.
Specifically, their algorithm requires O(n(wd + h)) moves in the worst-case, where w, d, and
h are the width, depth, and height of the bounding box, respectively.

In this paper we present an in-place algorithm that reconfigures any n-cube configura-
tion into a compact canonical shape using a number of moves proportional to the sum of
coordinates of the input cubes. This result is asymptotically optimal. Furthermore, our
algorithm directly extends to squares in two dimensions and to hypercube reconfiguration
in dimensions higher than three.

2 Preliminaries

A configuration C is a subset of coordinates in the three-dimensional grid. The elements of C
are called cubes. We call two cubes adjacent if they lie at unit distance. For a configuration C,
denote by GC the graph with vertex set C, whose edges connect all adjacent cubes. We say a
cell is a vertex of GZ3 which is not occupied by a cube in C. We always require a configuration
to remain connected, that is, GC must be connected. For ease of exposition we assume C
consists of at least two cubes. We call a configuration C nonnegative if C ⊆ N3. Cubes can
perform moves. A move is an operation that replaces a single cube c ∈ C by another cube
c′ /∈ C. Moves come in two types: slides and convex transitions (see Figure 1). In both
cases, we consider a 4-cycle γ in GZ3 . For slides, exactly three cubes of γ are in C; c′ is the
cell of γ not in C, and c is adjacent to c′. For convex transitions, γ has exactly two adjacent
cubes in C; c is one of these two cubes, and c′ is the vertex of γ not adjacent to c. The slide
or convex transition is a move if and only if C \ {c} is connected.

Let C be a nonnegative configuration. Call a cube c = (x, y, z) finished if the cuboid
spanned by the origin and c is completely in C, that is, if {0, . . . , x}×{0, . . . , y}×{0, . . . , z} ⊆
C. We call C finished if all cubes in C are finished. The compaction problem starts with an
arbitrary connected configuration C and is solved when all cubes are finished.

Most of the algorithm works on vertical contiguous strips of cubes in C called subpillars.
More precisely, a subpillar is a subset of C of the form {x} × {y} × {zb, . . . , zt}. In the
remainder of this paper, we denote this subpillar by ⟨x, y, zb .. zt⟩. The cube (x, y, zt) is
called the head, and the remainder ⟨x, y, zb .. zt − 1⟩ is called the support. A pillar is a
maximal subpillar, that is, a subpillar that is not contained in any other subpillar. Note
that there can be multiple pillars with the same x- and y- coordinate above each other, as
long as there is a gap between them. Two sets S and S′ of cubes are adjacent if S contains
a cube adjacent to a cube in S′. All omitted proofs can be found in the full version.

I. Kostitsyna, T. Ophelders, I. Parada, T. Peters, W. Sonke, B. Speckmann 20:3

(a)

z

(b)

P ′
2

P

unlock

P ′

(c)

1

unlock

2

P P

P P ′ P ′P

P ′

(d)

P
P ′ 1

unlock

P

2

P ′
1 1

2 3

Figure 2 Examples of operations (a–d); hatched cubes are non-cut and dashed outlines indicate
cells that must be empty. Each case admits a move sequence that reduces ZC .

3 Algorithm

For a set of cubes S ⊆ C, let (XS , YS , ZS) denote its coordinate vector sum
∑

(x,y,z)∈S(x, y, z).
Let C>0 be the subset of cubes (x, y, z) ∈ C for which z > 0, and C0 be the subset of cubes
for which z = 0. Let the potential of a cube c = (cx, cy, cz) be Πc = wc(cx +2cy +4cz), where
the weight wc depends on the coordinates of c in the following way. If cz > 1, then wc = 5;
if cz = 1, then wc = 4. If cz = 0, then wc depends on cy. If cy > 1, then wc = 3; if cy = 1,
then wc = 2; lastly, if cz = cy = 0, then wc = 1. We aim to minimize the potential function
ΠC =

∑
c∈C Πc. From now on, let C be an unfinished nonnegative configuration. We call

a sequence of m moves safe if the result is a nonnegative instance C′, such that ΠC′ < ΠC
and m = O(ΠC − ΠC′). This means that the sequence of moves reduces the potential by at
least some constant fraction of m by going from C to C′. We show that if C is unfinished, it
always admits a safe move sequence.

The main idea is as follows. For a configuration C, whenever possible, we try to reduce
ZC . If that is not possible, the configuration must admit a pillar shove where a complete
pillar is moved to a different x- and y-coordinate. By reducing either the z-coordinate of
cubes, or the x- or y-coordinate, we guarantee that eventually every cube becomes finished.

Local Z reduction. Let P = ⟨x, y, zb .. zt⟩ be a subpillar of C. We refer to the four coor-
dinates {(x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)} as the sides of P . On each side, P may
have one or more adjacent pillars. We order these by their z-coordinates; as such, we may
refer to the top- or bottommost adjacent pillar on a side of P . We say that a set of cubes
S ⊆ C is non-cut if GC\S is connected or empty.

Let P = ⟨x, y, zb .. zt⟩ be a non-cut subpillar, and let P ′ = ⟨x′, y′, z′
b .. z′

t⟩ be a pillar
adjacent to P . We define a set of operations of at most three moves within P which locally
reduce ZC (see Figure 2). Because P is non-cut, C \ P is connected. Therefore, if cubes of P

move in such a way that each component (of cubes originating from P) remains adjacent to
a cube of C \ P , then the result of that operation is a valid configuration. These different
operations (a–d) can be seen in Figure 2. For a complete definition of these operations
(a–d), see the full version of this paper.

Pillar shoves. Next, we consider a longer move sequence (e) that still involves a single
subpillar. We call this operation a pillar shove, which takes as parameters a subpillar
P = ⟨x, y, zb .. zt⟩ and a side (x′, y′) of P . The result of the pillar shove is the set of cubes

shove(C, P, (x′, y′)) := (C \ P) ∪ ⟨x′, y′, zb .. zt − 1⟩ ∪ {(x, y, zb)},

EuroCG’24

20:4 Optimal In-Place Compaction of Sliding Cubes

(e)

P
→ →

→ →3 2

3

(|P | − 9 times)

11

2

→

P ′

(e′)

P

P ′

→ →

Figure 3 Examples of pillar shoves for a long pillar (e) and a short pillar (e′).

in which the support is effectively shifted to the side (x′, y′), and the head is effectively
moved from (x, y, zt) to (x, y, zb). Although shove(C, ⟨x, y, zb .. zt⟩, (x′, y′)) is well-defined, it
is not necessarily a connected configuration, let alone safely reachable from C.

Let P = ⟨x, y, zb .. zt⟩ be a non-cut subpillar, and assume that on at least two sides
(x′, y′) and (x′′, y′′) of P , no cube except possibly the head (x, y, zt) has an adjacent cube.
Moreover, assume that (x′, y′, zt) ∈ C. Then the pillar shove can be done without collisions
and while keeping connectivity (see Figure 3). There are two cases: one where P has at least
9 cubes, in which case we take O(|P |) moves (left side of Figure 3), and the case where P has
fewer than 9 cubes takes O(1) moves and does not require the existence of the second side
(x′′, y′′) (right side of Figure 3). A pillar shove reduces ZC by zt − zb and takes O(zt − zb)
moves, so it is safe. For a complete definition of (e), see the full version.

Lastly, we define an operation (f) that performs any move of C that moves a cube of
C>0, reduces the potential, and results in a nonnegative instance. In summary, the moves
(a–f) are designed to reduce the z-coordinate of a cube. If this is not directly possible, the
pillar shove moves a complete pillar such that the head of that pillar can still reduce its
z-coordinate.

Low and high components. Suppose that (a–f) do not apply. Let LHC be the bipartite
graph obtained from GC by contracting the components of GC0 and GC>0 to a single vertex
(see Figure 4). We call LHC the low-high graph of C, and we call the vertices of LHC that
correspond to components of GC0 and GC>0 low and high components, respectively. The full
version of this paper proves the following lemma.

▶ Lemma 3.1. Assume C does not admit any operation of type (a–f). If H is a high
component such that C \ H is connected, then every pillar of H is part of a pillar of C
starting at z = 0, H consists entirely of finished cubes, and H contains (0, 0, 1).

We pick a vertex R of LHC that we call the root of LHC . If (0, 0, 0) ∈ C, pick R to be the
low component that contains (0, 0, 0). Otherwise, pick R to be an arbitrary low component.

I. Kostitsyna, T. Ophelders, I. Parada, T. Peters, W. Sonke, B. Speckmann 20:5

H3 H1 H3H2
H1

L1 L2 L3 L4
L1

L2
L3

L4

H2

Figure 4 An example configuration C and its low-high graph LHC . This configuration does
admit moves of type (a–f)

We call a low component L clear if C \ L is connected, L ̸= R, and L is connected to a non-
cut pillar P in C \ L. We call such a pillar P a clearing pillar. The full version proves that
such a clear low component always exists, unless LHC contains only the root and possibly
a single high component.

We now define operation (g): pick a clear low component L, and perform any move of C
that moves a cube of L, reduces the potential, and results in a nonnegative instance. This
does the same as operation (f), but now on C0 instead of C>0. When operations of type (g)
are executed, one of three special events could occur:

(1) The component connects to a different low component, merging them.
(2) The component connects to the root, and becomes part of the root.
(3) The component reaches the origin (at which point it becomes the root).
If none of the operations (a–g) are available then L is too small to reach the origin. We
would like to move the clearing pillar P and do a pillar shove. However, it could be that
there are cubes around P , or that moving P would disconnect the low component. For this
specific case we define two last operations. Operation (h) applies when the bottom of P

is completely surrounded. It moves the cube at the bottom of P via z = −1 to a positive
cell that is closer to the origin. The second operation (i) applies when the bottom of P is
not sufficiently connected to L and moving it would disconnect L. In this case, we gather
cubes from the low component towards P to connect it to the low component, and perform
a pillar shove on it, see Figure 5.

(a) (b)

(x′, y′)
(x′, y′)

Figure 5 The start configuration for a pillar shove for a clearing pillar. The white pillar is the
clearing pillar. The red cube is part of L. The blue cubes are required and need to be gathered.
(a): clearing pillar of height at least 5. (b): The configuration for a pillar shove of height at most 4.

EuroCG’24

20:6 Optimal In-Place Compaction of Sliding Cubes

This last operation moves cubes that are not part of the clearing pillar P = ⟨x, y, zb .. zt⟩.
However, the move is still safe. Recall that the potential of a cube c = (cx, cy, cz) is Πc =
wc(cx + 2cy + 4cz), where wc is the weight of c. The potential of the complete configuration
is the sum of potential of the individual cubes. Because the low component cannot reach the
origin, its size is at most O(x + y). Therefore, moving a constant number of cubes towards
this pillar also only takes O(x + y) moves. This is charged to the head of P : since it goes
from z > 1 to z = 1, or from z = 1 to z = 0, its weight decreases by 1, paying for the
gathering of these cubes.

This algorithm terminates when no clear low component (and hence only the root low
component) remains. We are left with two cases. Either no high component remains, or
there is at most one high component, which consists of entirely finished cubes.

All of the moves (a–i) not only work in 3D, they also work in 2D when instead of
prioritizing reducing the z-coordinate, we prioritize reducing the y-coordinate. Moreover,
these moves never move the origin. Therefore, we can now run the exact same moves on the
bottom layer in 2D, until the root component is finished. If there is still a high component,
it stays connected via the origin. We end up with a finished configuration.

Recall that a sequence of m moves on an instance C is safe if the result is a nonnegative
instance C′, such that ΠC′ < ΠC and m = O(ΠC − ΠC′). Since each of our operations is safe,
the total number of moves our algorithm performs is O(ΠC) = O(XC + YC + ZC).

4 Conclusion

We presented an in-place algorithm that reconfigures any configuration of cubes into a com-
pact canonical shape using a number of moves proportional to the sum of coordinates of the
input cubes. This result is asymptotically optimal. However, just as many other algorithms
in the literature, our bounds are amortized in the sense that we make use of a number of
dedicated cubes which help other cubes move by establishing the necessary connectivity in
their neighborhood. This is in particular the case with our pillar shoves, that need some
additional cubes to gather at the pillar, to then move up and down the pillar to facilitate
moves. These extra moves are charged to one cube in the pillar reducing its coordinates.
In the literature such cubes are referred to as helpers, seeds, or even musketeers [2, 4, 6, 7].
Hence, an interesting question is whether it is possible to arrive at sum-of-coordinates bounds
without amortization?

References

1 Zachary Abel and Scott Duke Kominers. Universal reconfiguration of (hyper-)cubic robots.
ArXiv e-Prints, 2011. URL: https://arxiv.org/abs/0802.3414v3.

2 Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmovic,
Robin Y. Flatland, Matias Korman, Belén Palop, Irene Parada, André van Renssen,
and Vera Sacristán. Universal reconfiguration of facet-connected modular robots by
pivots: The O(1) musketeers. Algorithmica, 83(5):1316–1351, 2021. doi:10.1007/
S00453-020-00784-6.

3 Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem
Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting squares: Input-
sensitive in-place reconfiguration of sliding squares. In Proc. 18th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT 2022), volume 227 of LIPIcs, pages 4:1–4:19,
2022. doi:10.4230/LIPICS.SWAT.2022.4.

https://arxiv.org/abs/0802.3414v3
https://doi.org/10.1007/S00453-020-00784-6
https://doi.org/10.1007/S00453-020-00784-6
https://doi.org/10.4230/LIPICS.SWAT.2022.4

I. Kostitsyna, T. Ophelders, I. Parada, T. Peters, W. Sonke, B. Speckmann 20:7

4 Matthew Connor and Othon Michail. Centralised connectivity-preserving transformations
by rotation: 3 musketeers for all orthogonal convex shapes. In Proc. 18th International
Symposium on Algorithmics of Wireless Networks (ALGOSENSORS 2022), volume 13707
of LNCS, pages 60–76. Springer, 2022. doi:10.1007/978-3-031-22050-0_5.

5 Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics,
22:37–50, 2006. doi:10.1007/s00373-005-0640-1.

6 Othon Michail, George Skretas, and Paul G. Spirakis. On the transformation capability
of feasible mechanisms for programmable matter. In Proc. 44th International Colloquium
on Automata, Languages, and Programming (ICALP 2017), volume 80 of LIPIcs, pages
136:1–136:15, 2017. doi:10.4230/LIPICS.ICALP.2017.136.

7 Frederick Stock, Hugo Akitaya, Matias Korman, Scott Kominers, and Zachary Abel. A
universal in-place reconfiguration algorithm for sliding cube-shaped robots in quadratic
time. In Proc. 40th International Symposium on Computational Geometry (SoCG 2024),
2024. To appear.

EuroCG’24

https://doi.org/10.1007/978-3-031-22050-0_5
https://doi.org/10.1007/s00373-005-0640-1
https://doi.org/10.4230/LIPICS.ICALP.2017.136

	Introduction
	Preliminaries
	Algorithm
	Conclusion

