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Abstract
Let S be a set of n points in general position in Rd. The order-k Voronoi diagram of S, Vk(S), is a
subdivision of Rd into cells whose points have the same k nearest points of S. Sibson, in his seminal
paper from 1980 (A vector identity for the Dirichlet tessellation), gives a formula to express a point
Q of S as a convex combination of other points of S by using ratios of volumes of the intersection of
cells of V2(S) and the cell of Q in V1(S). The natural neighbour interpolation method is based on
Sibson’s formula. We generalize his result to express Q as a convex combination of other points of S

by using ratios of volumes from Voronoi diagrams of any given order.

1 Introduction

Let S be a set of n points in general position in Rd, meaning no m of them lie in a (m − 2)-
dimensional flat for m = 2, 3, ..., d + 1 and no d + 2 of them lie in the same d-sphere, and let
k be a natural number with 1 ≤ k ≤ n − 1. Let σd denote the Lebesgue measure on Rd, to
simplify we just write σ.

The order-k Voronoi diagram of S, Vk(S), is a subdivision of Rd into cells such that points
in the same cell have the same k nearest points of S. Thus, each cell f(Pk) of Vk(S) is defined
by a subset Pk of S of k elements, where each point of f(Pk) has Pk as its k closest points
from S. Similarly, the ordered Voronoi diagram of order k of S, OVk(S), can be defined as a
subdivision of Rd into cells such that points in the same cell have the same ordered k nearest
points of S. Thus, each cell f(⟨Pk⟩) of OVk(S) is defined by an ordered subset ⟨Pk⟩ of size k

of S, where the points are arranged in order of proximity starting from the closest to the
farthest. Note that, by definition, the union of all the cells of OVk(S) corresponding to the
different permutations of a fixed subset of length k of S is the cell, f(Pk), associated to such
subset in the (ordinary) order-k Voronoi diagram, Vk(S). See Figure 1.

For the order-k Voronoi diagram of S, the region Rk(ℓ) of Qℓ ∈ S is defined as the set
of cells of Vk(S) that have the point Qℓ as one of their k nearest neighbours. See Figure 2.
For OVk(S) we can define these regions in the same way. These regions are not necessarily
convex but star-shaped, see [2, 4, 10, 16], and it is known that R1(ℓ) is contained in the
kernel of Rk(ℓ); see [3]. Also, these regions are related to Brillouin zones. For a given k, the
region Rk(ℓ) \ Rk−1(ℓ) is known as a Brillouin zone of Qℓ. Brillouin zones have been studied
mainly for lattices but also for arbitrary discrete sets, see e.g. [6, 17].

Local coordinates based on Voronoi diagrams were introduced by Sibson [13]. He states
that, given a set S of n points of Rd in general position, a point Qℓ ∈ S can be expressed as
a convex combination of its nearest points of S. This is described next. Cells of V2(S) that
intersect f({Qℓ}) in V1(S) are of the form f({Qℓ, Qj}), i.e., cells defined by Qℓ and another
point Qj , that we call its natural neighbour. These intersections give ratios of volumes
which are the coefficients multiplying the corresponding natural neighbours in the convex
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Figure 1 For a set S = {Q1, · · · , Q5} of five points in R2. Each cell of OVk(S) is labeled by the
indices of its k nearest points of S. V1(S) is shown in black, V2(S) in green, and V3(S) in orange
colour. Left: The cells of OV2(S) with the same nearest neighbour Qi from S form the cell f({Qi})
in V1(S). The cells of OV2(S) with the same subset P2 of two points of S (in any order) form the
cell f(P2) of V2(S). Right: OV3(S) is shown together with V1(S), V2(S), and V3(S).
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Figure 2 R1(1) is the cell f({Q1}) in V1(S). R2(1) is the union of cells of V2(S) that have Q1 as
one of its two nearest neighbours. R1(1) ⊂ R2(1).

combination that expresses Qℓ. Volumes σ(f({Qℓ, Qj}) ∩ f({Qℓ})) are equal to the volumes
given by the intersection of the cells of V1(S \ {Qℓ}) and f(Qℓ) in V1(S), see Figure 3.



M. Claverol, A. de las Heras-Parrilla, C. Huemer and D. Lara 21:3

▶ Theorem 1.1. (Local coordinates property [13]). For a bounded cell f({Qℓ}) of V1(S),

Qℓ =
∑
j ̸=ℓ

σ(f({Qℓ, Qj}) ∩ f({Qℓ}))
σ(f({Qℓ})) Qj (1)

Sibson’s formula has been used to define the natural neighbour interpolation method [14].
Given a set of points and a function, this interpolation method provides a smooth approxima-
tion of new points to the function. Sibson’s algorithm uses the closest subset of the input set
S \ {Qℓ} to interpolate a query point, Qℓ, and applies weights based on the ratios of volumes
provided by Theorem 1.1. Local coordinates and the natural neighbour interpolation method
have been studied e.g. in [5, 11, 15], and they have many applications such as reconstruction
of a surface from unstructured data or interpolation of rainfall data, see [9, 15].
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Figure 3 In R2. Left: The initial Voronoi diagram V1(S \ {Qℓ}) without query point Qℓ. Right:
Colored areas given by the intersections of f({Qℓ}) and the cells of V1(S \ {Qℓ}), are the same as
the ones given by the intersections of the cells of V2(S) (shown in dashed) with the cell f({Qℓ}).

Aurenhammer gave a generalization of Sibson’s result to Voronoi diagrams of higher order,
and more generally to power diagrams, see [1]. Aurenhammer’s formula allows to write a
point Qℓ of S as a linear combination of other points of S. We state this in Theorem 2.1
and Corollary 2.2 below. The formula in Theorem 2.1 is defined in terms of OVk+1(S). It is
restated in Corollary 2.2 in terms of intersections of cells of Vk−1(S) and Vk+1(S) with a cell
of Vk(S). This formula works for a bounded cell of Vk(S).

Our main contribution is another generalization of Sibson’s result, stated in Theorem 2.3.
In this theorem, we express a point Qℓ ∈ S as a convex combination of its neighbours of S

using ratios of volumes in the region Rk(ℓ). Similar to Sibson’s formula that required the
cell of the point Qℓ to be bounded, our formula requires its region Rk(ℓ) to be bounded. For
the case k = 1, Theorem 2.3 coincides with Theorem 1.1.

This paper is organized as follows. Section 2 details the generalization of Sibson’s formula.
In Section 3 we give a geometric interpretation of the formulas presented in Section 2 for
point sets in the plane. Finally, Section 4 is on how the generalization of Sibson’s formula
could be used for interpolation. Proofs are omitted in this abstract.
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2 Coordinates based on Voronoi diagrams

In this section we present a generalization of Sibson’s formula that expresses a point using
its neighbours of the Voronoi diagram of any given order. For this, we recall results from
Aurenhammer [1] in Theorem 2.1 and Corollary 2.2, using a different notation.

Let Fk+1(Pk), to simplify F (Pk), be the set of cells of OVk+1(S), 1 ≤ k ≤ n − 2, whose
k nearest neighbours are the points of Pk ⊂ S in any order, and the (k + 1)-th nearest
neighbour is another point of S not in Pk. Let fi,j denote the union of cells of OVk+1(S)
whose k-th nearest neighbour is Qi and whose (k + 1)-th nearest neighbour is Qj .

▶ Theorem 2.1. ([1]) If all cells in F (Pk) are bounded in OVk+1(S), then∑
j

fi,j∈F (Pk)

σ(fi,j)Qi =
∑

i
fi,j∈F (Pk)

σ(fi,j)Qj

Q1
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Q4

f5,1 ∪ f5,3

f2,1 ∪ f2,3 ∪ f2,6

Q5
Q2

Q1

Q6

Q3
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f2,1 ∪ f5,1

f2,3 ∪ f5,3

f2,6 Q2

Figure 4 Illustrating Theorem 2.1 for F ({Q2, Q5}) in OV3(S), where S is a set of six points in
R2. In this case the equation reduces to σ(f5,1 ∪ f5,3)Q5 + σ(f2,1 ∪ f2,3 ∪ f2,6)Q2 = σ(f2,1 ∪ f5,1)Q1 +
σ(f2,3 ∪ f5,3)Q3 + σ(f2,6)Q6. Left: cells grouped according to its k-nearest neighbour. Right: cells
grouped according to its (k + 1)-nearest neighbour.

Note that, the subdivisions induced by Vk−1(S) at the interior of f(Pk) correspond to
grouping the cells of F (Pk) in OVk+1(S) that have the same k-nearest neighbour. Also, the
subdivisions induced by Vk+1(S) at the interior of f(Pk) correspond to grouping the cells of
F (Pk) in OVk+1(S) that have the same (k + 1)-nearest neighbour. See Figure 4.

By these observations, Theorem 2.1 can be stated as follows.

▶ Corollary 2.2. ([1]) Let 2 ≤ k ≤ n − 2 and let f(Pk) be a bounded cell of Vk(S). Then,∑
f(Pk−1)∈Vk−1(S)

Qi∈Pk\Pk−1

σ(f(Pk−1) ∩ f(Pk))Qi =
∑

f(Pk+1)∈Vk+1(S)
Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))Qj

Note that, by the relation between the Voronoi diagrams and the ordered Voronoi diagrams,
Rk(ℓ) is the set of cells of OVk+1(S) that have Qℓ as one of their k nearest neighbours from
S, i.e., Rk(ℓ) = ∪Qℓ∈Pk

F (Pk). Based on this observation and Theorem 2.1 we can prove the
following result.

▶ Theorem 2.3. If Rk(ℓ) is a bounded region, then

Qℓ =
∑

i
fi,j∈Rk(ℓ)

σ(fi,j)
σ(Rk(ℓ))Qj .
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▶ Corollary 2.4. Let 1 ≤ k ≤ n − 2 and let Rk(ℓ) be a bounded region. Then,

Qℓ =
∑

f(Pk)∈Rk(ℓ)

∑
f(Pk+1)∈Vk+1(S)

Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))
σ(Rk(ℓ)) Qj

3 A geometric interpretation

In the following we examine the generalization of Sibson’s theorem to higher order Voronoi
diagrams from Corollary 2.2 in more detail for cells f(Pk) of Vk(S), when S is a point set in
R2. Divide both sides of the equation given in Corollary 2.2 by σ(f(Pk)); then, each side of
the equation describes a point H that is a convex combination of points from S. We have

H =
∑

f(Pk−1)∈Vk−1(S)
Qi∈Pk\Pk−1

σ(f(Pk−1) ∩ f(Pk))
σ(f(Pk)) Qi =

∑
f(Pk+1)∈Vk+1(S)

Qj∈Pk+1\Pk

σ(f(Pk+1) ∩ f(Pk))
σ(f(Pk)) Qj (2)

What can we say about this point H?

Let f(Pk) be an r-gon. Then S contains r points Q1, . . . , Qr, such that each edge of the
r-gon lies on a perpendicular bisector between two of these r points, and each vertex, Cijℓ,
of f(Pk) is the center of a circle passing through three of them, Qi, Qj , and Qℓ; see e.g. [3].

We denote with ∆(ABC) the triangle with vertices A, B, and C, and with □(ABCD)
the quadrilateral with vertices A, B, C and D, in cyclic order.

Let us consider the case when f(Pk) is a quadrilateral cell of Vk(S) with vertices C123,
C124, C134, and C234, in cyclic order along the boundary of the quadrilateral cell f(Pk) =
□(C123C124C134C234). One of the diagonals C123C134 and C124C234 is an edge of Vk−1(S)
and the other one of Vk+1(S). Figure 5 shows an example. We refer to [3, 7] for a more
detailed discussion on the structure of cells of Vk(S). Corollary 2.2 states in this case that

H = Q1 · σ(∆(C123C134C234))
σ(□(C123C124C134C234)) + Q3 · σ(∆(C123C124C134))

σ(□(C123C124C134C234))

= Q2 · σ(∆(C124C134C234))
σ(□(C123C124C134C234)) + Q4 · σ(∆(C124C234C123))

σ(□(C123C124C134C234)) (3)

It follows that H is the intersection point of diagonals Q1Q3 and Q2Q4 of □(Q1Q2Q3Q4).
This implies that given a quadrilateral cell □(C123C124C134C234) of Vk(S), the four corre-
sponding points of S also form a convex quadrilateral, □(Q1Q2Q3Q4). Moreover, we can
show that areas of triangles with vertices in □(C123C124C134C234) are proportional to areas
of triangles with vertices in □(Q1Q2Q3Q4), also see [8, 12].

Let us then consider the case when f(Pk) is a cell of Vk(S) with more than four sides.
Equation (2) gives a point H that can be expressed in two ways as convex combination of
points of S. Let us look at a pentagonal cell f(Pk) = (C123C134C145C245C125) of Vk(S);
See Figure 6. For r > 5 the situation is similar. Corollary 2.2 here gives

H = Q1 · σ(□(C123C125C145C134))
σ( (C123C134C145C245C125)) + Q5 · σ(∆(C125C245C145))

σ( (C123C134C145C245C125))

= Q2 · σ(□(C245C125C123C234))
σ( (C123C134C145C245C125)) + Q4 · σ(∆(C245C234C1345C145))

σ( (C123C134C145C245C125))

+ Q3 · σ(∆(C123C234C134))
σ( (C123C134C145C245C125))

EuroCG’24
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Figure 5 The quadrilateral cell f(Pk) = □(C123C124C134C234) of Vk(S) is obtained by perpen-
dicular bisector construction from {Q1, Q2, Q3, Q4} ⊂ S. Point H given by Equation (2) is the
intersection point of diagonals Q1Q3 and Q2Q4. Triangles with same color have proportional area.

We get that H lies on the segment Q1Q5 and inside the triangle ∆(Q2Q3Q4). Further-
more, H divides the segment Q1Q5 in the same proportion as the edge C125C145 divides the
pentagon (C123C134C145C245C125) into the the quadrilateral □(C125C145C134C123) and the
triangle ∆(C125C145C245). And H divides triangle ∆(Q1Q2Q3) in the same proportion into
triangles ∆(Q3HQ4), ∆(Q2HQ3), and ∆(Q2HQ4) as C234 divides (C123C134C145C245C125)
into □(C245C125C123C234), □(C245C234C134C145) and ∆(C134C234C123).

4 Towards higher order natural neighbour interpolation

Sibson’s theorem (Theorem 1.1) gave rise to the natural neighbour interpolation method.
Given a set of points S and known function values G(Qj) for Qj ∈ S \ {Qℓ}, the function
value G(Qℓ) of a point Qℓ is interpolated by G(Qℓ) =

∑
j cjG(Qj), where the sum is over

the natural neighbours Qj of Qℓ in V1(S). The local coordinates cj are given by Theorem 1.1.
Note that they satisfy

∑
j cj = 1 and cj ≥ 0 for all j. Then, Sibson’s natural neighour

interpolation is given by

G(Qℓ) =
∑
j ̸=ℓ

σ(f({Qℓ, Qj}) ∩ f({Qℓ}))
σ(f({Qℓ})) G(Qj). (4)

The generalization of Sibson’s formula given in Theorem 2.3 suggests to approximate the
function value G(Qi) by using the natural neighbours of higher order Voronoi diagrams. By
using the region Rk(ℓ) for k > 1, we can estimate the function value of a point Qℓ as

G(Qℓ) =
∑

i
fi,j∈Rk(ℓ)

σ(fi,j)
σ(Rk(ℓ))G(Qj). (5)

Note that R1(ℓ) = f({Qℓ}) in V1(S), and for k = 1 Equations (4) and (5) coincide.

A better estimation can be obtained by using Theorem 2.3 in a combination of different
values of k. We explore this for the 1-dimensional case.
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Figure 6 (Left) OV3(S) for a set of five points S = {Q1, Q2, Q3, Q4, Q5}. For P2 = {Q1, Q5}, the
grey region F (P2) of OV3(S) is the pentagonal cell f(P2) of V2(S). f(P2) is divided by an edge of
V1(S) and is also divided by three edges of V3(S). (Right) The point H lies on the segment Q1Q5

and inside the triangle ∆(Q2, Q3, Q4). Triangle areas of ∆(Q2HQ3), ∆(Q3HQ4) and ∆(Q2HQ4)
are proportional to the areas of the three colored regions inside f(P2), green, yellow, and pink,
respectively. The lengths of segments HQ1 and HQ5 are proportional to the areas σ(f(P2)∩f({Q1}))
and σ(f(P2) ∩ f({Q5})), respectively.

Theorem 2.3, respectively Corollary 2.4, for dimension 1 reduces to the following statement.

▶ Property 4.1. Let S = {x0, x1, . . . x2ℓ} with x0 < x1 < . . . < x2ℓ be real numbers. Then,

xℓ = 1
x2ℓ − x0

((
ℓ−1∑
i=0

xi(xℓ+1+i − xℓ+i)
)

+
( 2ℓ∑

i=ℓ+1
xi(xi−ℓ − xi−ℓ−1)

))
. (6)

▶ Remark. Property 4.1 has actually a more general statement. The assumption x0 < x1 <

. . . < x2ℓ is not needed.

We denote points Qi of S as xi and their function values G(Qi) as yi. When k = 1 we
have Sibson’s classical nearest neighbour interpolation, which for dimension d = 1 is piecewise
linear interpolation. Let x0, x1, . . . , x5 be six points on the real line in that order. And let
x2 < x < x3 be a query point whose function value G(x) we want to interpolate. To avoid
degenerate cases where bisectors between points coincide, we also assume that all midpoints
(xi + xj)/2 with xi, xj ∈ {S ∪ {x}} are different. Sibson’s classical formula, Equation (4),
uses the two neighbours x2 and x3 of x, and gives the interpolation

G1(x) = 1
x3 − x2

(y2(x3 − x) + y3(x − x2)) , (7)

i.e. point (x, G1(x)) lies on the line segment connecting points (x2, y2) and (x3, y3). This can
also be deduced from Property 4.1. Combining Equation (5) for k = 1 and k = 2, we obtain

EuroCG’24
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G2(x) = 1
x4 − x1 + x3 − x2

(y1(x3 − x) + y2(x4 − x) + y3(x − x1) + y4(x − x2)). (8)

In the same way, combining Equation (5) for k = 1, k = 2, and k = 3, we obtain

G3(x) = 1
x5 − x0 + x4 − x1 + x3 − x2

(y0(x3 − x) + y1(x4 − x) + y2(x5 − x)

+ y3(x − x0) + y4(x − x1) + y5(x − x2)). (9)

Figure 7 shows an example of the interpolation formulas given in Equations (7), (8), and (9).
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Figure 7 The generalized Sibson interpolation in R1. In green: Sibson’s original interpolation,
Equation (7), used only R1(x). The blue segment shows the interpolation using R1(x) and R2(x),
given by Equation (8). Four points are used. The red segment shows the interpolation using R1(x),
R2(x), and R3(x), given by Equation (9). Six points are used.

We conclude with some comments on the proposed interpolation formulas. First, they
appear in a natural way from the generalization of Sibson’s formula. This already makes
it worth to study such generalized interpolation formulas. In Equations (8) and (9), the
coefficients cj in Gi(x) =

∑
j cjyj , i = 2, 3, satisfy

∑
j cj = 1 and cj ≥ 0 for every cj . We

also mention that it can not be guaranteed that Gi(x) coincides with Gi(x2) or with Gi(x3),
when x coincides with one of the endpoints of the interval, x2 or x3, respectively. Though,
we observe that in this case, the point farthest away from x on one side, drops from being
used in the interpolation formula. This also holds for the classical case k = 1.

Finally, we expect that the generalized interpolation formulas can have applications. For
instance, when the used values for the interpolation are obtained by measurements and
measurement inaccuracy can not be ruled out. Then reliability might be improved by using
nearest neighbours from Vk(S) or by using Rk(x), instead of only V1(S).
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