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Abstract
An ε-net of a metric space X is a set of points P of X such that the balls of radius ε centered at
points of P cover X, and two distinct points of P are at least ε apart. We present an algorithm to
compute an ε-net of a closed hyperbolic surface and analyze its complexity.
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1 Introduction

This paper focuses on hyperbolic surfaces, i.e., surfaces with a metric of constant negative
curvature. These surfaces have been extensively examined from a mathematical perspective,
due to their generic nature: any Riemannian surface of genus at least two can be conformally
mapped to a unique hyperbolic surface [16, Section IV.8].

Hyperbolic geometry also plays a key role in computer science. One of the most famous
examples is found in the analysis of rotation distance in binary trees [19]. Hyperbolic geometry
naturally emerges as a valuable tool for graph representation [14, 15]. The hyperbolic plane
also serves as the preferred model for illustrating the universal cover of surfaces with genus
at least 2, which has proven to be crucial in the proof of purely topological results [11, 6].

Delaunay triangulations of hyperbolic spaces and surfaces have been studied in the
computational geometry community [2, 17, 12, 13]. In this line, we adapt Shewchuk’s
Delaunay refinement algorithm [18] to construct ε-nets of hyperbolic surfaces, opening the
door to the design of efficient approximation algorithms. To the best of our knowledge, this
is the first result of this kind.

Let us recall definitions [5]. Let (X, d) be a metric space and ε > 0. A set P ⊂ X is an
ε-covering if ∀x ∈ X, d(x, P ) ⩽ ε, i.e., if the closed balls of radius ε centered at each p ∈ P

cover X. It is an ε-packing if ∀p ̸= q ∈ P, d(p, q) ⩾ ε, i.e., if the open balls of radius ε/2
centered at each p ∈ P are pairwise disjoint. An ε-net is both an ε-covering and an ε-packing.
In this paper, we prove:

▶ Proposition 1. Any ε-packing of a closed hyperbolic surface S of genus g and systole σ

contains N ⩽ 16(g − 1)
(
1/ε2 + 1/σ2)

points. If ε < σ, then N ⩽ 16(g − 1)/ε2.

The case when ε < σ corresponds to the situation when the surface has no ε-thin part (see
Section 2.2).

▶ Proposition 2. The Delaunay refinement algorithm computes an ε-net using at most(
10 + C ′

h Diam(S)6g−4)
N2 + (N − 1)(144g2 − 104g + 35) − 10 elementary operations, where

C ′
h is a constant depending on the metric h of S, and Diam(S) is the diameter of S.

For a fixed surface, the complexity is then O(1/ε4).

The first result can be regarded as folklore. We prove it in Section 3 for completeness.
The second proposition rises interesting obstacles to deal with. In particular, Shewchuk’s
refinement adds circumcenters of some triangles, which is not straightforward in our context,
as locating a new point requires to construct a portion of the universal cover of the surface.
We manage to bound the size of this portion.
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22:2 Computing an ε-net of a closed hyperbolic surface

2 Background on hyperbolic surfaces and notation

We refer the reader to textbooks for more details, e.g. [4, 1].
A closed hyperbolic surface can be seen as the quotient H2/Γ of the hyperbolic plane

H2 under the action of a group Γ of orientation-preserving isometries. Throughout the
paper, objects in H2 are denoted with a tilde ·̃, while objects on S are denoted without. In
particular, for an object o on S, õ denotes any of its lifts in H2. To simplify the language,
we often use the term copy to refer to an image of an object in H2 by an element of Γ.

We work with the Poincaré disk model in which the hyperbolic plane H2 is represented
as the unit disk of the complex plane C. The unit circle consists of points at infinity. The
geodesics are either diameters of the unit disk, or circular arcs that meet the boundary circle
orthogonally. The hyperbolic circles are Euclidean circles (but their hyperbolic and Euclidean
centers differ). Orientation-preserving isometries are represented as matrices in C2×2.

2.1 Delaunay triangulation and Dirichlet domain

A triangulation T of S is a partition of S into triangles; note that edges may be loops. A
triangulation of S is a Delaunay triangulation if for each triangle t of T and any of its lifts t̃

in H2, the open disk circumscribing t̃ contains no vertex of the (infinite) lift of T in H2 [12].
The Voronoi diagram is the dual of the Delaunay triangulation. The Dirichlet domain D

x̃
of a

point x̃ ∈ H2 is the (closed) cell of x̃ in the Voronoi diagram of its (infinite) orbit Γx̃. Unlike
the Euclidean case, Γ is non-commutative, and the combinatorics of a Dirichlet domain
depends on the point x (Figure 1). The number k of sides of D

x̃
satisfies 4g ⩽ k ⩽ 12g − 6

(see, e.g., [8]).

Figure 1 Dirichlet domains for the Bolza surface (g = 2). The domain on the left has 4g = 8
sides and the one on the right has 12g − 6 = 18 sides. Figure from [3].

In this paper, we assume that the input surface S is given by a Delaunay triangulation
having a single vertex b, i.e., all Delaunay edges are loops based in b. The point b is arbitrary.
This introduces no restriction, as such a representation can be computed for any closed
hyperbolic surface, starting from a standard representation by a fundamental domain and
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side pairings [8].1 The Dirichlet domain D
b̃

of some lift b̃ of b can be computed together
with the corresponding side pairings, which are generating the group Γ. The sides of D

b̃
are denoted as si, i = 0, . . . , k − 1 and the corresponding side pairings as γi, i = 0, . . . , k − 1
(here, side pairings are pairwise inverses).

2.2 Thin and thick parts
The injectivity radius rx(S) of S at a point x is the supremum of all r > 0 such that the open
ball of radius r centered at x, B(x, r) = {y ∈ S | δS(x, y) < r}, where δS is the distance on S,
is isometric to a disk in H2. In particular, B(x, r) is a topologically embedded disk on S for all
r ⩽ rx(S). The systole σ of a surface is the length of its shortest non-contractible curve, which
we also denote by σ. The systole is related to the injectivity radius: σ = 2 · inf {rx(S) | x ∈ S}.

For any ε > 0, the ε-thin part of S is St
ε = {x ∈ S | rx(S) ⩽ ε/2}, and its ε-thick part is

ST
ε = S \ St

ε. Observe that if ε < σ, then there is no ε-thin part.

σ ⩽ ε

Figure 2 Thick and thin (red) parts of a hyperbolic surface. Disks of radius ε are shown in blue.

3 Proof of proposition 1

Let P be an ε-packing of S. The open balls of radius ε/2 centered at the points of P on the
ε-thick part ST

ε are isometric to disks in H2 and are pairwise disjoint. The area of such a disk
centered at a point p is A

(
B

(
p, ε

2
))

= 4π sinh2 (
ε
4
)

[1, Theorem 7.2.2]. Since sinh(x) ⩾ x

for all x ⩾ 0, we have A
(
B

(
p, ε

2
))

⩾ πε2/4.
Let NT be the number of points of P on the ε-thick part ST

ε . By the Gauss-Bonnet
theorem, the area of the surface S is A(S) = 4π(g − 1). Summing the above inequality over
all the points in P ∩ ST

ε , we obtain NT πε2/4 ⩽
∑

p∈P ∩ST
ε

A
(
B

(
p, ε

2
))

⩽ 4π(g − 1), thus

NT ⩽
16(g − 1)

ε2 . (1)

The open balls of radius ε/2 in the ε-thin part St
ε, if it exists, that is if σ ⩽ ε, are also

pairwise disjoint, but they are not isometric to disks in H2. However, by definition, the open
balls of radius σ/2 are isometric to disks in H2. We can apply the reasoning that led to

1 The common basepoint is denoted as b′′ in [8].
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inequality (1) for σ instead of ε, and obtain a bound on the number of points of P on the
thin part St

ε: N t ⩽ 16(g − 1)/σ2. The bound on the total number of points of P follows.

4 Construction of the ε-net

The input of the algorithm consists of the Delaunay triangulation of S with a single vertex b,
together with the Dirichlet domain D

b̃
of a lift b̃ and the group Γ generated by side-pairings.

As mentioned in Section 2.1, this does not induce any loss of generality.
Our algorithm is inspired by Shewchuk’s Delaunay refinement [18]. The general idea is to

break each Delaunay triangle whose circumcircle has a radius greater than ε by inserting its
circumscribing center in the triangulation.

We reuse the data structure proposed by Despré et al. for computing the Delaunay
triangulation of a surface by edge flips [12]. A triangulation of S is represented by

its vertices: a vertex p has constant-time access to its lift p̃b in D
b̃

and one of its incident
triangles;
and its triangles: a triangle ∆ has constant-time access to its three vertices p∆

0 , p∆
1 , p∆

2 ,
its three adjacent triangles, and three isometries γ∆

0 = 1Γ, γ∆
1 , γ∆

2 in Γ defined as follows.
A triangle ∆ = (p∆

0 ; p∆
1 ; p∆

2 ) does not always have a lift entirely included in D
b̃
. However, it

always has at least one lift with at least one vertex in D
b̃

(see Figure 3). Let us choose such
a lift and denote it as ∆̃0; up to a re-indexing of its vertices, p̃∆

0 ∈ D
b̃
. Then γ∆

1 and γ∆
2 are

the isometries such that the other two vertices of ∆̃0 are γ∆
1 p̃∆

1 and γ∆
2 p̃∆

2 . Note that the
other lifts of ∆ having at least one vertex in D

b̃
can be retrieved by applying the inverses of

these isometries to ∆̃0. The union, on all triangles of the triangulation of S, of their lifts
with at least one vertex in D

b̃
covers the fundamental domain D

b̃
.

D̃b

∆̃0

p̃∆0

p̃∆2

p̃∆1

γ∆
1

γ∆
2

γ∆
0 = 1Γ

Figure 3 Example of a triangle ∆ having three lifts with one vertex in D̃
b

(the hyperbolic triangles
are schematically represented with straight edges).

We denote as DT (·) the Delaunay triangulation of a set of points on S.
Let us fix ε > 0. In a first step, the set of points is initialized as P1 = {b}.
At each step i ⩾ 2, the algorithm inserts the circumscribing center c of a triangle ∆ε

whose radius is greater than ε. The set of points is updated as Pi = Pi−1 ∪ {c} as well as
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the Delaunay triangulation DT (Pi). To do so, several operations are needed.
We first compute the radius of ∆̃0 for every triangle ∆ of DT (Pi−1), until a triangle ∆ε

whose radius is at least ε is found.2 The circumcenter c̃ of the lift ∆̃ε
0 is a lift of c, but it

does not necessarily lie in D
b̃
. This can be checked by testing whether b̃ and c̃ lie on the

same side of the supporting line of each side of D
b̃
.

To actually insert c into DT (Pi−1), we need to find the lift c̃b of c that lies in D
b̃
. If c̃ lies

in D
b̃
, then c̃b = c̃. Otherwise, the algorithm walks in the tiling {γD

b̃
}γ∈Γ of H2 along the

geodesic segment p̃∆ε

0 c̃. The first copy of D
b̃

traversed by p̃∆ε

0 c̃ is found by looking for the
side sj1 , j1 ∈ {0, . . . , k − 1} of D

b̃
intersecting it.3 The walk along p̃∆ε

0 c̃ continues in γj1D
b̃
,

and so on, until the copy γjn . . . γj1D
b̃

containing c̃ is found. Then c̃b = γ−1
j1

. . . γ−1
jn

c̃. Note
that the walk still works when p̃∆ε

0 c̃ goes through a vertex of a copy of D
b̃
.

The Delaunay triangulation DT (Pi) of Pi = Pi−1 ∪ {c} can then be computed. First, the
triangle ∆c of DT (Pi−1) containing c is found by naively checking if c̃b lies in one of the (at
most three) lifts of each triangle ∆ in DT (Pi−1) having a vertex in D

b̃
. This can be done by

testing, for each edge, whether c̃b and the third vertex of the triangle lie on the same side of
its supporting line. Then ∆c is split into three by creating an edge between c and its three
vertices. In the data structure, the three isometries stored in each new triangle are 1Γ for c,
and the corresponding isometries in ∆c for the other two vertices. Then DT (Pi) is computed
with a sequence of flips and the data structure is updated [12].

The termination of the algorithm is quite obvious. At step i = 1, the ε-packing P1 consists
of one point. At each step i ⩾ 2, the point added to Pi is the circumcenter of a Delaunay
triangle whose radius is at least ε. Because no vertex lies in the interior of a Delaunay
disk, the center added is at distance at least ε from any point of Pi. By induction, Pi is an
ε-packing containing i points. By Proposition 1, the algorithm must terminate after a finite
number N − 1 of insertions. It returns an ε-packing PN of cardinality N .

It remains to show that PN is an ε-covering of S. Let x be a point on S. It lies in a
triangle ∆ of DT (PN ). Let ∆̃ be a lift of ∆ and x̃ the lift of x lying in ∆̃. The circumdisk of
∆̃ has a radius r ⩽ ε. There is a vertex of ∆̃ whose distance to x̃ is at most r (see [10, Lemma
2]). That vertex is a lift of a point of PN by definition of ∆. It follows that δS(x, PN ) ⩽ ε,
therefore PN is an ε-net. This establishes the first claim of Proposition 2.

5 Algorithm analysis

This section is devoted to proving the complexity announced in Proposition 2.
The following operations take O(1) time in the real RAM model and we consider them

as elementary operations:
Computing ∆̃0 from a triangle ∆ of the data structure (see Section 4 for notation);
Computing the radius or the center of the circumcircle of a triangle in H2;
Deciding if a point lies on the right or the left side of an oriented geodesic segment in H2;
Flipping an edge of a triangulation [12, Section 4.1].

At the beginning of a step i ⩾ 2, Pi−1 contains i − 1 points, the Euler characteristic
shows that DT (Pi−1) has 2i + 4g − 2 triangles, which gives the cost of finding ∆ε.

2 Of course a priority queue could be used to improve the complexity of this search. We accept a linear
complexity for simplicity, as this is not the dominant operation in the algorithm.

3 To check whether two geodesic segments x̃1x̃2 and ỹ1ỹ2 intersect, we check whether x̃1 and x̃2 lie on
opposite sides of the supporting line of ỹ1ỹ2, and we run the same test, swapping the roles of x and y.
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Recall that the number k of sides of D
b̃

is at most 12g − 6 (see Section 2). Determining
whether c̃ lies in (a given copy of) D

b̃
thus requires at most 12g − 6 elementary operations.

The algorithm tests the copies of D
b̃

that intersect the geodesic segment p̃∆ε

0 c̃. Since ∆̃ε
0 is

a triangle of DT
(

P̃i−1

)
, its circumcircle does not contain any other lift of p∆ε

0 , so p̃∆ε

0 is

the closest lift of p∆ε

0 to c̃. The geodesic segment p̃∆ε

0 c̃ is thus a lift of a distance path4 on
S, what is called a distance path in H2. By [9, Proposition 14], every side of D

b̃
is either a

distance path, or the concatenation of two distance paths. As two distance paths that do not
have a subarc in common, which is the case here, can intersect at most once [9, Lemma 8],
p̃∆ε

0 c̃ traverses at most 2k sides of copies of D
b̃
. If an intersection occurs at a vertex of degree

d of a copy of D
b̃
, then this counts for d intersections. Searching the copy of D

b̃
containing c̃

hence requires k2 ⩽ (12g − 6)2 elementary operations. Computing c̃b costs 1 operation.
Finding ∆c in DT (Pi−1) when c̃b is known requires at most 9(2i + 4g − 2) elementary

operations since it amounts to checking the three edges of at most three lifts of each triangle.
The update of the data structure when splitting the triangle containing c into three is done in
8 elementary operations (deleting the triangle that contains c, adding c to the list of vertices,
creating 3 triangles and 3 isometries).

Adding the above costs for step i, locating c in DT (Pi−1) and splitting the triangle
containing it costs at most 10(2i + 4g − 2) + (12g − 6)2 + 9 elementary operations.

The flips are counted globally for all steps, which concludes the proof of Proposition 2.

▶ Lemma 5.1. The total number of flipped edges during the execution of the algorithm is
at most C ′

h Diam(S)6g−4N2, where C ′
h is a constant depending on the metric h of S, and

Diam(S) is the diameter of S.

The proof of this lemma mimicks the proofs in [12]. The situation is quite different here,
as the points are inserted incrementally and the flips are done at each insertion, whereas all
points are know in advance in [12], which requires to rewrite a complete proof. Due to lack
of space, we refer the reader to [10, Lemma 1].

Note that the bound comes from the best upper bound O(Diam(S)6g−4) known so far for
the flip algorithm [12]. The actual complexity of the flip algorithm may be much better [7].

Acknowledgements. The authors wish to thank Hugo Parlier for interesting discussions.

4 A distance path on S is a shortest path between two points. It is necessarily a geodesic segment, but
not all geodesic segments are distance paths since they only locally minimize distances.
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