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Abstract
Imagine you are a dog behind a fence Q and a hiker is passing by at constant speed along the hiking
path P . In order to fulfil your duties as a watchdog, you desire to bark as long as possible at the
human. However, your barks can only be heard in a fixed radius ρ and, as a dog, you have bounded
speed s. Can you optimize your route along the fence Q in order to maximize the barking time with
radius ρ, assuming you can run backwards and forward at speed at most s?

We define the barking distance from a polyline P on n vertices to a polyline Q on m vertices as
the time that the hiker stays in your barking radius if you run optimally along Q. This asymmetric
similarity measure between two curves can be used to detect outliers in Q compared to P that other
established measures like the Fréchet distance and Dynamic Time Warping fail to capture at times.
In this extended abstract, we consider this measure in the discrete setting, where the traversals of
P and Q are both discrete. In this setting, we show how to compute the barking distance in time
O(nm log s).

Related Version arXiv:2402.13159

1 Introduction

A curve is any sequence of points in Rd where consecutive points are connected by their line
segment. Curves may be used to model a variety of real-world input such as trajectories [12],
handwriting [11, 17] and even strings [3]. Curves in R1 may be seen as time series which model
data such as music samples [10], the financial market [13] and seismologic data [16]. A common
way to analyse data that can be modeled as curves is to deploy a curve similarity measure,
which for any pair of curves series (P, Q) reports a real number (where the number is lower
the more ‘similar’ P and Q are). Such similarity measures are a building block for common
analysis techniques such as clustering [7, 15], classification [1, 8, 9] or simplification [2, 6, 14].
The two most popular similarity measures for curve analysis are the Fréchet distance and
the Dynamic Time Warping (DTW) distance. The discrete Fréchet distance for two curves
P = (p1, . . . , pn) and Q = (q1, . . . , qm) is illustrated as follows. Imagine a dog walking along
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Figure 1 An intended trajectory P and a faulty sample Q of it. The Fréchet distance between P

and Q is d and captures the first detour, but fails to capture the others. Continuous DTW, even
with a speed bound, cannot distinguish Q from a copy of P translated by ρ if the right part is
sufficiently long. Barking distance with barking radius ρ however captures all three detours.

Q and its owner walking along P . Both owner and dog start at the beginning of their curves,
and in each step the owner may stay in place or jump to the next point along P and the
dog may stay in place or jump to the next vertex along Q, until both of them have reached
the end of their curves. Intuitively, the Fréchet distance is the minimal length of the leash
between the dog and its owner. The DTW distance is defined analogously but sums over all
leash lengths instead.

Both distance measures can be made continuous by defining a traversal as continuous
monotone functions f : [0, 1] → P and g : [0, 1] → Q which start and end at the respective
start and end of the curve. However, for DTW such a direct translation from discrete to
continuous traversals invites degenerate behavior. To avoid such degeneracies, Buchin [5]
proposed several variants of continuous DTW distances (originally called average Fréchet
distance) that each penalise the speed of the dog and its owner. The existing curve similarity
measures each have their corresponding drawback: The Fréchet distance is not robust
versus outliers. The discrete DTW distance is heavily dependent on the sampling rate.
The continuous DTW variants are robust to outliers, but they are difficult to compute [4].
Further, all of them fail to capture detours, as can be seen in Figure 1. We present a new
curve similarity measure, specifically designed for computing similarities between curves
under outliers.

Discrete walks. Given two curves P and Q, we define discrete walks. First, consider the
n × m integer lattice embedded in R2. We can construct a graph Gnm over this lattice
where the vertices are all lattice points and two lattice points l1, l2 share an edge whenever
d(l1, l2) ≤

√
2.

▶ Definition 1.1. For curves P and Q, a discrete reparametrization F is any walk in Gnm

from (1, 1) to (n, m). F is a curve in R2 and it is x-monotone whenever its embedding is.
The speed σ(F ) is the size |S| for the largest horizontal or vertical subcurve S ⊆ F .

Defining Discrete Barking Distance. The barking distance stems from the following
illustration, which is again dog-based:1 assume you are hiking with constant speed along

1 This illustration is inspired by a dog that some of the authors met while on a hike.
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a curve P . A dog is running at bounded speed on a curve Q, constantly barking at you.
However, the dogs barks can only be heard within radius ρ ∈ R. The dog tries to optimize its
route in order to maximize the time you hear it. This maximum time is the barking distance
of P to Q. Formally, for ρ ∈ R we define the threshold function as follows:

θρ(p, q) =
{

1 if d(p, q) > ρ

0 otherwise.

▶ Definition 1.2. For curves P and Q, denote by F the set of all pairs of discrete x-monotone
reparametrizations of (P, Q). For any ρ, s ∈ R, the discrete barking distance is defined as:

Ds
B(P, Q) = min

F ∈F
σ(F )≤s

∑
(i,j)∈F

θρ(pi, qj).

2 Computing the Discrete Barking Distance

Let Gn,m = (V, E) be a graph defined on top of an n × m lattice in R2 where vi,j ∈ V is
identified with the lattice point at coordinate (i, j). We find (vi,j , vi′,j′) ∈ E with distinct
vi,j , vi′,j′ ∈ V whenever vi,j and vi′,j′ are identified with points of the lattice at distance
≤

√
2. We say that vi′,j′ is the southern, south-western, western, north-western, or northern

neighbor of vi,j if vi′,j′ lies in the corresponding cardinal direction in the lattice.
For vi,j ∈ V we set w(vi,j) = θ(pi, qj), with pi the i-th corner of P and qj the j-th corner

of Q. Similarly, we set w(π) =
∑k

a=0 w(via,ja
) for a walk π = (vi1,j1 , . . . , vik,jk

) in Gn,m. We
say that π is monotone if ja ≤ ja′ whenever a ≤ a′ and we define the length of π as |π|,
i.e., the number of vertices in the walk. A sub-walk of π is said to be horizontal if all its
vertices correspond to lattice points with the same y-coordinate and vertical if all its vertices
correspond to lattice points with the same x-coordinate. Moreover, we say that π has speed s

if the longest horizontal or vertical sub-walk of π has length at most s. Let Π(s, ρ) be the set
of all monotone walks in Gn,m starting at v1,1 and ending at vn,m with speed s and weight
function depending on the threshold ρ. The next observation now follows from Definitions 1.1
and 1.2.

▷ Observation 1. Given two polygonal curves P and Q, a threshold ρ, and a speed bound s,
let Gn,m be defined as above, then w(π) = Ds

B(P, Q) for any π ∈ Π(s, ρ) of minimum weight.

By Observation 1 we can restrict our attention to monotone paths from v1,1 to vn,m that
have speed at most s and are of minimum weight. Our strategy is to compute for each vertex
vi,j ∈ V the weight of such a path from v1,1 and to vi,j . Our computation will proceed in n

rounds, where in each round we consider the m vertices of column j. The challenge is to
compute the length of a minimum weight monotone path of speed s in time O(log s).

Let Ri(j1, j2) be the weight of path (vi,j1+1, vi,j1+2, . . . , vi,j2) and Cj(i1, i2) be the weight
of path (vi1+1,j , vi1+2,j , . . . , vi2,j). Observe, that these values can be computed in constant
time if we have arrays containing at position i the length of a path from the first element
in the row or column to the i-th element of the row or column. For each row and column
and taking either side as the starting vertex. We precompute these arrays for all rows at the
beginning and for each column only when we process this column in the computation.

Let Fδ(i, j) with δ ∈ D = {↑, ↗, →, ↘, ↓} be the minimum weight of a monotone path
of speed s from v1,1 to vi,j where the vertex preceding vi,j on the path is the southern,
south-western, western, north-western, or northern neighbor of vi,j , respectively. We set
Fδ(i, j) = ∞ if vi,j cannot be reached with any monotone path of speed s from v1,1.
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We then compute the minimum weight monotone path of speed s from v1,1 to vi,j as
F (i, j) = min{Fδ(i, j) | δ ∈ D}. To compute F (i, j) from left to right along the columns
we maintain the relevant minima of paths Fδ ending at vertices around vi,j for each row
and for the current column in separate heaps. Moreover, instead of updating the weights
of all heap-elements explicitly for each vi,j , we precompute the lengths of paths starting at
the beginning or end of a row or column. From this we can in constant time compute the
necessary offsets. The runtime of O(nm log s) then follows as every of the O(nm) elements
gets only inserted and deleted from some min-heap a constant number of times and at no
point any min-heap contains more than s elements.

For the following proof we rewrite Fd(i, j) as a recurrence taking the speed-bound s into
account for j > 1. Recall that w(vi,j) contributes to the values of Cj and Ri.

Fd(i, j) =



min{Cj(i − k, i) + Fδ(i − k, j) | δ ∈ {↗, →, ↘} ∧ k ∈ [1, s]} if d =↑
F (i − 1, j − 1) + w(vi−1,j−1) if d =↗
min{Ri(j − k, j) + Fδ(i, j − k) | δ ∈ {↑, ↗, ↘, ↓} ∧ k ∈ [1, s]} if d =→
F (i + 1, j + 1) + w(vi+1,j+1) if d =↘
min{Cj(i + k, i) + Fδ(i + k, j) | δ ∈ {↗, →, ↘} ∧ k ∈ [1, s]} if d =↓

▶ Theorem 2.1. Given two polygonal curves P and Q with n and m vertices, respectively,
the discrete Barking distance of P to Q can be computed in time O(nm(log s)) where s is the
speed bound or time O(nm log(nm)) if s > n or s > m.

Proof. For the first column, i.e., j = 1, we can compute F (i, j) as follows. Clearly, F (1, 1) =
w(v1,1) = θρ(p1, q1). We set F (i, 1) = ∞ for all i > s. Finally, we find that the remaining
entries F (i, 1) with i ∈ [2, s] in a bottom-up traversal as the values C1(1, i). We conclude
this step by initializing a min-heap Hi for each row i containing vertex vi,1 as its sole element
and F (i, 1) = F→(i, 1) as the key.

Assume now that we want to compute the entries Fd(i, j) for i ∈ [1, m] where all entries
Fd(i, j′) with j′ < j are already computed and for row i we have a min-heap Hi containing
all F→(i, j − k) for k ∈ [1, s] ordered by key F→(i, j − k) + Ri(j − k, j − 1). From this
information we can for each i immediately compute F→(i, j) as the minimum of Hi, say vi,j′

plus Ri(j − j′, j). We then update Hi by deleting all entries for vi,j−s and then inserting
(vi,j , F↑(i, j)), (v1,j , F↓(i, j)), (v1,j , F↘(i, j)), and (v1,j , F↗(i, j)) using as key for comparison
F·(i, j) + Ri(j − k, j) in the insertion. Note that since for all elements already present in Hi

their keys change only by w(vi,j) and hence their order remains the same. Moreover, we can
directly compute F↗(i, j) and F↘(i, j) for each i.

It remains to compute F↑(i, j) and F↓(i, j) for each i ∈ [1, m] in column j. We describe
how to compute F↑(i, j), F↓(i, j) can be computed symmetrically. We start from v1,j . Clearly,
F↑(1, j) = ∞. We also initialize a min-heap H and insert (v1,j , F→(1, j)), (v1,j , F↘(1, j)),
and (v1,j , F↗(1, j) = ∞) where the second element is used as key. Assume that we now
want to compute F↑(i, j) and that we have a heap H containing for k ∈ [1, s] the elements
(vi−k,j , F→(i − k, j)), (vi−k,j , F↘(i − k, j)), and (vi−k,j , F↗(i − k, j)) ordered by key F·(i −
k, j) + Cj(i − k, i − 1). This can be done as for the row by just extracting the minimum
element from the heap H, say (vi′,j , Fδ(i′, j)), and setting F↑(i, j) = Fδ(i′, j) + Cj(i′, i). We
update the heap as in the case of Hi, with the only difference being that we need to insert
the three elements (vi,j , F→(i, j)), (v1,j , F↘(i, j)), and (v1,j , F↗(i, j))

Correctness follows since the algorithm computes directly the above recurrence. Moreover,
since every element vertex and partial weight combination gets deleted and inserted at
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most once from some heap over the whole computation and no heap contains more than
3s elements at a time, we obtain the claimed running time of O(nm log s). Note, that if
s > m or s > n we obtain a runtime of O(nm(log(m) + log(n))) since again never more than
O(s) elements are contained in a heap and no more than O(nm) elements can be inserted or
deleted. ◀

3 Outlook and Conclusion

In the full version of this paper, we also study the barking distance in two other settings,
namely the semi-discrete and the continuous setting. In the semi-discrete setting, the
traversal of Q is continuous while the one of P is again discrete. We show the following.

▶ Theorem 3.1. Given two polygonal curves P and Q with n and m vertices, respectively,
the semi-discrete Barking distance of P to Q can be computed in time O(nm log(nm)).

In the continuous setting, both traversals are continuous. Here our algorithm is slower,
but still polynomial.

▶ Theorem 3.2. Given two polygonal curves P and Q with n and m vertices, respectively,
the continuous Barking distance of Q to P can be computed in time O(n4m3 log(nm)).

For all the settings we show that, assuming the Strong Exponential Time Hypotheis
(SETH), no truly subquadratic algorithm can exist.

▶ Theorem 3.3. Let P and Q be two disjoint polygonal curves with n vertices. Assuming
OVC, solving the barking decision problem where the maximum speed of the dog matches the
speed of the hiker and with constant barking radius ρ requires Ω(n2−ϵ) time for any ϵ > 0.

In the discrete and semi-discrete setting, the runtime of our algorithms match the lower
bound up to logarithmic factors. For the continuous setting we give an algorithm that is
likely not optimal. We believe that using techniques as for the proof of 3.1 we can improve
the runtime to O(nm3 log m), but this would still leave a gap between upper and lower
bound. While we conjecture that it is possible to obtain an O(nm log(nm)) algorithm, it
is likely that new ideas are necessary for this. It would also be interesting to find more
efficient algorithms in the continuous setting for restricted types of curves such as time series.
Throughout our paper, we assumed that the barking radius ρ and the speed bound s are
fixed. Considering them as variables leads to other interesting algorithmic problems where
we ask for the minimal speed or barking radius required for the dog such that the hiker can
hear it the entire time. We leave the study of these problems for future work.
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