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Abstract
An edge unfolding of a polyhedron is a flat polygon obtained by cutting along the polyhedron’s edges
and unfolding the polygon onto a plane. It is known that the number of edge unfoldings is equal
to the number of spanning trees formed by the cutting edges of the polyhedron. However, some
edge unfoldings overlap, i.e., two distinct faces in the edge unfoldings overlap, so they cannot be
embedded in the plane. We do not know the percentage of the overlapping edge unfoldings for almost
all polyhedra. In particular, there exists an interesting and well-known open problem of whether
or not all convex polyhedrons have a non-overlapping edge unfolding. Horiyama et al. proposed an
enumeration algorithm for edge unfoldings using zero-suppressed binary decision diagrams (ZDDs),
which are compact data structures for families of sets. The ZDDs have attractive family algebraic
operations; for example, we can extract sets satisfying some constraints from the family of sets
over ZDDs efficiently. In this study, we propose an enumeration algorithm for non-overlapping edge
unfoldings in a polyhedron using ZDDs and their operations. The algorithm first enumerates the
minimal overlapping partial edge unfoldings (MOPEs) obtained through the “rotational unfolding”
by Shiota and Saitoh. Then, we subtract the overlapping edge unfoldings containing the MOPEs
from all edge unfoldings over ZDDs. We apply the algorithm to convex regular-faced polyhedra
(including three types of Archimedean solids, twenty types of Johnson solids, nineteen types of
Archimedean prisms, and twenty-one types of Archimedean antiprisms) and show the number of
non-overlapping edge unfoldings for each type of polyhedron.

1 Introduction

An edge unfolding of a polyhedron is a flat polygon obtained by cutting along the poly-
hedron’s edges and unfolding the polygon onto a plane. The origin of edge unfoldings is
recognized as the illustrations found in Albrecht Dürer’s “Underweysung der messung mit
dem zirckel un richt scheyt” [5] published in 1525 [3]. However, the edge unfoldings can some-
times result in overlapping polygons, i.e., two distinct faces overlap, or their boundaries are
in contact (Figure 1). In Dürer’s book, all the polyhedra are drawn as edge unfoldings

Figure 1 A cube with cut-off corners and its overlapping edge unfolding. The faces shown in
gray are a MOPE.
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Figure 2 The line graph represents the percentage of non-overlapping edge unfoldings among
1000 randomly selected edge unfoldings. Each point on the graph represents the average values for
five randomly generated convex polyhedra [15].

Table 1 Overlapping edge unfoldings for convex regular-faced polyhedra

Convex regular-faced polyhedra Is there an overlapping edge unfolding?

Platonic solids (Total 5 types) No [8]
Archimedean solids (Total 13 types) No (7 types) / Yes (6 types) [2, 8, 6, 18]

Johnson solids (Total 92 types) No (48 types) / Yes (44 types) [17]
n-gonal Archimedean prisms (n ≥ 3) No (3 ≤ n ≤ 23) / Yes (n ≥ 24) [18]

m-gonal Archimedean antiprisms (m ≥ 3) No (3 ≤ m ≤ 11) / Yes (m ≥ 12) [18]

without overlaps. Focusing on this point, Shephard proposed the following conjecture.

▶ Conjecture 1.1 ([16]). For any convex polyhedron, at least one non-overlapping edge
unfolding exists.

This conjecture is still unsolved, and some studies to solve it are ongoing. One of the studies
is Schevon’s experiment on randomly generated convex polyhedra [15]. She showed that the
percentage of non-overlapping edge unfoldings decreases as the number of vertices increases
(Figure 2). Some studies have reported the existence of an overlapping edge unfolding in a
given polyhedron. Shiota and Saitoh presented an algorithm “rotational unfolding” that can
quickly find an overlapping edge unfolding of a polyhedron, and they showed the existence
of overlapping edge unfoldings for convex regular-faced polyhedra (Table 1).

It is known that the number of edge unfoldings is equal to the number of spanning trees
formed by the cutting edges of the polyhedron. We can count the number of spanning trees
using Kirchhoff’s theorem [13] or a data structure called binary decision diagrams (BDD) [1]
/ zero-suppressed binary decision diagram (ZDD) [14]. The BDDs/ZDDs represent compact
data structures for families of sets and have family algebraic operations (i.e., union, inter-
section, and set difference). In addition, BDDs/ZDDs allow for the counting, enumerating,
and extracting of optimal families of sets. BDDs/ZDDs have been applied to enumer-
ate specific structures on graphs [12]. Horiyama et al. enumerated spanning trees using
BDDs/ZDDs and counted the number of convex regular-faced polyhedra [9, 7]. Horiyama
and Shoji proposed a method for counting the number of non-overlapping edge unfolding for
Platonic solids by extracting each spanning tree one by one from BDDs [8]. However, this
method only applies to the polyhedra with few edge unfoldings. For example, the truncated
icosahedron (Figure 3) has 375, 291, 866, 372, 898, 816, 000 (approximately 3.75 × 1020) edge
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unfoldings [9], so checking each unfolding individually, it would take over ten thousand years
with current computers.

In this study, we propose an enumeration algorithm for non-overlapping edge unfoldings
in a polyhedron using ZDDs and their operations. The algorithm first enumerates the
minimal overlapping partial edge unfoldings (MOPEs), which are the minimal units of edge
unfoldings with overlaps obtained through the rotational unfolding [18]. Then, we subtract
the overlapping edge unfoldings containing the MOPEs from all edge unfoldings over ZDDs.

We apply this counting method to convex regular-faced polyhedra, including three types
of Archimedean solids, twenty types of Johnson solids, nineteen types of Archimedean
prisms, and twenty-one types of Archimedean antiprisms, and show the number of non-
overlapping edge unfoldings for each type of polyhedron.

2 Preliminaries

A polyhedron is a three-dimensional object consisting of at least four polygons, called faces,
joined at their edges. A convex polyhedron is a polyhedron with the interior angles between
any two adjacent faces less than π. A convex regular-faced polyhedron is a convex polyhedron
with all faces being regular polygons. A Platonic solid is a convex regular-faced polyhedron
with all faces composed of congruent regular polygons. An n prism, where n ≥ 3, is a
polyhedron composed of two identical n-sided polygons, called bases, facing each other, and
n parallelograms, called side faces, connecting the corresponding edges of the two bases. An
m antiprism, where m ≥ 3, is a polyhedron composed of two congruent m-sided polygonal
bases and 2m triangular side faces alternating around the bases. An n-gonal (anti)prism
is an n (anti)prism if the bases are n-sided regular polygons. An n-gonal Archimedean
(anti)prism is an n-gonal (anti)prism if it is a convex regular-faced polyhedron (i.e., the
side faces are regular squares (or triangles)). An Archimedean solid is a convex regular-
faced polyhedron composed of regular polygons with the same type and order of regular
polygons gathered at the vertices, except for Platonic solids and Archimedean (anti)prisms.
A Johnson solid is a convex regular-faced polyhedron, except Platonic solids, Archimedean
solids, and Archimedean (anti)prisms. There are 92 Johnson solids [11].

Let Q be a polyhedron. Two faces in Q are neighbors if they contain a common edge.
An unfolding (also called a net, a development, or a general unfolding) of the polyhedron
Q is a flat polygon formed by cutting Q’s edges or faces and unfolding it into a plane. An
edge unfolding of Q is an unfolding formed by cutting only Q’s edges. Q can be viewed as a
graph GQ = (VQ, EQ), where VQ is a set of faces in the polyhedron, and EQ is a set of edges
such that two vertices are adjacent if and only if the corresponding two faces are neighbors.
The following lemma applies to an edge unfolding of Q.

▶ Lemma 2.1 (see e.g., [19], Theorem 2.2.1 and its proof). The set of non-cutting edges for

Figure 3 A truncated icosahedron (a type of Archimedean solid)
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Figure 4 (a),(c) MOPEs in J21 (a type of Johnson solid). Removing any face from each MOPE
results in non-connected structures, contradicting the definition of partial edge unfoldings. (b),(d)
Partial edge unfoldings in J21 that are not MOPE. Removing the gray faces results in MOPEs.

an edge unfolding of Q forms a spanning tree of GQ.

This lemma implies that counting the spanning trees of GQ is equal to counting the edge
unfoldings of Q. A partial edge unfolding is a flat polygon formed from a set of faces
corresponding to a connected induced subgraph of GQ.

Two distinct polygons overlap if there exists a point p contained in two polygons. Note
that any point on a boundary is included in the polygons in this paper; the polygons overlap if
they touch at the boundaries. An unfolding is overlapping if a pair of distinct faces exists such
that the faces overlap. Herein, neighbor faces are not overlapping. The algorithm rotational
unfolding has been developed to efficiently determine overlaps in a given polyhedron based
on [4, 6] ideas [18]. Rotational unfolding can enumerate minimal overlapping partial edge
unfoldings (MOPEs), a partial edge unfolding with the minimal number of faces required to
connect two overlapping faces. Figure 4 shows the example of MOPEs and non-MOPEs.

One method for counting spanning trees in a graph is using a Zero-suppressed Decision
Diagram (ZDD). A ZDD is a data structure representing families of sets compactly as a
directed acyclic graph. In a ZDD, there are two types of nodes: terminal nodes with the
out-degree zero ⊤, ⊥, and branching nodes. Branching nodes are labeled by elements of
the set, and each has two outgoing edges: a 1-edge and a 0-edge. The 1-edge indicates the
inclusion of the labeled element, while the 0-edge indicates the exclusion of the element. In a
ZDD, there is a root node with no incoming edges. For example, the ZDD, which represents
a spanning tree as shown in Figure 5, and a path from the root node (labeled e0) following
a 1-edge, a 1-edge, a 0-edge, and a 1-edge leading to ⊤ means that the set {e0, e1, e3} forms
a spanning tree. ZDDs have some operations, such as computing the union or intersection
of two ZDDs [14].

3 Counting algorithm for non-overlapping edge unfoldings

In this section, we describe an algorithm counting the number of non-overlapping edge
unfoldings for any polyhedron Q. Let P be a (partial) edge unfolding of Q, and let G(P ) =
(V (P ), E(P )) be the graph corresponding to P . The following lemma holds.

▶ Lemma 3.1. For any overlapping edge unfolding U , there exists a MOPE C such that
E(C) ⊆ E(U).

Let Ci (1 ≤ i ≤ k) be MOPEs of a polyhedron, where k is the number of MOPEs. From
Lemma 3.1, the following claim holds.
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Figure 5 (a) An example of the graph C4 and its spanning trees. (b) A ZDD representing the
spanning trees of C4. Circles represent branching nodes, labels are inside the circles, solid lines
represent 1-edges, and dashed lines represent 0-edges.

▶ Claim 3.2. Let U be a non-overlapping edge unfolding. For any MOPE Ci, E(Ci) ⊈ E(U).

The number of edge unfoldings can be counted by constructing ZDD ZS [12]. However,
it contains overlapping edge unfoldings. To exclude these overlapping unfoldings, we employ
the subsetting method, an operation over ZDDs [10]. For a ZDD Z, the subsetting method
generates a new ZDD ZC by extracting combinations satisfying a constraint C from Z.

We can count the number of non-overlapping edge unfoldings by following three steps.
Step 1 Generate a ZDD ZS .
Step 2 For each MOPE Ci, generate a new ZDD ZCi

representing combinations that do
not simultaneously include all elements of E(Ci). Herein, a ZDD ZCi serves as a filter
to exclude overlapping edge unfoldings.

Step 3 Generate a new ZDD ZC by extracting combinations that satisfy all ZCi
from ZS

using the subsetting method.

4 The number of non-overlapping edge unfoldings in convex
regular-faced polyhedra

In this section, we apply the counting algorithm described in Section 3 for non-overlapping
edge unfoldings with regular convex regular-faced polyhedra (including three types of Archi-
medean solids, twenty types of Johnson solids, nineteen types of Archimedean prisms, and
twenty-one types of Archimedean antiprisms). We use TdZdd library∗ for constructing ZDD
ZS and ZCi

. Experiments were conducted on a Mac OS Venture computer with an Apple
M1 Max chip and 64GB of memory. To enumerate the MOPEs for Archimedean solids,
Johnson solids, and Archimedean (anti)prism, we used rotational unfolding [18, 17].

We show the number of non-overlapping edge unfoldings for three types of Archimedean
solids (Table 2), twenty types of Johnson solids, nineteen types of Archimedean prisms,
and twenty-one types of Archimedean antiprisms†. Figure 6 shows the percentage of non-
overlapping edge unfoldings from all edge unfoldings for Archimedean (anti)prisms.

From the results of these experiments, we observe the following: In Archimedean solids
(Table 2), both the truncated dodecahedron and truncated icosahedron have the same num-
ber of vertices, edges, and faces, yet the truncated icosahedron has more MOPEs than
that of truncated dodecahedron. Despite this, the results indicate that the percentage of

∗ https://github.com/kunisura/TdZdd
† See https://shiotatakumi.github.io/MyPage/contents/240313-EuroCG-2024.html for the number

and percentage of non-overlapping edge unfoldings in Johnson solids, and Archimedean (anti)prisms.
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Table 2 The number and percentage of non-overlapping edge unfoldings in Archimedean solids.

Archimedean solids |V | |E| |F | #(MOP E) #(Edge unfolding) [9] #(Non-overlapping edge unfolding) %

Sunb cube 24 60 38 72 89,904,012,853,248 85,967,688,920,076 95.6
Truncated dodecahedron 60 90 32 120 4,982,259,375,000,000,000 931,603,573,888,462,350 18.6
Truncated Icosahedron 60 90 32 240 375,291,866,372,898,816,000 366,359,657,802,290,909,354 97.6

Figure 6 The relationship between the number of vertices and the percentage of non-overlapping
edge unfoldings in n-gonal Archimedean prisms and m-gonal Archimedean antiprisms.

non-overlapping edge unfoldings in the truncated dodecahedron is lower than that of the
truncated icosahedron. The truncated icosahedron’s MOPEs consist of 8 or 9 faces (Fig-
ure 7), while the truncated dodecahedron’s MOPEs have 4 faces (Figure 8). Therefore,
we observe that the number of faces constituting each MOPE, rather than the number
of MOPEs, influences the percentage of non-overlapping edge unfoldings. The same ob-
servation also applies to Archimedean (anti)prisms. In n-gonal Archimedean prisms, the
percentage of non-overlapping edge unfoldings significantly decreases at n = 29, as shown
in Figure 6 (left). This decrease may be attributed to the appearance of two new types of
MOPEs, consisting of 4 faces for n ≥ 29, as illustrated in Figure 10 (for n ≤ 28, the MOPEs
consist of 6, 7, or 8 faces (Figure 9)). Similarly, in m-gonal Archimedean antiprisms, the
percentage of non-overlapping edge unfoldings significantly decreases at m = 18, as shown
in Figure 6 (right). This decrease may be attributed to the appearance of three new types
of MOPEs, consisting of 6 faces for m ≥ 18, as illustrated in Figure 12 (for m ≤ 17, the
MOPEs consist of 8 faces (Figure 11)).

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant Num-
bers JP18H04091, JP19K12098, and JP22H03549, by MEXT KAKENHI Grant Number
JP20H05964, and by JST SPRING Grant Number JPMJSP2154.

Figure 7 MOPEs in the truncated icosahedron [9, 18]
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Figure 8 A MOPE in the truncated dodecahedron [9]

Figure 9 MOPEs in n-gonal Archimedean prisms for (a) n ≥ 24, (b) n ≥ 26, and (c) n ≥ 28.
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