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Abstract
We study the problem of determining the complexity of the lower envelope of a collection of n

geometric objects. For collections of rays; unit length line segments; and collections of unit squares
to which we apply at most two transformations from translation, rotation, and scaling, we prove
a complexity of Θ(n). If all three transformations are applied to unit squares, then we show the
complexity becomes Θ

(
nα(n)

)
, where α(n) is the slowly growing inverse of Ackermann’s function.

1 Introduction

Consider a set of n line segments (segments for short) in the plane. It is known that the
complexity of their lower envelope is at least Ω

(
nα(n)

)
, where α(n) is the extremely slowly

growing inverse of Ackermann’s function. The lower bound was proved by Wiernik and
Sharir [4], a matching upper bound of O

(
nα(n)

)
was proved by Hart and Sharir [1], and an

O(n log n) time and O
(
nα(n)

)
space algorithm to find such a lower envelope was described

by Hershberger [2]. The motivation of this work is to determine under which geometric
properties of a given set of n geometric objects we can ensure that their lower envelope has a
tight complexity, e.g., linear or Θ

(
nα(n)

)
.

For many of the results, we will make extensive use of Observation 1.1.

▶ Observation 1.1. Let S1 and S2 be two sets of n1 and n2 planar geometric objects whose
lower envelopes have complexity O

(
f1(n1)

)
and O

(
f2(n2)

)
, respectively.

If any pair of objects in the set S1 ∪ S2 intersect at most O(1) times, then the union of
the lower envelopes of S1 and S2 has complexity O

(
f1(n) + f2(n)

)
, where n = n1 + n2.

The observation follows by merging the two sequences of intervals generated by the
corresponding two envelopes, since any two objects will appear at most a constant number
of times in the lower envelope where they intersect. Thus, the complexity becomes as stated.
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Figure 1 Illustrating the proof of Theorem 2.1.

2 Collections of Rays

▶ Theorem 2.1. The lower envelope of a set of n rays has a complexity of Θ(n).1

Proof. Given a ray r, let s(r) and ℓ(r) denote the starting point and the supporting line of
r, respectively. Without loss of generality, we assume in the following that no ray is vertical,
since the lower envelope of any such ray is a single point.

To see the lower bound, consider n rays that move horizontally to the right, with starting
points (1, n), (2, n−1), . . . , (n, 1). The lower envelope has vertices at each integer x-coordinate
from 1 to n and therefore complexity Ω(n).

To see the upper bound, we argue as follows. Let R be the subset of rays that have no
point to the left of their starting point and let L be the subset of remaining rays. We show
next that the complexity of the lower envelope of R is O(n). By symmetry (mirroring the
rays in L along the line x = 0), the complexity of the lower envelope of L is also O(n). The
upper bound follows by combining these results and Observation 1.1.

For the rays in R, our proof makes use of the following observation.

▶ Observation 2.2. Given two rays in R that intersect, the ray that lies above the other after
their intersection point will never again be included in the lower envelope after that point.

Consider the set of rays in R and sort them by the x-coordinate of the endpoint in order
from left to right. By greedily inserting a ray r in this order into the lower envelope E of the
previously added rays we argue that the number of intersection points in the lower envelope
can increase by at most two. We have the following cases.
1. The starting point of r lies above E and r never intersects it, then r is never seen from

below and the lower envelope does not change; see Figure 1(a),
2. The starting point of r lies above E and the ray intersects it at p, then p is a vertex

of the new lower envelope. If r does not intersect the current lower envelope to the
right of p, then r is the only object seen to the right of p. If r intersects E again at
q, by Observation 2.2, the ray r will not be included in the lower envelope again, and
furthermore, since two rays can only intersect once, between p and q, there must be at
least one vertex of E . Hence, either one vertex is added to E or two are added and at
least one vertex must also be removed; see Figure 1(b),

3. The starting point of r lies below E and r never intersects E , then a vertex in the lower
envelope is introduced at the x-coordinate of the starting point of r and the ray is the
only object seen to the right of this point; see Figure 1(c),

4. The starting point of r lies below E and r intersects it at p, then a new vertex in the lower
envelope is introduced at the x-coordinate of the starting point of r and another one at p.
By Observation 2.2, r can never appear again in the lower envelope; see Figure 1(d).

Thus, at most two new vertices are introduced to the lower envelope when we insert a ray. ◀

1 This result was stated without a proof by Sharir and Agarwal in [3, page 112].
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3 Collections of Line Segments with Unit Length

▶ Theorem 3.1. The lower envelope of a set of n unit length segments has complexity Θ(n).

Proof. To prove the lower bound, consider the lower envelope of the n unit length segments
[(1, 0), (2, 0)], [(3, 0), (4, 0)], . . . , [(2n − 1, 0), (2n, 0)] with 2n vertices, establishing the claim.

To prove the upper bound, consider a square grid covering the plane whose cells have side
length 3/5. We denote by Si,j the grid cell at row i and column j. Let Li,j be the set of line
segments obtained by intersecting the input set of line segments with the region bounded by
Si,j , and let ni,j be the number of line segments in Li,j .

The lower envelope of Li,j has complexity O(ni,j), since the input segments have length 1
and the grid cells have side length 3/5. The segments of Li,j have either a single endpoint
or no endpoints in the interior of Si,j . Observe that the subset of segments of Li,j with no
endpoints behave as lines inside Si,j and each such segment has at most one connected piece
on the lower envelope of Li,j . Hence, the lower envelope of this subset has linear complexity [3].
On the other hand, note that the subset of segments of Li,j with a single endpoint behave
as rays inside Si,j . In particular, Observation 2.2 holds. Therefore, by Theorem 2.1 the
lower envelope of this subset has also linear complexity. Combining these observations with
Observation 1.1, we conclude that the lower envelope of Li,j has complexity O(ni,j).

Let S
(k)
j =

⋃∞
i=−∞ S3i+k,j , for k ∈ {0, 1, 2}, be the union of the cells in a grid column

that are three cells apart. We say that S
(k)
j is the kth sub-strip of the jth grid column. We

denote by L
(k)
j =

⋃∞
i=−∞ L3i+k,j the set of line segments resulting from intersecting the

input set of line segments with S
(k)
j . Let the number of segments of each set L

(k)
j be n

(k)
j .

No two grid cells S3i+k,j and S3i′+k,j , with i ̸= i′, in sub-strip S
(k)
j , contain a common

segment since they are more than one unit apart vertically. The lower envelope of a sub-strip
S

(k)
j is the lower envelope of the lower envelopes for the squares included in S

(k)
j and therefore

any vertex in the lower envelope in a square is either included or excluded in the lower
envelope of S

(k)
j , whereby the complexity is

∑∞
i=−∞O(n3i+k,j) = O

(
n

(k)
j

)
; see Figure 2(a).

We now consider the lower envelope of sub-strips that are three squares apart horizontally.
We denote the union of such sub-strips by S(k,l) def=

⋃∞
j=−∞ S

(k)
3j+l, for l ∈ {0, 1, 2}. Let

L(k,l) =
⋃∞

j=−∞ L
(k)
3j+l be the set of line segments resulting from intersecting the input set of

line segments with S(k,l). Let the number of segments of each set L(k,l) be n(k,l).
Any two sets L

(k)
3j+l and L

(k)
3j′+l, with j ̸= j′, must have empty intersection since the

corresponding sub-strips S
(k)
3j+l and S

(k)
3j′+l are more than one unit apart. Hence, no segment

occurs in the two sub-strips whereby the lower envelope of the segments in S(k,l) has
complexity

∑∞
j=−∞ O

(
n

(k)
3j+l

)
= O

(
n(k,l)) ⊆ O(n); see Figure 2(b).

The complexity of the lower envelope of
⋃

0 ≤ k ≤ 2
0 ≤ l ≤ 2

L(k,l), i.e., the whole domain, is then∑
0 ≤ k ≤ 2
0 ≤ l ≤ 2

O
(
n(k,l)) ⊆

∑
0 ≤ k ≤ 2
0 ≤ l ≤ 2

O(n) = O(n), (1)

using Observation 1.1 since we are summing over nine linear sized subsets. ◀

3.1 Segments Traced by Moving Points with Constant Speed
Let P be a set of n points in the plane, each moving at the same constant speed along a
different line. The points start simultaneously moving at an instant t = 0, so at any given
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Figure 2 Illustrating the proof of Theorem 3.1.

instant t > 0, the points have traced a set Lt of n line segments, all with equal length; see
Figure 3. By Theorem 3.1, and combining Corollary 3.2 with the algorithm by Hershberger [2],
we obtain the following result.

▶ Corollary 3.2. For any fixed t > 0, the lower envelope of Lt has a complexity of Θ(n) and
can be computed in O(n log n) time and O(n) space.

(a) (b)

Figure 3 (a) A set P of eight points in the plane at an instant t = 0. (b) The lower envelope of
the segments traced by moving the points of P along linear trajectories, at an instant t > 0.

4 Collections of Unit Squares Under Linear Transformations

We consider unit squares and allow rotation, translation, and scaling. We settle the complexity
of the lower envelope for all possible combinations of these transformations, see Table 1.
More specifically, we consider n copies of the unit square with corners at [0, 0], [0, 1], [1, 0],
and [1, 1], and apply a subset of the transformations to these n unit squares.

If we do not allow scaling, each square has four unit-length segments, out of which at
most two appear on the lower envelope. Combining Theorem 3.1 and Observation 1.1, we get

▶ Corollary 4.1 (Cases 2, 5, and 6). The lower envelope of a set of n unit squares that can
be rotated and/or translated has a complexity of Θ(n).
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Table 1 Complexity of the lower envelope of unit squares under various linear transformations.

On the other hand, if we only allow scaling, we can only achieve constant complexity.

▶ Lemma 4.2 (Case 7). The lower envelope of a set of n unit squares that can be scaled has
a complexity of Θ(1).

▶ Lemma 4.3 (Case 4). The lower envelope of a set of n unit squares that can be translated
and scaled has a complexity of Θ(n).

Proof. For the lower bound, consider the lower envelope of the n axis-aligned squares with
base edges [(1, 0), (2, 0)], [(3, 0), (4, 0)], . . . , [(n − 1, 0), (n, 0)]. Since such a lower envelope has
2n vertices, we have established the Ω(n) bound.

For the upper bound, we split the segments of the squares into two groups: All n squares
have the same rotation, hence, for each square either a single horizontal line segment (if the
squares are axis-aligned) or two line segments with two coinciding slopes for all squares may
appear on the lower envelope. We consider the line segments with non-negative and those
with negative slope separately. Let L+ and L− be the set of line segments with non-negative
and negative slope, respectively. (L− may be empty.) All line segments in L+ have the same
slope, hence, no two line segments from the set can intersect. We order the segments in L+

by their left endpoint and insert them one after another. When we insert a new line segment
ℓi ∈ L+, we introduce at most two vertices to the lower envelope:
1. If the left endpoint of ℓi is to the right of all previously inserted segments, we introduce

two new vertices to the lower envelope.
2. If the left endpoint of ℓi is to the left of some right endpoints of previously inserted line

segments, but its right endpoint is to the right of all previously inserted segments, we
introduce at most two vertices to the lower envelope: both of ℓi’s endpoints or its right
endpoint (the other vertex is in that case an already introduced endpoint of a segment).

3. If the complete segment ℓi is within the interval of x-coordinates of previously inserted
segments, no left endpoint of a segment ℓj , j < i can be to the right of ℓi’s left endpoint,
thus, depending on the y-coordinates of the so far introduced segments, we introduce
either ℓi’s endpoints, its right endpoint, or no point to the lower envelope.

Hence, the lower envelope of the line segments in L+ has complexity O(n). An analogous
argument yields the same bound for the lower envelope of line segments in L−. Hence, with
Observation 1.1, we yield the upper bound. ◀

▶ Lemma 4.4 (Case 3). The lower envelope of a set of n unit squares that can be scaled and
rotated has complexity Θ(n).

While in all previous cases, we could give a linear bound on the complexity of the lower
envelope, this does not hold if we allow all three linear transformations.
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▶ Theorem 4.5 (Case 1). The lower envelope of a set of n unit squares that can be rotated,
translated, and scaled has complexity Θ

(
nα(n)

)
.

Proof. For a collection of n line segments in the plane (none of which are vertical), Hart
and Sharir [1] showed that the complexity of the lower envelope can be at most O

(
nα(n)

)
.

For each of the n squares at most two line segments appear on the lower envelope. Thus, the
result by Hart and Sharir in combination with Observation 1.1 yields an upper bound of
O

(
nα(n)

)
on the complexity of the lower envelope of the squares.

Let G = {ℓ1, . . . , ℓn} be the set of line segments from the lower-bound construction of
Wiernik and Sharir [4]. We construct a new set of line segments G′ = {ℓ′

1, . . . , ℓ′
n} from G:

for a large constant M , we substitute each endpoint (ex, ey) of a segment by the endpoint
(ex,

ey

M ). For an example, see Figure 4. If any two segments ℓi and ℓj intersect in the point
(px, py), then ℓ′

i and ℓ′
j intersect in the point (px,

py

M ). Thus, if ℓi is on the lower envelope
of G for the interval (x1, x2), then ℓ′

i is on the lower envelope of G′ for the same interval
(x1, x2). Consequently, the complexity of the lower envelope of G′ equals that of G.

We use the new (“nearly” horizontal) line segments as the base edge of our squares S,
see Figure 4: Let ℓ′

i have endpoints (li
x, li

y) and (ri
x, ri

y), we construct a square si with side
length ||ℓ′

i||. For each of these squares at most two edges are on the lower envelope.
For M being large enough, the square edges appearing on the lower envelope that do not

stem from the line segments from the construction by Wiernik and Sharir have a very large
absolute value of slope (that is, they are “nearly” vertical). We can choose M large enough
such that for ℓi, ℓj , ℓk appearing on the lower envelope in that order, the vertical edges of si

and sk cannot block sj (with higher y-coordinate) from appearing on the lower envelope:
Let ℓj appear on the lower envelope of G within the interval Ij = [ri

x, lk
x]. We split Ij into

three equal-length closed intervals Ijl, Ijm and Ijr, aiming that si and sk may block at most
Ijl and Ijr, respectively—which yields the claim. We consider the case that ℓi has negative
slope (with positive slope, si does not block any of Ijl). For simplicity, assume that ℓj is
horizontal (similar arguments hold in the other cases). We can consider ℓj , because if ℓj is
not blocked in Ijm then ℓ′

j (with smaller y-coordinates) is not blocked either. Assume, we
construct a square σi with ℓi as base edge (instead of ℓ′

i for si). Let ei be σi’s second edge
that may appear on the lower envelope, and let pij = (pij

x , pij
y ) be the intersection point of ei

and ℓj . If pij ∈ Ijl, we are done for any value of M , hence, let pij ∈ Ijm ∪ Ijr. The slope of ei

is pij
y −ri

y

pij
x −ri

x

, the equivalent edge of si should have slope at least pij
y −ri

y

ri
x+1/3(lk

x−ri
x)−ri

x
= pij

y −ri
y

1/3(lk
x−ri

x) ,

such that we achieve pij ∈ Ijl. Hence, we need to choose M ≥ 1/3(lk
x−ri

x)
pij

x −ri
x

. By choosing M

larger than these constraints for all pairs of line segments appearing consecutively on the
lower envelope, we can ensure that while si and ℓi will not appear on the exact same interval
on the lower envelope for S and G, the sequence of the si appearing on the lower envelope
for S coincides with the sequence of the ℓi appearing on the lower envelope for G. Hence,
the lower bound for line segments established by Wiernik and Sharir [4] translates to unit
squares that can be rotated, translated and scaled. ◀

5 Open Questions

The complexity for other geometric shapes, such as differently oriented parabolae, ellipses,
and fat objects in general would be of great interest to settle. In particular, we are interested
in knowing if the complexity can be proved with purely geometric arguments.
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Figure 4 Example for the construction from the proof of Theorem 4.5. Top: Set of line segments
G = {ℓ1, . . . , ℓ5}; second to top: the sequence of segments of G appearing on the lower envelope;
middle: new set of line segments G′ = {ℓ′

1, . . . , ℓ′
5}; second to bottom: set of squares S = {s1, . . . , s5};

bottom: sequence of squares of S appearing on the lower envelope.
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