
Unit Interval Graphs & Maximum c-Independent
Sets Maximizing the Number of Isolated Vertices
Linda Kleist1 and Kai Kobbe1

1 Technische Universität Braunschweig
{kleist,kobbe}@ibr.cs.tu-bs.de

Abstract
We study maximum c-independent sets that maximize the number of isolated vertices and present
an algorithm that computes such subgraphs for unit interval graphs in linear time. The algorithm
is based on a simple test that gives a certificate whether a specific vertex can be isolated. While
the crucial property seems straight-forward, its proof requires a careful analysis of the structure of
c-independent sets in unit interval graphs. Surprisingly, the techniques do not generalize to interval
graphs and the algorithm does not even yield an approximation on general interval graphs.

1 Introduction

Computing maximum independent sets is a fundamental problem and appears on the list of
Karp’s 21 NP-complete problems. Maximum independent sets and also its generalizations
of maximum c-independent sets find a variety of use cases across various fields in modelling
and solving real-world problems, e.g., wireless sensor networks [3], DNA sequencing in bioin-
formatics [13, 19], VLSI design [13, 23], job scheduling [6, 11] and resource allocation [20],
as well as identifying independent strategies in game theory [28]. For c ∈ N, a c-independent
set (c-IS) of a graph is the union of c independent sets.

While the special case of c = 1 is the Maximum Independent Set Problem, the special
case of c = 2 is also known as Maximum Bipartite Subgraph, Graph Bipartization, or Odd
Cycle Transversal. Not only that computing a maximum c-IS is NP-complete for general
graphs, it has also been shown that there is no approximation algorithm with a factor in
O(n1−ε) for any ε > 0 and (possibly fixed) c ∈ N≥1, unless P = NP [18, 22]. In contrast,
a maximum c-IS can be computed in polynomial time for special graph classes; including
interval graphs, even if c is part of the input [29].

We consider the problem of computing a maximum c-IS for unit interval graphs with
the additional property of maximizing the number of isolated vertices (among all maximum
c-ISs). To this end, we say that a maximum c-IS is max-iso, if no other maximum c-IS has
more isolated vertices. For an example, consider the unit interval graph depicted in Figure 1,
where the thick intervals correspond to a maximum 2-IS with one isolated vertex. Is there
a maximum 2-IS with more isolated vertices?

Figure 1 A unit interval graph where the subset of thick intervals is a maximum 2-IS with one
isolated vertex. Note that exchanging the top four intervals with the bottom four intervals yields a
maximum 2-IS with two isolated vertices, namely the first and last vertex.

Our main result is as follows.

▶ Theorem 1.1. There exists an algorithm that computes a max-iso c-IS for every unit
interval graph on n vertices with a running time in O(n), even if c is part of the input.
40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

26:2 Maximum c-Independent Sets Maximizing the Number of Isolated Vertices

Our key motivation is a scheduling problem where conflicts between machines appear
due to shared resources or spatial proximity [7]. In this variant, each job has phases of pre-
and post-processing, and no two jobs on conflicting machines may overlap in such phases.
For the case that machine conflicts can be expressed by a unit interval graph, we expect
that maximum c-ISs with many isolated vertices are crucial to obtain good schedules.

The rest of our paper is organized as follows. We review related work in Section 1.1,
introduce fundamental concepts in Section 1.2 and discuss the algorithm in Section 2.

1.1 Related work
Finding a maximum c-IS is known to be NP-complete [15] and, for graphs on n vertices,
there does not even exist an O(n1−ε)-approximation for any c ∈ N≥1 and ε > 0, unless
P = NP [18, 22, 31]. Moreover, when considering general graphs, computing a maximum
c-IS is equivalent to computing a maximum 1-IS, under polynomial-time reductions [25].

Considering c = 1, the maximum independent set (MIS) is relevant in many applica-
tions and therefore well studied, also for special graph classes. In this sense, constant fac-
tor approximations exist for bounded degree graphs and families of geometric intersection
graphs [8]. Furthermore, polynomial-time approximation schemes (PTAS) exist for families
of graphs that are closed under taking minors [16], e.g., planar graphs [5]. For many other
graph classes, a maximum weight independent set may be found in polynomial time. Fa-
mous examples include claw-free graphs [12, 24], P5-free graphs [21] and perfect graphs [17].
For chordal graphs, and thus in particular for interval graphs, maximum weight independent
sets can be computed in linear time [14]. More generally, the maximum weight independent
set can be computed in polynomial time for graphs that do not contain a k-prism or an
induced Cn with n ≥ 5 [10].

For c = 2, the problem is also known as Maximum (Induced) Bipartite Subgraph, Graph
Bipartization, or Odd Cycle Transversal. A maximum 2-IS can be found in polynomial time
in planar graphs with maximum degree three, while it is NP-complete for cubic graphs and
planar graphs with maximum degree four [4, 9]. Additionally, polynomial-time algorithms
exist for many other graph classes; including split graphs, permutation graphs, tolerance
graphs and circular-arc graphs [25, 30]. We emphasize that there are graph classes, for
which a maximum 1-IS can be computed in polynomial time, while finding a maximum
2-IS is NP-hard. Examples are circle graphs [2, 26, 27] and perfect graphs, as computing a
maximum 2-IS is NP-hard for the subclass of clique-separable graphs [1].

For general c, it is known that the class of chordal graphs allows for a polynomial-time
algorithm if c is not part of the input [29]. If c is part of the input, polynomial-time
algorithms exist for the two subfamilies of perfect graphs of i-triangulated graphs [1] and
interval graphs [29].

1.2 Fundamental Concepts
Let G = (V, E) be a graph. As usual, we denote the (open) neighborhood of a vertex v by
N(v) := {u ∈ V | uv ∈ E} and the closed neighborhood by N [v] := N(v) ∪ {v}. For a subset
U ⊂ V , G[U] denotes the subgraph induced by U .

Independent sets. A subset of vertices U ⊂ V is an independent set of G, if no two vertices
of U share an edge in G. For a fixed c ∈ N, a c-independent set (c-IS) I of G is a union of c

independent sets I1, ..., Ic of G; its size is given by the number of vertices, i.e., |I| := |
⋃

i Ii|.
A c-IS is maximum if no other c-IS has larger size. We denote the size of a maximum c-IS of

L. Kleist and K. Kobbe 26:3

G by αc(G). As mentioned before, we are particularly interested in c-ISs with many isolated
vertices. To this end, we call a maximum c-IS I of G max-iso, if G has no maximum c-IS
with more isolated vertices.

Interval graphs. In a (unit) interval representation of a graph G = (V, E), every vertex
is represented by a (unit) interval in R1 such that two intervals intersect if and only if the
corresponding vertices share an edge. If a graph has a (unit) interval representation, then
it is a (unit) interval graph. Without loss of generality, we assume that no two intervals
are identical. A unit interval representation has a natural ordering of the intervals by their
start points. If the interval of a vertex v starts before the interval of w, then we say v is
smaller than w; we write v ≺ w. We write v ⪯ w if either v ≺ w, or v = w, i.e., v and
w refer to the same vertex. An ordering v1, . . . , vn of the vertices of G is a left-right-order
if vi ≺ vi+1 for all i. We shortly recall a simple greedy algorithm to compute a maximum
c-IS for a unit interval graph G = (V, E) with left-right-order v1, . . . , vn with a runtime in
O(n) [29]: We start with I = ∅ and consider the vertices by increasing index. Vertex vi is
added to I, if this maintains a c-IS in G. A useful property of the greedy solution I for G

is the following: For every vertex u ∈ V , it holds that I ′ := {v ∈ I | v ≺ u} is a maximum
c-IS in G[{v ∈ V | v ≺ u}]. Clearly, an analogous statement holds when using the reversed
(right-left) order of the vertices.

2 The Algorithm

In this section, we study the computation of max-iso c-ISs for unit interval graphs. We start
by establishing a simple test that states if it is reasonable to isolate a specific vertex for
our purposes. A straight-forward implementation would yield a quadratic algorithm. We
additionally show how to derive a linear-time algorithm.

▶ Lemma 2.1. Let G be a connected unit interval graph, Iw a max-iso c-IS of G and w be
the smallest isolated vertex in Iw. Consider a vertex v ≺ w. If αc(G − N(v)) = αc(G), then
G − N(v) contains a max-iso c-IS of G.

Proof-Sketch. We consider a maximum c-IS Iv in G − N(v), i.e., Iv has size αc(G). If
w ∈ Iv, we observe that exchanging the sets of vertices that are larger than w in Iv and Iw

(denoted by I≻
v , I≻

w) by each other, yields a c-IS; here we use the fact that G is a unit interval
graph. For a schematic illustration consider Figure 2. Therefore, it holds that |I≻

v | = |I≻
w |

and consequently I ′ := (Iv \ I≻
v) ∪ I≻

w is a maximum c-IS in G, where the isolated vertices
are the same as in Iw, except for isolating now v instead of w. Thus, I ′ is max-iso.

Iw

Iv

I≻
w

I≻
v

w

v

Figure 2 Illustration for the proof of Lemma 2.1. If w ∈ Iw, Iv, then replacing I≻
w and I≻

v by
each other in Iw or Iv maintains a c-IS.

Afterwards, we show that there exists a maximum c-IS in G − N(v) that contains w. In
particular, this implies that v /∈ N(w). To this end, we carefully analyse the structure of
G[Iv ∪ Iw] and, assuming that there is no such maximum c-IS, obtain a contradiction. ◀

EuroCG’24

26:4 Maximum c-Independent Sets Maximizing the Number of Isolated Vertices

▶ Remark. Lemma 2.1 does not hold for interval graphs in general: Consider the interval
graph G depicted in Figure 3. Note that it contains several c-cliques and a unique (2c − 1)-
clique C = {u, b1, . . . , bc−1, r1, . . . , rc−1}. In order to obtain a maximum c-IS, we have to
delete c−1 vertices of C. There exist various choices. However, when we keep at least one bi

and one rj , then the resulting c-IS has no isolated vertex. Deleting the vertices b1, . . . , bc−1
isolates vertex v, while deleting the vertices r1, . . . , rc−1 isolates the vertices w1, . . . , wk and
thus yields the unique max-iso c-IS of G. Consequently, as N(v) = {b1, . . . , bc−1}, the graph
G − N(v) contains a maximum c-IS of G but no max-iso c-IS. This implies that the decision
of isolating v is not only suboptimal but even arbitrarily bad as the number of isolated
vertices is 1 vs k in the optimum. Consequently, Lemma 2.1 cannot be used to derive a
constant-factor approximation algorithm for general interval graphs.

b1

v u

bc−1

...
...

r1

rc−1

...
...

w1 wk. . .

Figure 3 An interval graph G and its first vertex v such that αc(G − N(v)) = αc(G), but
G − N(v) contains no max-iso c-IS of G. Thus, Lemma 2.1 does not generalize to interval graphs.

▶ Remark. It is crucial in Lemma 2.1 that v is a valid candidate for a smallest isolated
vertex. In other words, even if αc(G−N(v)) = αc(G) for some vertex v, it is not necessarily
true that G − N(v) contains a max-iso c-IS of G. For an example, consider the unit interval
graph G depicted in Figure 4. Observe that there are two disjoint (2c − 1)-cliques in G,
namely, Ci = {ui, bi

1, . . . , bi
c−1, ri

1, . . . , ri
c−1} for i ∈ {1, 2}. In order to obtain a maximum

c-IS, we have to delete c − 1 vertices from C1 and C2, respectively. The unique maximum
c-IS I that isolates v is obtained by deleting all ri

j ; note that this implies that there is no
other isolated vertex in I. In contrast, the maximum c-IS I ′ obtained by deleting all bi

j has
two isolated vertices, namely w1 and w2. Thus, when applying Lemma 2.1, it is crucial that
v is a candidate for a smallest isolated vertex (in its connected component).

...

...
...

...

w1 w2v

b11

b1c−1

...

b21

b2c−1

...

r21

r2c−1

...

r11

r1c−1

...

u1 u2

Figure 4 A unit interval graph G and vertex v with αc(G − N(v)) = αc(G), but G − N(v)
contains no max-iso c-IS of G.

As mentioned before, Lemma 2.1 yields a simple quadratic algorithm: For a given left-
right-order and increasing i, we check iteratively whether αc(G) = αc(G − N(vi)). If so, we
delete N(vi) from G and repeat with incremented i. In each step, we use Lemma 2.1 for the
connected component of vi. Finally, we compute a maximum c-IS of the modified graph and
return it. As computing a maximum c-IS takes linear time (for a given left-right-order), we
obtain a simple quadratic algorithm.

In the following, we show how to obtain a linear-time algorithm for unit interval graphs.

▶ Lemma 2.2. For every unit interval graph on n vertices with given left-right-order, Algo-
rithm 1 can be implemented to compute a max-iso c-IS with a running time in O(n).

L. Kleist and K. Kobbe 26:5

Algorithm 1 Algorithm for computing a max-iso c-IS in unit interval graphs
Require: Unit interval Graph G = (V, E) with left-right-order v1, . . . , vn

Ensure: max-iso c-IS of G

1: U := V

2: L := ∅
3: R := Greedy maximum c-IS with reversed order vn, . . . , v1
4: while U ̸= ∅ do
5: Identify the smallest vertex v from U and delete it from U

6: if |(L ∪ R) ∩ N [v]| = 1 then ▷ if true, v will be isolated
7: U = U \ N [v]
8: L = (L \ N [v]) ∪ {v}
9: R = R \ N [v]

10: else if |L ∩ N [v]| < c then
11: L = L ∪ {v}
12: Delete the smallest vertex from R

13: end if
14: end while
15: return L

Proof-Sketch. The key idea of the algorithm is to maintain a leftmost partial solution L

(before the current vertex) and a rightmost partial (greedy) solution R (after the current
vertex) which allows for constant update time in each iteration. This is schematically de-
picted in Figure 5. When the algorithm ends, it holds that L is a max-iso c-IS for the given
graph. More precisely, in each iteration of the while-loop, we test whether the smallest
yet unconsidered vertex v (selected in line 5) can be isolated (in line 6). If so, we delete
its neighborhood to guarantee that it is isolated and add v to our partial solution L (in
lines 7-9). If not, we test whether it can be added greedily to L (in line 10).

Throughout the algorithm, we maintain a set of invariants. To this end, consider an
iteration where v is selected in line 5 and let S denote the set of vertices for which line 6
evaluated to true so far. Before the iteration, the following invariants hold:

L ∪ R is a maximum c-IS in G in which vertices from S are isolated.
L ⊂ {u ∈ V | u ≺ v} =: VL and R ⊂ {u ∈ V | v ⪯ u} =: VR

L \ N [v] is a maximum c-IS in G[VL − N [v]] (in which vertices from S are isolated);
moreover, after the largest isolated vertex u ∈ L, vertices are added greedily to L.
R \ N [v] is a (greedy) maximum c-IS in G[VR − N [v]] (for right-left order).

L

R

v

u

Figure 5 State of L and R before the iteration where v is selected in line 5 of Algorithm 1.

These properties allow us to check efficiently the size of a largest c-IS where the vertices
S ∪ {v} are isolated, because (L ∪ R ∪ {v}) \ N(v) is such a largest c-IS. In line 6, we test
whether this size is equal to αc(G) = |L ∪ R| and if so, we isolate v. ◀

EuroCG’24

26:6 Maximum c-Independent Sets Maximizing the Number of Isolated Vertices

References
1 Louigi Addario-Berry, W.S. Kennedy, Andrew D. King, Zhentao Li, and Bruce Reed. Find-

ing a maximum-weight induced k-partite subgraph of an i-triangulated graph. Discrete
Applied Mathematics, 158(7):765–770, 2010. doi:10.1016/j.dam.2008.08.020.

2 Alberto Apostolico, Mikhail J. Atallah, and Susanne E. Hambrusch. New clique and inde-
pendent set algorithms for circle graphs. Discrete Applied Mathematics, 36(1):1–24, 1992.
doi:10.1016/0166-218X(92)90200-T.

3 Ozkan Arapoglu and Orhan Dagdeviren. An asynchronous self-stabilizing maximal in-
dependent set algorithm in wireless sensor networks using two-hop information. In 2019
International Symposium on Networks, Computers and Communications (ISNCC), pages
1–5, 2019. doi:10.1109/ISNCC.2019.8909189.

4 Mourad BaÏou and Francisco Barahona. Maximum weighted induced bipartite subgraphs
and acyclic subgraphs of planar cubic graphs. SIAM Journal on Discrete Mathematics,
30(2):1290–1301, 2016. doi:10.1137/140980053.

5 Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
J. ACM, 41(1):153–180, 1994. doi:10.1145/174644.174650.

6 Matthias Bentert, René van Bevern, and Rolf Niedermeier. Inductive k-independent graphs
and c-colorable subgraphs in scheduling: a review. Journal of Scheduling, 22(1):3–20, 2018.
doi:10.1007/s10951-018-0595-8.

7 Moritz Buchem, Linda Kleist, and Daniel Schmidt genannt Waldschmidt. Scheduling with
machine conflicts. In Approximation and Online Algorithms: 20th International Workshop,
(WAOA 2022), page 36–60, 2022. doi:10.1007/978-3-031-18367-6_3.

8 Timothy M Chan and Sariel Har-Peled. Approximation algorithms for maximum indepen-
dent set of pseudo-disks. In Proceedings of the twenty-fifth annual symposium on Compu-
tational geometry, pages 333–340, 2009. doi:10.1145/1542362.1542420.

9 Hyeong-Ah Choi, Kazuo Nakajima, and Chong S. Rim. Graph bipartization and via
minimization. SIAM Journal on Discrete Mathematics, 2(1):38–47, 1989. doi:10.1137/
0402004.

10 Maria Chudnovsky, Marcin Pilipczuk, Michał Pilipczuk, and Stéphan Thomassé. On the
maximum weight independent set problem in graphs without induced cycles of length at
least five. SIAM Journal on Discrete Mathematics, 34(2):1472–1483, 2020. doi:10.1137/
19M1249473.

11 Duncan Eddy and Mykel J. Kochenderfer. A maximum independent set method for schedul-
ing earth observing satellite constellations, 2020. arXiv:2008.08446.

12 Yuri Faenza, Gianpaolo Oriolo, and Gautier Stauffer. Solving the weighted stable set
problem in claw-free graphs via decomposition. Journal of the ACM (JACM), 61(4):1–41,
2014. doi:10.1145/2629600.

13 Pierre Fouilhoux and A. Ridha Mahjoub. Solving vlsi design and dna sequencing problems
using bipartization of graphs. Computational Optimization and Applications, 51(2):749–
781, 2012. doi:10.1007/s10589-010-9355-1.

14 András Frank. Some polynomial algorithms for certain graphs and hypergraphs. In Pro-
ceedings of the 5th British combinatorial conference, congressus numerantium, volume XV,
pages 211—-226, 1975.

15 M. R. Garey and D. S. Johnson. “Strong” NP-completeness results: Motivation, examples,
and implications. J. ACM, 25(3):499–508, 1978. doi:10.1145/322077.322090.

16 Martin Grohe. Local tree-width, excluded minors, and approximation algorithms. Combi-
natorica, 23(4):613–632, 2003. doi:10.1007/s00493-003-0037-9.

17 M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981. doi:10.1007/
BF02579273.

https://doi.org/10.1016/j.dam.2008.08.020
https://doi.org/10.1016/0166-218X(92)90200-T
https://doi.org/10.1109/ISNCC.2019.8909189
https://doi.org/10.1137/140980053
https://doi.org/10.1145/174644.174650
https://doi.org/10.1007/s10951-018-0595-8
https://doi.org/10.1007/978-3-031-18367-6_3
https://doi.org/10.1145/1542362.1542420
https://doi.org/10.1137/0402004
https://doi.org/10.1137/0402004
https://doi.org/10.1137/19M1249473
https://doi.org/10.1137/19M1249473
https://arxiv.org/abs/2008.08446
https://doi.org/10.1145/2629600
https://doi.org/10.1007/s10589-010-9355-1
https://doi.org/10.1145/322077.322090
https://doi.org/10.1007/s00493-003-0037-9
https://doi.org/10.1007/BF02579273
https://doi.org/10.1007/BF02579273

L. Kleist and K. Kobbe 26:7

18 Johan Håstad. Clique is hard to approximate within n1−ϵ. Acta Mathematica, 182(1):105–
142, 1999. doi:10.1007/BF02392825.

19 Deborah Joseph, Joao Meidanis, and Prasoon Tiwari. Determining dna sequence similarity
using maximum independent set algorithms for interval graphs. In Algorithm Theory —
SWAT ’92, pages 326–337, 1992. doi:10.1007/3-540-55706-7_29.

20 Alper Köse and Berna Özbek. Resource allocation for underlaying device-to-device com-
munications using maximal independent sets and knapsack algorithm. In IEEE 29th An-
nual International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), pages 1–5, 2018. doi:10.1109/PIMRC.2018.8580784.

21 Daniel Lokshantov, Martin Vatshelle, and Yngve Villanger. Independent set in p5-free
graphs in polynomial time. In Symposium on discrete algorithms (SODA), pages 570–581,
2014. doi:10.1137/1.9781611973402.4.

22 Carsten Lund and Mihalis Yannakakis. The approximation of maximum subgraph prob-
lems. In Automata, Languages and Programming, pages 40–51, 1993. doi:10.1007/
3-540-56939-1_60.

23 M. Marek-Sadowska. An unconstrained topological via minimization problem for two-layer
routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
3(3):184–190, 1984. doi:10.1109/TCAD.1984.1270074.

24 George J. Minty. On maximal independent sets of vertices in claw-free graphs. Journal
of Combinatorial Theory, Series B, 28(3):284–304, 1980. doi:10.1016/0095-8956(80)
90074-X.

25 G. Narasimhan. The Maximum k-Colorable Subgraph Problem. PhD thesis, University of
Wisconsin-Madison, 1989. URL: https://research.cs.wisc.edu/techreports/1989/
TR864.pdf.

26 Nicholas Nash and David Gregg. An output sensitive algorithm for computing a maximum
independent set of a circle graph. Information Processing Letters, 110(16):630–634, 2010.
doi:10.1016/j.ipl.2010.05.016.

27 M. Sarrafzadeh and D.T. Lee. A new approach to topological via minimization. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 8(8):890–900,
1989. doi:10.1109/43.31548.

28 Christof Spanring. Axiom of Choice, Maximal Independent Sets, Argumentation and Dia-
logue Games. In 2014 Imperial College Computing Student Workshop, volume 43 of Open
Access Series in Informatics (OASIcs), pages 91–98, 2014. doi:10.4230/OASIcs.ICCSW.
2014.91.

29 Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable subgraph problem
for chordal graphs. Information Processing Letters, 24(2):133–137, 1987. doi:10.1016/
0020-0190(87)90107-4.

30 Susan S. Yeh and Andrea S. LaPaugh. Algorithms for finding a maximum bipartite
subgraph for special classes of graphs. 1988. technical report. URL: https://www.cs.
princeton.edu/research/techreps/TR-149-88.

31 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the Symposium on Theory of Computing (STOC),
pages 681–690, 2006. doi:10.1145/1132516.1132612.

EuroCG’24

https://doi.org/10.1007/BF02392825
https://doi.org/10.1007/3-540-55706-7_29
https://doi.org/10.1109/PIMRC.2018.8580784
https://doi.org/10.1137/1.9781611973402.4
https://doi.org/10.1007/3-540-56939-1_60
https://doi.org/10.1007/3-540-56939-1_60
https://doi.org/10.1109/TCAD.1984.1270074
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1016/0095-8956(80)90074-X
https://research.cs.wisc.edu/techreports/1989/TR864.pdf
https://research.cs.wisc.edu/techreports/1989/TR864.pdf
https://doi.org/10.1016/j.ipl.2010.05.016
https://doi.org/10.1109/43.31548
https://doi.org/10.4230/OASIcs.ICCSW.2014.91
https://doi.org/10.4230/OASIcs.ICCSW.2014.91
https://doi.org/10.1016/0020-0190(87)90107-4
https://doi.org/10.1016/0020-0190(87)90107-4
https://www.cs.princeton.edu/research/techreps/TR-149-88
https://www.cs.princeton.edu/research/techreps/TR-149-88
https://doi.org/10.1145/1132516.1132612

	Introduction
	Related work
	Fundamental Concepts

	The Algorithm

