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—— Abstract

We study maximum c-independent sets that maximize the number of isolated vertices and present

an algorithm that computes such subgraphs for unit interval graphs in linear time. The algorithm
is based on a simple test that gives a certificate whether a specific vertex can be isolated. While
the crucial property seems straight-forward, its proof requires a careful analysis of the structure of
c-independent sets in unit interval graphs. Surprisingly, the techniques do not generalize to interval
graphs and the algorithm does not even yield an approximation on general interval graphs.

1 Introduction

Computing maximum independent sets is a fundamental problem and appears on the list of
Karp’s 21 NP-complete problems. Maximum independent sets and also its generalizations
of maximum c-independent sets find a variety of use cases across various fields in modelling
and solving real-world problems, e.g., wireless sensor networks [3], DNA sequencing in bioin-
formatics [13, 19], VLSI design [13, 23], job scheduling [6, 11] and resource allocation [20],
as well as identifying independent strategies in game theory [28]. For ¢ € N, a c-independent
set (c-IS) of a graph is the union of ¢ independent sets.

While the special case of ¢ = 1 is the Mazimum Independent Set Problem, the special
case of ¢ = 2 is also known as Maximum Bipartite Subgraph, Graph Bipartization, or Odd
Cycle Transversal. Not only that computing a maximum c¢-IS is NP-complete for general
graphs, it has also been shown that there is no approximation algorithm with a factor in
O(n'~¢) for any £ > 0 and (possibly fixed) ¢ € N>1, unless P = NP [18, 22]. In contrast,
a maximum c-IS can be computed in polynomial time for special graph classes; including
interval graphs, even if ¢ is part of the input [29].

We consider the problem of computing a maximum c¢-IS for unit interval graphs with
the additional property of maximizing the number of isolated vertices (among all maximum
¢-ISs). To this end, we say that a maximum c¢-IS is maz-iso, if no other maximum c¢-IS has
more isolated vertices. For an example, consider the unit interval graph depicted in Figure 1,
where the thick intervals correspond to a maximum 2-IS with one isolated vertex. Is there
a maximum 2-IS with more isolated vertices?

Figure 1 A unit interval graph where the subset of thick intervals is a maximum 2-IS with one
isolated vertex. Note that exchanging the top four intervals with the bottom four intervals yields a
maximum 2-IS with two isolated vertices, namely the first and last vertex.

Our main result is as follows.

» Theorem 1.1. There exists an algorithm that computes a maz-iso c-1S for every unit
interval graph on n vertices with a running time in O(n), even if ¢ is part of the input.
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Our key motivation is a scheduling problem where conflicts between machines appear
due to shared resources or spatial proximity [7]. In this variant, each job has phases of pre-
and post-processing, and no two jobs on conflicting machines may overlap in such phases.
For the case that machine conflicts can be expressed by a unit interval graph, we expect
that maximum c-ISs with many isolated vertices are crucial to obtain good schedules.

The rest of our paper is organized as follows. We review related work in Section 1.1,
introduce fundamental concepts in Section 1.2 and discuss the algorithm in Section 2.

1.1 Related work

Finding a maximum ¢-IS is known to be NP-complete [15] and, for graphs on n vertices,
there does not even exist an O(n'~¢)-approximation for any ¢ € N>; and ¢ > 0, unless
P = NP [18, 22, 31]. Moreover, when considering general graphs, computing a maximum
¢-IS is equivalent to computing a maximum 1-IS, under polynomial-time reductions [25].

Considering ¢ = 1, the maximum independent set (MIS) is relevant in many applica-
tions and therefore well studied, also for special graph classes. In this sense, constant fac-
tor approximations exist for bounded degree graphs and families of geometric intersection
graphs [8]. Furthermore, polynomial-time approximation schemes (PTAS) exist for families
of graphs that are closed under taking minors [16], e.g., planar graphs [5]. For many other
graph classes, a maximum weight independent set may be found in polynomial time. Fa-
mous examples include claw-free graphs [12, 24], Ps-free graphs [21] and perfect graphs [17].
For chordal graphs, and thus in particular for interval graphs, maximum weight independent
sets can be computed in linear time [14]. More generally, the maximum weight independent
set can be computed in polynomial time for graphs that do not contain a k-prism or an
induced C,, with n > 5 [10].

For ¢ = 2, the problem is also known as Maximum (Induced) Bipartite Subgraph, Graph
Bipartization, or Odd Cycle Transversal. A maximum 2-IS can be found in polynomial time
in planar graphs with maximum degree three, while it is NP-complete for cubic graphs and
planar graphs with maximum degree four [4, 9]. Additionally, polynomial-time algorithms
exist for many other graph classes; including split graphs, permutation graphs, tolerance
graphs and circular-arc graphs [25, 30]. We emphasize that there are graph classes, for
which a maximum 1-IS can be computed in polynomial time, while finding a maximum
2-1S is NP-hard. Examples are circle graphs [2, 26, 27] and perfect graphs, as computing a
maximum 2-IS is NP-hard for the subclass of clique-separable graphs [1].

For general ¢, it is known that the class of chordal graphs allows for a polynomial-time
algorithm if ¢ is not part of the input [29]. If ¢ is part of the input, polynomial-time
algorithms exist for the two subfamilies of perfect graphs of i-triangulated graphs [1] and
interval graphs [29).

1.2 Fundamental Concepts

Let G = (V, E) be a graph. As usual, we denote the (open) neighborhood of a vertex v by
N@) :={u €V |uv € E} and the closed neighborhood by N[v] := N(v)U{v}. For a subset
U C V, G[U] denotes the subgraph induced by U.

Independent sets. A subset of vertices U C V is an independent set of G, if no two vertices
of U share an edge in G. For a fixed ¢ € N, a c-independent set (¢-IS) Z of G is a union of ¢
independent sets Z1, ..., Z. of G} its size is given by the number of vertices, i.e., |Z| := |, Z;|-
A IS is mazimum if no other ¢-IS has larger size. We denote the size of a maximum ¢-IS of
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G by a.(G). As mentioned before, we are particularly interested in ¢-ISs with many isolated
vertices. To this end, we call a maximum c¢-IS Z of G maz-iso, if G has no maximum c-IS
with more isolated vertices.

Interval graphs. In a (unit) interval representation of a graph G = (V, E), every vertex
is represented by a (unit) interval in R' such that two intervals intersect if and only if the
corresponding vertices share an edge. If a graph has a (unit) interval representation, then
it is a (unit) interval graph. Without loss of generality, we assume that no two intervals
are identical. A unit interval representation has a natural ordering of the intervals by their
start points. If the interval of a vertex v starts before the interval of w, then we say v is
smaller than w; we write v < w. We write v < w if either v < w, or v = w, i.e., v and
w refer to the same vertex. An ordering vy, ..., v, of the vertices of G is a left-right-order
if v; < v;41 for all i. We shortly recall a simple greedy algorithm to compute a maximum
¢-IS for a unit interval graph G = (V, E) with left-right-order vy, ..., v, with a runtime in
O(n) [29]: We start with Z = () and consider the vertices by increasing index. Vertex v; is
added to Z, if this maintains a ¢-IS in G. A useful property of the greedy solution Z for G
is the following: For every vertex u € V, it holds that 7' := {v € T | v < u} is a maximum
¢-IS in G[{v € V | v < u}]. Clearly, an analogous statement holds when using the reversed
(right-left) order of the vertices.

2 The Algorithm

In this section, we study the computation of max-iso ¢-ISs for unit interval graphs. We start
by establishing a simple test that states if it is reasonable to isolate a specific vertex for
our purposes. A straight-forward implementation would yield a quadratic algorithm. We
additionally show how to derive a linear-time algorithm.

» Lemma 2.1. Let G be a connected unit interval graph, Z,, a mazx-iso c-1S of G and w be
the smallest isolated vertex in T,,. Consider a vertex v < w. If a.(G— N(v)) = a.(G), then
G — N(v) contains a maz-iso c-1S of G.

Proof-Sketch. We consider a maximum ¢-IS 7, in G — N(v), i.e., Z, has size a.(G). If
w € T, we observe that exchanging the sets of vertices that are larger than w in Z, and Z,,
(denoted by Z7, Zr) by each other, yields a ¢-IS; here we use the fact that G is a unit interval
graph. For a schematic illustration consider Figure 2. Therefore, it holds that |Z7| = |Z; |
and consequently 7’ := (Z, \ Z;7) U Z;; is a maximum c-IS in G, where the isolated vertices
are the same as in Z,,, except for isolating now v instead of w. Thus, Z’ is max-iso.

| — 2

w

Tw |

Figure 2 Illustration for the proof of Lemma 2.1. If w € Z,,,Z,, then replacing Z;, and Z; by
each other in Z,, or Z, maintains a c-IS.

Afterwards, we show that there exists a maximum ¢-IS in G — N (v) that contains w. In
particular, this implies that v ¢ N(w). To this end, we carefully analyse the structure of
G|Z, UZ,] and, assuming that there is no such maximum ¢-IS, obtain a contradiction. <
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» Remark. Lemma 2.1 does not hold for interval graphs in general: Consider the interval
graph G depicted in Figure 3. Note that it contains several c-cliques and a unique (2¢ — 1)-
clique C' = {u,by,...,be—1,71,...,7c—1}. In order to obtain a maximum c¢-IS, we have to
delete ¢ —1 vertices of C. There exist various choices. However, when we keep at least one b;
and one 7, then the resulting c-IS has no isolated vertex. Deleting the vertices b1, ..., bc—1
isolates vertex v, while deleting the vertices rq,...,r._1 isolates the vertices wy, ..., w; and
thus yields the unique max-iso ¢-IS of G. Consequently, as N(v) = {b1,...,bs—1}, the graph
G — N(v) contains a maximum c¢-IS of G but no max-iso ¢-IS. This implies that the decision
of isolating v is not only suboptimal but even arbitrarily bad as the number of isolated
vertices is 1 vs k in the optimum. Consequently, Lemma 2.1 cannot be used to derive a
constant-factor approximation algorithm for general interval graphs.

v u w1 Wi

r1

Te-1

Figure 3 An interval graph G and its first vertex v such that a.(G — N(v)) = a.(G), but
G — N(v) contains no max-iso ¢-IS of G. Thus, Lemma 2.1 does not generalize to interval graphs.

» Remark. It is crucial in Lemma 2.1 that v is a valid candidate for a smallest isolated
vertex. In other words, even if a.(G — N(v)) = a.(G) for some vertex v, it is not necessarily
true that G — N (v) contains a max-iso ¢-IS of G. For an example, consider the unit interval
graph G depicted in Figure 4. Observe that there are two disjoint (2¢ — 1)-cliques in G,
namely, C; = {u;,b%,...,bi_1,ri ... ;ri_;} for i € {1,2}. In order to obtain a maximum
c-IS, we have to delete ¢ — 1 vertices from Cy and Cy, respectively. The unique maximum
c-IS 7 that isolates v is obtained by deleting all ré; note that this implies that there is no
other isolated vertex in Z. In contrast, the maximum c-IS Z’ obtained by deleting all b;- has
two isolated vertices, namely w; and wy. Thus, when applying Lemma 2.1, it is crucial that
v is a candidate for a smallest isolated vertex (in its connected component).

w1 uq v u2 w2

Figure 4 A unit interval graph G and vertex v with a.(G — N(v)) = a.(G), but G — N(v)
contains no max-iso ¢-IS of G.

As mentioned before, Lemma 2.1 yields a simple quadratic algorithm: For a given left-
right-order and increasing i, we check iteratively whether a.(G) = a.(G — N(v;)). If so, we
delete N (v;) from G and repeat with incremented i. In each step, we use Lemma 2.1 for the
connected component of v;. Finally, we compute a maximum ¢-IS of the modified graph and
return it. As computing a maximum c-IS takes linear time (for a given left-right-order), we
obtain a simple quadratic algorithm.

In the following, we show how to obtain a linear-time algorithm for unit interval graphs.

» Lemma 2.2. For every unit interval graph on n vertices with given left-right-order, Algo-
rithm 1 can be implemented to compute a maz-iso c-IS with a running time in O(n).
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Algorithm 1 Algorithm for computing a max-iso ¢-IS in unit interval graphs

Require: Unit interval Graph G = (V, E) with left-right-order vy, ..., v,
Ensure: max-iso ¢-IS of G

1. U=V

2 L:=1

3: R := Greedy maximum c-IS with reversed order v,,,...,v;

4: while U # 0 do

5: Identify the smallest vertex v from U and delete it from U
6: if |(LUR)N N[v]| =1 then > if true, v will be isolated
7: U=U\ N[y

8: L= (L\N[p)U{v}

9: R = R\ NJ[v]

10: else if |L N N[v]| < ¢ then

11: L=LuU{v}

12: Delete the smallest vertex from R

13: end if

14: end while
15: return L

Proof-Sketch. The key idea of the algorithm is to maintain a leftmost partial solution L
(before the current vertex) and a rightmost partial (greedy) solution R (after the current
vertex) which allows for constant update time in each iteration. This is schematically de-
picted in Figure 5. When the algorithm ends, it holds that L is a max-iso ¢-IS for the given
graph. More precisely, in each iteration of the while-loop, we test whether the smallest
yet unconsidered vertex v (selected in line 5) can be isolated (in line 6). If so, we delete
its neighborhood to guarantee that it is isolated and add v to our partial solution L (in
lines 7-9). If not, we test whether it can be added greedily to L (in line 10).

Throughout the algorithm, we maintain a set of invariants. To this end, consider an
iteration where v is selected in line 5 and let S denote the set of vertices for which line 6
evaluated to true so far. Before the iteration, the following invariants hold:

LU R is a maximum ¢-IS in G in which vertices from S are isolated.

Lc{ueV]u<v}=Viand RC{ueV]v=<u}=Vg

L\ Nv] is a maximum c¢IS in G[V, — N[v]] (in which vertices from S are isolated);

moreover, after the largest isolated vertex u € L, vertices are added greedily to L.

R\ Nv] is a (greedy) maximum c¢-IS in G[Vgr — Nv]] (for right-left order).

L [ ]—— | |

Figure 5 State of L and R before the iteration where v is selected in line 5 of Algorithm 1.

These properties allow us to check efficiently the size of a largest c-IS where the vertices
S U {v} are isolated, because (L U RU {v}) \ N(v) is such a largest ¢-IS. In line 6, we test
whether this size is equal to a.(G) = |L U R| and if so, we isolate v. <
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