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Abstract
An important aim of inverse problems in topological data analysis is to better understand sets of
directional topological descriptors that uniquely correspond to an underlying shape; such sets are
called faithful for the shape. Here, we specifically focus on sets of verbose persistence diagrams
that arise from lower-star filtrations of geometric simplicial complexes. While explicit constructions
of finite faithful sets in this setting exist in the literature, they do not come with any guarantees
of optimality in terms of cardinality. To better understand faithful sets with low cardinality, we
first establish a tight lower bound on the size of any faithful set. Then, we construct a family of
simplicial complexes for which faithful sets must have size at least linear in the number of vertices.

1 Introduction

The persistent homology transform of a shape in Euclidean space was first explored in [15],
and is the set of persistence diagrams corresponding to lower-star filtrations in every possible
direction. Importantly, [15] establishes that this uncountably infinite set of persistence
diagrams uniquely represents the underlying shape, i.e., it is faithful for the underlying
shape. Since then, related theoretical work has focused on finding finite sets of persistence
diagrams or other topological descriptors (such as Euler Characteristic functions or Betti
functions) that are faithful [1, 3, 7, 14]. A key parameter in such work is whether or not
the descriptors are assumed to be verbose or concise, i.e., if they contain information with a
trivial lifespan. The relevance of verbose or concise descriptors was explored in [5, 13, 18],
although with slightly different language.

In the full version of this work [8], we develop a framework for comparing the rela-
tive strengths of different topological descriptor types through the cardinality of faithful
sets. Roughly speaking, if faithful sets of a particular topological descriptor type are always
larger than faithful sets of another type, it is weaker than that other type. Thus, in such
quantitative comparisons, it can be vital to understand minimum faithful sets. While ex-
plicitly identifying a minimum faithful set is a difficult problem in general, we are able to
provide lower bounds on the cardinality of minimum faithful sets, both in general and in
a worst-case construction. In what follows, we focus on the specific topological descriptor
type of verbose persistence diagrams; we refer the reader to our full version to see how this
and similar constructions apply to other common descriptor types.
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2 Preliminary Considerations

We assume the reader has familiarity with ideas from topology, including homology and
simplicial complexes. See [4, 9] for further details. We always take N to include zero. For
a simplicial complex K, we use the notation Ki for its i-skeleton and ni as the number
of i-simplices. We always assume our simplicial complexes are geometric and finite. A
filter of K is a map f : K → R such that, for τ, σ ∈ K, whenever τ is a face of σ, then
we have f(τ) ≤ f(σ). Then, letting F (t) := f−1(−∞, t], the sequence {F (t)}t∈R is the
filtration associated to f ; in particular, the filtration is a sequence of nested subcomplexes
along with inclusion maps F (s) ↪→ F (t) for every s ≤ t. Moreover, for each k ∈ N, the
inclusion F (s) ↪→ F (t) induces a linear map on homology, Hk(F (s)) → Hk(F (t)). We
write βs,t

k (K, f) to mean rank of this map, or simply βs,t
k if K and f are clear from context.

In particular, the lower-star filter of a simplicial complex K immersed in Rd with respect
to some direction s ∈ Sd−1, is the map fs : K → R defined by fs(σ) = max{s·v | v ∈ K0∩σ}.
Note that s defines a preorder on K0, v0 ≤ v1 ≤ . . . ≤ vn0−1. Then, the lower-star filtration
of K with respect to s is

∅ ⊂ f−1
s (−∞, s · v0] ⊆ f−1

s (−∞, s · v1] ⊆ . . . ⊆ f−1
s (−∞, s · vn0−1] = K.

Any filter function has compatible index filters, which are functions f ′ : K → R such that f ′

orders all the simplices of K uniquely and if f(τ) ≤ f(σ), then f ′(τ) ≤ f ′(σ). We say their
corresponding filtrations are compatible index filtrations.

Our principal objects of study are verbose persistence diagrams. As they are closely
related to the more familiar concise persistence, we begin with the following definition.

▶ Definition 2.1 (Concise Persistence Diagram, ρ). Let f : K → R be a filter function. We
define the kth-dimensional persistence diagram as the following multiset:

ρf
k :=

{
(i, j)µ(i,j)

s.t. (i, j) ∈ R2 and µ(i,j) = βi,j−1
k − βi,j

k − βi−1,j−1
k + βi−1,j

k

}
,

where R = R∪{±∞} and (i, j)m denotesm copies of the point (i, j). The persistence diagram
of f , denoted ρf , is the union of all k-dimensional persistence diagrams ρf := ∪k∈Nρ

f
k .

Since simplices can appear at the same parameter value in a general filtration, not all cycles
are represented in the persistence diagram. However, having every simplex “appear” in the
persistence diagram is helpful, in addition to being natural. Thus, we introduce verbose
persistence diagrams, which contain this information.

▶ Definition 2.2 (Verbose Persistence Diagram, ρ̂). Let f : K → R be a filter and let f ′ be
a compatible index filter. For k ∈ N, the k-dimensional verbose persistence diagram is the
following multiset:

ρ̂f
k :=

{
(f(σi), f(σj)) | (i, j) ∈ ρf ′

k

}
. (1)

The verbose persistence diagram of f , denoted ρ̂f , is the union of all ρ̂f
k .

While concise persistence diagrams may feel more familiar, the idea of verbose persistence
diagrams is not new. Indeed, many typical algorithms for computing persistence (e.g., [4,
Chapter VII]), explicitly compute topological events with trivial lifespan but then discard
them from the output. In [11], persistence diagrams are the same as our definition of ρ̂.
In [16], we see filtered chain complexes as a source of verbose persistence; [2, 12, 13, 17] also
take this view.
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If a verbose persistence diagram corresponds to a direction s in addition to a simplicial
complex K, we use the notation ρ̂(K, s), or ρ̂(s) when K is clear from context. Furthermore,
we refer to the set of verbose persistence diagrams parameterized by S as ρ̂(K,S). We denote
the ith standard basis vector by ei, so e1 is the unit vector in the x-direction, etc. We say
a (parameterized) set of verbose diagrams is faithful for a simplicial complex K if only K

could have generated that same set of diagrams.

▶ Definition 2.3 (Faithful Set). Let K be simplicial complex in Rd and let S ⊆ Sd−1. We
say that ρ̂(K,S) is faithful if, for any K ′ we have the equality ρ̂(K ′, S) = ρ̂(K,S) if and
only if K ′ = K.

See Figure 1 for an example of a verbose persistence diagram and a non-faithful set.

Figure 1 The verbose persistence diagram shown above, ρ̂(K, s), is identical to the corresponding
concise persistence diagram, except for the on-diagonal points. Notice that the singelton set ρ̂(K, s)
is not faithful; any cycle with vertices at the same heights as the vertices of K produces the same
verbose persistence diagram.

3 Bounds on Faithful Sets

This section provides lower bounds on the size of faithful sets of verbose persistence diagrams.
We begin with a tight lower bound.

▶ Lemma 3.1 (Tight Lower Bound). Let K be a simplicial complex in Rd. Suppose that ρ̂(K,S)
is faithful. Then |S| ≥ d, and this bound is tight.

Proof. No vertex in K can be described using fewer than d coordinates. Thus, a set of
verbose persistence diagrams with cardinality less than d cannot be faithful for K0, let
alone K. To see that this bound is tight, consider the case where K is a single vertex; verbose
descriptors generated by any d pairwise linearly independent directions form a faithful set
for the vertex (e.g., ρ̂(K, {e1, e2, . . . , ed})). ◀

In many examples, we find that minimum faithful sets of verbose descriptors for simple
simplicial complexes in Rd often have cardinality d + 1. Precise statements characteriz-
ing simplicial complexes with faithful sets of size d + 1 remain as ongoing work. However,
frequently encountering faithful sets with a cardinality independent from the size of the
simplicial complex is not at all surprising, since (unlike concise descriptors), verbose de-
scriptors always have events corresponding to each simplex, regardless of how the complex
is imbedded or immersed. We did not expect to find a simplicial complex whose minimum
faithful set depended on the size of the complex; in fact, it was through trying to disprove
the existence of such a complex that we came across the construction in this section.
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In particular, in this section, we identify a family of simplicial complexes for which
minimum faithful sets of verbose persistence diagrams are linear in the number of vertices.
We use αi,j to denote the angle that vector vj − vi makes with the x-axis. We assume
angles take value in [0, 2π). We establish a preliminary observation, a specific instance of
the general phenomenon that a simplicial complex stratifies the sphere of directions based
on vertex order [3, 10].

▶ Observation 1. Suppose that a simplicial complex K in R2 contains an edge [v1, v2] such
that v1 and v2 have degree one. Then a birth event occurs at the height of v1 in ρ̂(K, s) for
all s in the half of S1 defined by the open interval H = (α1,2 − π, α1,2 + π) (i.e., all s so
that s ·v1 > s ·v2) and as an instantaneous event for s ∈ HC (i.e., all s so that s ·v1 ≤ s ·v2).

We also establish the following elementary lemma.

▶ Lemma 3.2. Consider a pair of nested triangles as in Figure 2. Then angle A is larger
than θ, ϕ−B, and ψ − C.

Proof. Adding angles in the larger triangle, we see θ + ϕ+ ψ = π. Then,
θ + (ϕ−B) +B + (ψ − C) + C = π

(A+B + C) + θ + (ϕ−B) + (ψ − C) = A+ π

π + θ + (ϕ−B) + (ψ − C) = A+ π

θ + (ϕ−B) + (ψ − C) = A.

All the terms in the last line are positive, meaning A is larger than θ, ϕ−B, and ψ−C. ◀

Figure 2 Nested triangles as discussed in Lemma 3.2

We now construct the building block that forms the complexes used in our bound.

▶ Construction 1 (Clothespin Motif). Let K be a simplicial complex in R2 with a vertex
set {v1, v2, v3, v4}. Suppose that only v3 is in the interior of the convex hull of {v1, v2, v4},
and that the edge set consists of [v1, v2] and [v3, v4]. See the left image in Figure 3.

Construction 1 was built specifically for the following necessary condition for faithful
sets of verbose descriptors. We state this condition in terms of ρ̂’s in the following lemma.

▶ Lemma 3.3 (Clothespin Repesentability). Let K be a clothespin motif, as in Construction 1,
and suppose that ρ̂(K,S) is faithful. Then we have at least one direction s ∈ S such that the
angle formed between s and e1 = (1, 0) lies in the region [α3,2−π, α3,4−π]∪[α3,2+π, α3,4+π].

Proof. Let K ′ be a simplicial complex in R2 with the same vertex set as K, but with
edges [v1, v4] and [v2, v3] (see the left side of Figure 3). Recall that, since ρ̂(K,S) is faithful,
the set S must contain some s so that ρ̂(K, s) ̸= ρ̂(K ′, s).
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Figure 3 The two simplicial complexes considered in the proof of Lemma 3.3.

Each vertex corresponds to either a birth event or an instantaneous event depending
on the direction of filtration. We proceed by considering each vertex vi individually and
determining subsets Ri ⊂ S1 such that, whenever s ∈ Ri, the event at s · vi is different when
filtering over K versus K ′, but for s∗ ̸∈ Ri, the type of event at s∗ · vi is the same between
the two graphs. Figure 4 shows these regions, and in what follows, we define them precisely.

First, consider v1. By Observation 1, v1 ∈ K corresponds to a birth event for all
directions in the interval B = (α1,2−π, α1,2+π) and v1 ∈ K ′ corresponds to a birth event for
all directions in the interval B′ = (α1,4 −π, α1,4 +π). Then we write R1 = (B\B′)∪(B′ \B),
which is the wedge-shaped region such that for any s ∈ R1, the type of event associated
to v1 ∈ K and v1 ∈ K ′ differ, meaning ρ̂(K, s) ̸= ρ̂(K ′, s).

Using this same notation, identify the wedge shaped region Ri for vertex i ∈ [2, 3, 4] such
that any direction from Ri generates ρ̂’s that have different event types at vertex vi when
filtering over K versus K ′. Similar arguments for i ∈ [2, 3, 4] give us the complete list;

R1 = (α1,2 − π, α1,4 − π] ∪ [α1,2 + π, α1,4 + π)
R2 = (α2,3 − π, α2,1 − π] ∪ [α2,3 + π, α2,1 + π)
R3 = (α3,2 − π, α3,4 − π] ∪ [α3,2 + π, α3,4 + π)
R4 = (α1,4 − π, α3,4 − π] ∪ [α1,4 + π, α3,4 + π)

Let W = ∪4
i=1Ri. Then, for any s ∈ W , we have ρ̂(K, s) ̸= ρ̂(K ′, s), and for any s∗ ∈ WC ,

we have ρ̂(K, s∗) = ρ̂(K ′, s∗).
Finally, we claim that W is the closure of R3, denoted R3, i.e., exactly the region

described in the lemma statement. This is a direct corollary to Lemma 3.2; the angles
swept out by each regions correspond to the angles formed by pairs of edges in K and K ′;
in particular, the angle ∡v2v3v4 is the largest and geometrically contains the others. This
means the extremal boundaries over all Ri’s are formed by the angles α2,3 ±π and α3,4 ±π,
the defining angles of R3. Observing that each of these four angles appears as an included
endpoint for some Ri, we see R1, R2, R4 ⊆ R3 = W (see Figure 4), as desired. ◀

To get a deeper intuition for this result, observe that the verbose diagrams corresponding
to K and K ′ of Figure 3 are identical when we filter in direction e1, but when we filter
in direction e2, they are distinct. We refer to the wedge shaped region of directions for
which the corresponding verbose diagrams have this distinction as a clothespin’s region of
observability (similar to observability for χ’s discussed in [6, 3]). We notate the region as
W = [α3,4 − π, α2,3 − π] ∪ [α3,4 + π, α2,3 + π]. Crucially, W is defined by the angle v2v3v4,
so a different embedding of K could result in a smaller region.

▶ Remark (W Can be Arbitrarially Small). As the angle ∡v2v3v4 approaches zero, the region
of observability, W , described in the proof of Lemma 3.3 also approaches zero.

EuroCG’24
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Figure 4 The regions described in the proof of Lemma 3.3. K is shown as solid black edges
and K′ as dashed edges. For any lower-star filtration in a direction contained in Ri, the event at
vertex vi differs when considering K or K′, thus, such directions are able to distinguish K from
K′. Note that any direction outside the regions of observability (i.e., the non-shaded portions of
the circle) is not able to distinguish K from K′.

To construct a family of simplicial complexes, each of which must have at least Θ(n0)
verbose descriptors to form a faithful set, we use the preceeding remark to knit together
clothespin motifs (Construction 1) in the following way.

▶ Construction 2 (Clothespins on a Semicircular Clothesline). Let Km be a simplicial complex
in R2 formed by m clothespins (Construction 1) such that the regions of observability for
each clothespin do not overlap. Note this is possible for any m by the remark above.

See Figure 5 for an example of Km for m = 4. This construction implies a lower bound on
the number of ρ̂’s needed to fully represent a simplicial complex.

Figure 5 An example of Construction 2 for m = 4. The regions of observability are shown below
each clothespin. By construction, each of these four double wedges define disjoint regions of S2.

▶ Theorem 3.4 (Lower Bound for Worst-Case ρ̂’s Complexity). Let Km be as in Construction 2
and suppose ρ̂(Km, S) is a faithful set. Then S must contain at least one direction in each
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of the m regions of observability, meaning that |S| ≥ m = n0/4. Thus, the size of a faithful
set of ρ̂’s for Km is Ω(n0).
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