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Abstract
We study the problem of covering a given point set in the plane by unit disks so that each point is
covered exactly once. We prove that 17 points can always be exactly covered. On the other hand,
we construct a set of 657 points where an exact cover is not possible.

Related Version arXiv:2401.15821

1 Introduction

In 2008, Inaba [10] gave the following puzzle about covering sets of points in the plane:
Show that any set of 10 points in R2 can be covered by nonoverlapping unit disks.

Inaba solved this puzzle [11, 17] with an elegant probabilistic argument (a deterministic
proof is also possible). In this article, we study a relaxed version of this covering problem.
Given a point set X ⊂ R2, can we find a family D of not necessarily disjoint unit disks so
that each point x ∈ X is contained in exactly one disk D ∈ D? We call such a family an
exact cover of X. For example, in Figure 1a, the two red disks form an exact cover of the
four blue points.

Let B2 :=
{

x ∈ R2
∣∣ ∥x∥ < 1

}
, where ∥ · ∥ denotes the Euclidean norm. We define an

(open) disk with center c ∈ R2 and radius r > 0 as the set Dc,r := c + rB2; if r = 1 we call
it the unit disk and write Dc.

▶ Definition 1.1. Let σ2 be the largest n ∈ N such that any set of n points in the plane can
be covered by disjoint unit disks. Let σ̂2 ∈ N be the corresponding number for the relaxed
problem involving exact covers.

As a covering using disjoint disks is also an exact covering, we have the basic relation-
ship σ̂2 ≥ σ2. The current best known bounds for σ2 are 12 ≤ σ2 ≤ 44 [1]. Aloupis, Hearn,
Iwasawa, and Uehara (2012) [1] improved Inaba’s lower bound to σ2 ≥ 12 through a careful

(a) (b)

Figure 1 Left: primal solution (exact covering). Right: dual solution (exact hitting set).
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analysis of the probabilistic method on one-dimensional slices of the plane. In the other
direction, σ2 is finite: Intuitively, with a dense enough arrangement of points, this problem
becomes similar to the problem of covering the entire set conv X, which is impossible using
disjoint disks. Specific upper bounds were reduced in rapid succession from σ2 < 60 by
Winkler (2010) [17] to σ2 < 55 by Elser (2011) [7] and σ2 < 53 by Okayama, Kiyomi,
and Uehara (2012) [16]. Most recently, Aloupis, Hearn, Iwasawa, and Uehara (2012) [1]
proved σ2 < 50 “by hand” and demonstrated σ2 < 45 using computer calculations.

1.1 Results
In Section 2, we build on some of the mentioned works on lower bounds to establish the
following lower bound on σ̂2:

▶ Theorem 1.2. We have σ̂2 ≥ 17.

The finiteness of σ̂2 can be deduced by a similar argument as the finiteness of of σ2. In
Section 3 we construct a close arrangement of points that cannot be exactly covered, leading
to the following (rather weak) upper bound on σ̂2:

▶ Theorem 1.3. We have σ̂2 < 657.

For the full proofs of Theorem 1.2 and Theorem 1.3 we refer to the appendix; nevertheless,
we provide sketches of the proofs below.

1.2 Relation between exact covering and exact hitting
We denote by X the collection of all finite point sets in R2. A point x ∈ R2 is contained in a
unit disk Dc centered at c ∈ R2 if and only if c is contained in the unit disk Dx centered at x.
By this simple observation, the problem of exactly covering some given X ∈ X by unit disks
(primal problem) becomes equivalent to the following dual problem: Let DX := {Dx | x ∈ X};
find a P ∈ X such that each disk D ∈ DX contains exactly one point p ∈ P . See Figure 1b
for an example of the dual problem. In the literature, such a set P is also called an exact
hitting set. A dual solution P yields the solution D := {Dp | p ∈ P} to the exact covering
problem. Vice versa, a solution D to the exact covering problem gives a solution to the dual
problem by taking the disk centers.

In the dual perspective, the boundary circles of the disks DX decompose the plane into
cells. Observe that all points in a given cell are contained in the same set of disks, so the
exact position of a dual solution point p ∈ P is irrelevant. Hence, it is sufficient to select a set
of cells so that each D ∈ DX contains exactly one selected cell. In the example of Figure 1b,
the two red shaded cells form a solution. This observation shows that the solution space for
the dual problem and for the exact covering problem is in fact discrete, and methods such
as Knuth’s Algorithm X (see [13] or Section 7.2.2.1 in [14]), integer programming, or SAT
solvers (see [12]) can be used.

2 A lower bound

We exclude the following trivial case from our proofs in this section: If X lies on a line
then X can be covered by disjoint disks. Denote by X′ the subset of X that excludes every
point set on a line. To prove Theorem 1.2, we have to show that all X ∈ X′ with |X| ≤ 17
can be exactly covered. We combine three separate components on top of Inaba’s original
probabilistic proof. In Subsection 2.1 we show that σ̂2 ≥ σ2 + 4. In Subsection 2.2 we
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Figure 2 Extending the red disjoint disk covering of the non-boundary points by adding a new
orange disk at each uncovered boundary point.

obtain σ̂2 ≥ 16 using a covering version of Betke, Henk, and Wills’s parametric density [3]
and σ̂2 ≥ 17 by showing that in some cases, a disk D that overlaps with conv X can be
removed from an exact cover D of X so that D \ {D} is still an exact cover of X.

2.1 Boundary points
▶ Definition 2.1. Let X ∈ X and v ∈ X. The point v is a boundary point of X if v is on
the boundary of conv X.

Let X ∈ X and v1, . . . , vk be the boundary points of X. László Kozma (private communi-
cation) observed that a covering D′ of the non-boundary points X

∖ {
v1, . . . , vk

}
by disjoint

disks can always be extended to an exact cover of X. A boundary point vi is covered by at
most one disk in D′ because the disks are disjoint. If vi is not already covered by D′, then it
can be covered by a new disk which contains vi but no other point of X. The resulting disk
configuration yields an exact cover D of X (Figure 2). In particular, if |X| ≤ σ2 + k then X

can be exactly covered. We refer to this strategy as the Extension Argument:

▶ Lemma 2.2 (Extension Argument). Let X ∈ X and k be the number of boundary points
of conv X.
1. If |X| ≤ σ2 + k then X can be exactly covered.
2. If k ≤ 2 then X can be exactly covered regardless of |X|.
3. We have σ̂2 ≥ σ2 + 3.

As we assume that X does not lie on a line, we have k ≥ 3, and the Extension Argument
improves the basic inequality σ̂2 ≥ σ2 to σ̂2 ≥ σ2 + 3. This lower bound is limited by the case
where conv X is a triangle, since otherwise X has at least four boundary points. Therefore,
we wish to relax Definition 2.1 so that every X ∈ X′ has at least four “generalized boundary
points” that behave like boundary points.

▶ Definition 2.3. Let X ∈ X and b ∈ X. The point b is a generalized boundary point of X

if there exists a c ∈ R2 such that X ∩ Dc = {b}.
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All vertices and boundary points of X are generalized boundary points of X. In the full
version of this paper we prove the following generalization of the Extension Argument.

▶ Lemma 2.4 (Generalized Extension Argument). Let X ∈ X′ and k be the number of
generalized boundary points of conv X.
1. If |X| ≤ σ2 + k then X can be exactly covered. (That is, σ̂2 (k) ≥ σ2 + k.)
2. If k ≤ 3 then X can be exactly covered regardless of |X|.
3. We have σ̂2 ≥ σ2 + 4.

We show that any X ∈ X′ with a triangular convex hull contains at least four generalized
boundary points or can be exactly covered regardless of the number of points. The fourth
point is often, but not always, the closest non-vertex of X to the longest edge of conv X.

Lemma 2.4 combined with Aloupis, Hearn, Iwasawa, and Uehara’s [1] lower bound
of σ2 ≥ 12 implies σ̂2 ≥ 16.

2.2 A parameterized version of Inaba’s proof
Betke, Henk, and Wills (1994) [3] introduced the parametric density, a form of packing
density for finitely many disks which are allowed to overlap, during their work on a packing
problem called the Sausage Conjecture [8]. See [3, 5, 9] for further details on these topics.
Let

A2 :=
{(

x1
x2

)
∈ R2

∣∣∣∣ x1 =
√

3µ,

x2 = 2λ + µ,
λ, µ ∈ Z

}
be the hexagonal lattice and A

ρ
2 :=

{
c + ρB2

∣∣ c ∈ A2
}

be the collection of disks of radius ρ ≥ 1
that are centered at the points of A2. This radius ρ is called the parameter ; the case ρ = 1
reduces to the usual hexagonal packing in Inaba’s proof. We call the subset of R2 covered
by exactly one disk Dc ∈ A

ρ
2 the “good” region of Aρ

2 and its complement the “bad” region.
An exact cover of X requires each point in X to avoid the “bad” region. If ρ > 1, then
neighboring disks of Aρ

2 overlap (Figure 3), so the “bad” region includes any part of the
plane covered by multiple disks. The critical value for ρ minimizes the total area of the “bad”
region and so maximizes the lower bound for σ̂2 (over all coverings of the form A

ρ
2).

We use the same argument as Inaba but with the parameterized family A
ρ
2 and combine

it with the Extension Argument for another proof of σ̂2 ≥ 16. However, Aρ
2 has another

advantage over A2. Removing one disk from A2 strictly expands the “bad” region, so is
never beneficial for exact covering. However, removing one disk Dc from A

ρ
2 changes the

subsets of Dc which are covered by another disk in A
ρ
2 from “bad” to “good.” In the next

subsection, we use this feature to raise our lower bound for σ̂2.

2.3 A redundant disk
Suppose that X ∈ X has a triangular or quadrilateral convex hull, v1 ∈ X is a boundary
point that is covered by two disks of Aρ

2, and A
ρ
2 is an exact cover of X

∖ {
v1}

. Under certain
conditions, we can remove one of the disks Dc that covers v1 without breaking the exact
cover. In other words, although A

ρ
2 is not an exact cover of X, we show that A

ρ
2 \ {Dc} is

an exact cover of X. This “redundant disk” method offers a slight benefit:

▶ Lemma 2.5. Let X ∈ X′ with |X| ≤ 17. If conv X is a triangle or a quadrilateral, then X

can be exactly covered.

We present the technical details and proofs in the full version of our paper. Note that
unlike the Extension Argument and parameterized family, which do not depend on the
underlying disk configuration, the redundant disk method uses specific properties of A2.
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Figure 3 The disks of Aρ
2 for ρ = 1 (black) and ρ = 1.07 (blue).

Proof of Theorem 1.2. Let X ∈ X′ with |X| ≤ 17. If conv X has three or four sides, then X

can be exactly covered by Lemma 2.5. If conv X has five or more sides, then X has at least
five generalized boundary points, so X can be exactly covered by the Generalized Extension
Argument 2.4 with Aloupis, Hearn, Iwasawa, and Uehara’s [1] lower bound of σ̂2 ≥ 12. ◀

3 An upper bound

▶ Definition 3.1. Let X ⊂ R2 be a non-empty set. The distance of a point y ∈ R2 to X is
defined by

dist (y, X) := inf{∥y − x∥ | x ∈ X} (1)
and the ε-extension of X (also called the ε-thickening of X) is given by

Xε :=
{

y ∈ R2 | dist (y, X) ≤ ε
}

. (2)

We say that X is an ε-net of M ⊂ R2 if M ⊂ Xε.

▶ Definition 3.2. Let M ⊂ R2 and ε > 0. We say that M is an ε-blocker if every ε-net X ∈ X

of M does not have an exact cover.

We recall that the covering number N (M, ε) of a set M ⊂ R2 is the minimal cardinality
of an ε-net of M . The following statement is a direct consequence of Definition 3.2.
▶ Proposition 3.3. Let M ⊂ R2 be an ε-blocker. Then σ̂2 < N (M, ε). ◀

Our upper bound on σ̂2 follows from the following result, which asserts that every open
disk of radius R > 1 is an ε-blocker for a suitably chosen ε > 0.
▶ Proposition 3.4. Let ε ∈

(
0, 7 −

√
48 ≈ 0.0718

]
and

R ≥ 3
2 (1 + ε) − 1

2
√

1 − 14ε + ε2. (3)

Then D0,R = 0 + R B2 is an ε-blocker.
We now obtain Theorem 1.3 as a corollary to Proposition 3.3 by setting ε := 7 −

√
48

and R := 3
2 (1 + ε) ≈ 1.608.
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4 Conclusion

Our main result (Theorems 1.2 and 1.3) is 17 ≤ σ̂2 ≤ 656. An approach for improving the
upper bound could be to search for small ε-nets of ε-blockers and to use Proposition 3.3.

The problem of finding σ̂2 admits generalizations to all dimensions d ≥ 1 and convex
bodies K ⊂ Rd. Let σ (K) and σ̂ (K) be the largest n such that any n-point set in Rd can
be covered by disjoint translates of K or exactly covered by translates of K, respectively
(and write σd and σ̂d if K = Bd). Some of our methods, such as the Extension Argument
and the parameterized family, have counterparts for other bodies K, but our other methods
do not necessarily generalize.

Sphere packings are mostly empty space in high dimensions. Blichfeldt’s upper bound
of d+2

2 · 2− 1
2 d for the maximum packing density ([4], or see Section 6.1 of [18]) drops to less

than or equal to 0.5 for d ≥ 6. The density of the densest known packing in d = 5 is also
below 0.5 (see Table 1.2 in Chapter 1 of [6], or [15]). Therefore, we cannot hope to cover
many points by translating a dense packing of unit balls as in Inaba’s proof [11, 17]. One
possible strategy for “medium” dimensions around 5–10 is to choose one of several packings
based on the arrangement of X.

With regard to lines of further research, we mention the computational complexity of
disk covering. Considering the algorithmic issues that were discussed in Subsection 1.2, it is
natural to ask the following question: Given X ∈ X, is it NP-hard to decide whether X has
an exact cover? Ashok, Basu Roy, and Govindarajan (2020) [2] showed that it is NP-hard to
decide the following problem: Given a finite set R of unit squares and given an X ∈ X, is
there a subset R′ ⊂ R that exactly covers X? Their proof can be easily adopted for a given
family R of unit disks. It might also be interesting to study the computational complexity if
the number of disks in the exact cover is specified.
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