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Abstract
We present algorithms for the computation of ε-coresets for k-median clustering of point sequences
in Rd under the p-dynamic time warping (DTW) distance. Coresets under DTW have not been
investigated before, and the analysis is not directly compatible with existing methods as DTW is
not a metric. We achieve our results by investigating approximations of DTW that provide a trade-
off between the provided accuracy and amenability to known techniques. In particular, we observe
that given n curves under DTW, one can directly construct a metric that approximates DTW on
this set, permitting the use of the wealth of results on metric spaces for clustering purposes. The
resulting approximations are the first with polynomial running time and achieve a very similar
approximation factor compared to state-of-the-art techniques.

1 Introduction

One of the core challenges of contemporary data analysis is the handling of massive data
sets. A powerful approach to clustering problems involving such sets is data reduction,
and ε-coresets offer a popular approach that has received substantial attention [4, 5, 14].
An ε-coreset is a problem-specific condensate of the given input set of reduced size which
captures its core properties towards the problem at hand and can be used as a proxy to run
an algorithm on, producing a solution with a relative error of (1± ε).

Clustering and especially k-median represent fundamental tasks in classification prob-
lems, where they have been extensively studied for various spaces. With the growing avail-
ability of e.g. geospatial tracking data, clustering problems for time series or curves have
received growing attention both from a theoretical and applied perspective. In practice,
time series classification largely relies on the dynamic time warping (DTW) distance and
is widely used in the area of data mining. Simple nearest neighbor classifiers under DTW
are considered hard to beat [17, 24] and much effort has been put into making classification
using DTW computationally efficient [16, 19, 20, 21].

For time series and curves, k-median takes the shape of the (k, ℓ)-median problem, where
the sought-for center curves are restricted to have a complexity (number of vertices) of at
most ℓ, with a two-fold motivation. First, the otherwise NP-hard problem becomes tractable,
and second, it suppresses overfitting.

The construction of ε-coresets for the (k, ℓ)-median problem for DTW is precisely what
this paper will address. To this end, we adapt the framework of sensitivity sampling by
Feldman and Landberg [13] to our setting. We rely on approximations of nearly all objects
involved in our inquiry, thereby improving the bounds we obtain for the VC dimension of
the range spaces in question and broadening the scope of our approach.

All presently known approaches to the approximation of the (k, ℓ)-median problem are
based on an approximation scheme [6, 10, 12, 1, 7, 18]. For DTW, the best algorithm [8]
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Figure 1 Example of a traversal between the red and blue curve realizing the dynamic time
warping distance. The sum of the black distances is minimized.

has running time exponential in k, roughly with a dependency of Õ((32k2ε−1)k+2n).

Our results and methods We derive a bound on the VC dimension of a range space that
approximates that of closed balls under DTW, obtained from a distance function approx-
imating DTW. We modify and apply the sensitivity sampling framework by Feldman and
Langberg [13], which relies on the bounds of the VC dimension and requires a first rough ap-
proximation of the (k, ℓ)-median problem under DTW, to construct coresets for (k, ℓ)-median
under DTW. To adapt the sensitivity sampling framework to our (non-metric) setting, we
investigate weaker versions of the triangle inequality for DTW and find a generalized it-
erated triangle inequality (Lemma 4.1). This novel inequality allows the approximation of
DTW with a metric and thus the application of metric clustering algorithms.

2 Preliminaries

We think of a sequence (p1, . . . , pm) ∈
(
Rd
)m of points in Rd as a (polygonal) curve, with

complexity m. We denote by Xd
=m the space of curves in Rd with complexity exactly m and

by Xd
m the space of curves with complexity at most m.

▶ Definition 2.1 (p-Dynamic Time Warping). For given m, ℓ > 0 we define the space Tm,ℓ of
(m, ℓ)-traversals as the set of sequences ((a1, b1), (a2, b2), . . . , (al, bl)), such that

a1 = 1 and b1 = 1; and al = m and bl = ℓ,
for all i ∈ [l−1] := {1, . . . , l−1} it holds that (ai+1, bi+1)−(ai, bi) ∈ {(1, 0), (0, 1), (1, 1)}.

For p ∈ [1,∞) and two curves σ = (σ1, . . . , σm) ∈ Xd
=m, τ = (τ1, . . . , τℓ) ∈ Xd

=ℓ the
(p-)Dynamic Time Warping distance (p-DTW) is defined as

dtwp(σ, τ) = min
T ∈Tm,ℓ

 ∑
(i,j)∈T

∥σi − τj∥p
2

1/p

,

where ∥ · ∥p
2 is the Euclidean norm raised to the p-th power.

The central focus of the paper is the following clustering problem.

▶ Definition 2.2 (Problem definition). The (k, ℓ)-median problem for Xd
m and k ∈ N is the

following: Given a set of n ∈ N input curves T = {τ1, . . . , τn} ⊂ Xd
m, identify k center curves

C = {c1, . . . , ck} ⊂ Xd
ℓ that minimize cost(T,C) =

∑
τ∈T minc∈C dtw(τ, c).

An influential approach to solving k-median problems is to construct a point set that acts
as proxy on which to run computationally more expensive algorithms that yield solutions
with approximation guarantees. The condensed input set is known as a coreset.
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Figure 2 Illustration of a coreset (red), i.e. a weighted sparse representation of the original set
of curves (in red and black). The weights in this case are w(X1) = 3, w(X2) = 2 and w(X3) = 1.

▶ Definition 2.3 (ε-coreset). Let T ⊂ Xd
m be a finite set and ε ∈ (0, 1). Then a weighted

multiset S ⊂ Xd
m with weight function w : S → R>0 is a weighted ε-coreset for (k, ℓ)-median

clustering of T under dtwp if for all C ⊂ Xd
ℓ with |C| = k

(1− ε) cost(T,C) ≤
∑
s∈S

w(s) min
c∈C

dtwp(s, c) ≤ (1 + ε) cost(T,C).

▶ Definition 2.4 ((α, β)-approximation). Let a set of n ∈ N input curves T = {τ1, . . . , τn} ⊂
Xd

m be given. A set Ĉ ⊂ Xd
ℓ is called an (α, β)-approximation of (k, ℓ)-median, if |Ĉ| ≤ βk

and
∑

τ∈T minc∈Ĉ dtwp(τ, c) ≤ α
∑

τ∈T minc∈C dtwp(τ, c) for any C ⊂ Xd
ℓ of size k.

Focusing on approximations allows us to pass through simplifications of the input curves.

▶ Definition 2.5 ((1 + ε)-approximate ℓ-simplifications). Let σ ∈ Xd
m, ℓ ∈ N and ε > 0. We

call σ∗ ∈ Xd
ℓ an (1 + ε)-approximate ℓ-simplification if

inf
σℓ∈Xd

ℓ

dtwp(σℓ, σ) ≤ dtwp(σ∗, σ) ≤ (1 + ε) inf
σℓ∈Xd

ℓ

dtwp(σℓ, σ).

A range space is defined as a pair of sets (X,R), where X is the ground set and R is
the range set which is a subset of the power set P(X) = {X ′|X ′ ⊂ X}. Let (X,R) be
a range space. For Y ⊆ X, we denote: R|Y = {R ∩ Y | R ∈ R}. If R|Y = P(Y ), then
Y is shattered by R. A key property of range spaces is the so called Vapnik-Chernovenkis
dimension [22, 23, 25] (VC dimension) which for a range space (X,R) is the maximum
cardinality of a shattered subset of X.

3 VC Dimension bounds and coresets for DTW

We now derive bounds on the VC dimension of a range space that approximates the range
space induced by all closed balls in Xd

m centered at curves in Xd
ℓ under p-DTW. The following

lemma shows that one can determine (approximately) the p-DTW between two sequences,
based solely on the signs of certain polynomials, that are designed to provide an approxima-
tion of all point-wise distances and forms the basis for the results in this section. Missing
proofs and statements can be found in the full version [11].

▶ Lemma 3.1. Let τ ∈ Xd
=ℓ, σ ∈ Xd

=m, r > 0 and ε ∈ (0, 1]. For each i ∈ [ℓ], j ∈ [m]
and z ∈ [⌊ε−1 + 1⌋] define fi,j,z(τ, r, σ) = ∥τi − σj∥2 − (z · εr)2. There is an algorithm that,
given as input the values of sign(fi,j,z(τ, r, σ)), for all i ∈ [ℓ], j ∈ [m] and z ∈ [⌊ε−1 + 1⌋],
outputs a value in {0, 1} such that if dtwp(τ, σ) ≤ r then it outputs 1 and if dtwp(τ, σ) >
(1 + (m+ ℓ)1/pε)r then it outputs 0.
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The algorithm of Lemma 3.1 essentially implements approximate p-DTW balls member-
ship and satisfies the requirements set by previous results that upper bound the VC dimen-
sion by decomposing the underlying predicate to sign evaluations of polynomials (Theorem
8.3 [2]). However, it is only defined on curves in Xd

=ℓ and Xd
=m. We extend the approach to

all curves in Xd
m, which provides the basis for a distance function d̃twp between elements of

Xd
m and Xd

ℓ that approximates dtwp with a relative error of (1 + ε). The properties of d̃twp

culminate in the following theorem giving a bound on the VC dimension on the approximate
range space of p-DTW induced by d̃twp.

▶ Theorem 3.2. Let ε ∈ (0, 1] and R̃p
m,ℓ = {{x ∈ Xd

m | d̃twp(x, τ) ≤ r} ⊂ Xd
m | τ ∈ Xd

ℓ , r >

0} be the range set consisting of all balls centered at elements of Xd
ℓ under d̃twp in Xd

m. The
VC dimension of (Xd

m, R̃
p
m,ℓ) is in O(dℓ log(ℓmε−1)).

Sensitivity bounds and coresets for DTW To make use of the sensitivity sampling frame-
work for coresets by Feldman and Langberg [13], we recast the input set T ⊂ Xd

m as a
set of functions. Consider for any y ∈ Xd

m and ε > 0 the real-valued function f̃y de-
fined on (finite) subsets of Xd

ℓ by f̃y : P(Xd
ℓ ) \ {∅} → R with f̃y(C) = minc∈C d̃twp(y, c),

transforming T into F̃T = {f̃τ | τ ∈ T}. To construct a coreset, one draws elements
from T according to a fixed probability distribution over T , and reweighs each drawn el-
ement. Both the weight and sampling probability are expressed in terms of the sensi-
tivity of the drawn element t, which describes the maximum possible relative contribu-
tion of t to the cost of any query evaluation. We bound the sensitivity of each f̃τ ∈
F̃T by a function γ(f̃τ ), which solely depends on a (α, β)-approximation, m, ℓ and p.
The sensitivity sampling framework and Theorem 3.2 then yield Theorem 3.3.

▶ Theorem 3.3. For f̃ ∈ F̃ , let λ(f̃) = 2⌈log2(γ(f̃))⌉, with γ(f̃) the aforementioned sensitivity
bound, associated to an (α, β)-approximation consisting of k̂ ≤ βk curves, for (k, ℓ)-median
for curves in Xd

m under dtwp, Λ =
∑

f̃∈F̃
λ(f̃), ψ(f̃) = λ(f̃)

Λ and δ, ε ∈ (0, 1). A sample S of

Θ
(
ε−2αk̂(mℓ)1/p

(
(dℓ log(ℓmε−1))k log(k) log(αn) log(αk̂(mℓ)1/p) + log(1/δ)

))
elements τi ∈ T , drawn independently with replacement with probability ψ(f̃i) and weighted
by w(f̃i) = Λ

|S|λ(f̃i)
is a weighted ε-coreset for (k, ℓ)-median clustering of T under dtwp with

probability at least 1− δ.

4 Linear time approximation algorithm for (k, ℓ)-median

As Theorem 3.3 requires an initial (α, β)-approximate solution of the (k, ℓ)-median prob-
lem to compute the bounds γ(·) of the sensitivities, we turn to developing approximation
algorithms for (k, ℓ)-median for a set T ⊂ Xd

m of n curves. For this, we approximate dtwp

on T by a metric using a new inequality for dtwp (Lemma 4.1). This allows the use of any
approximation algorithm for metric k-median, leading to an initial approximation algorithm
of the original problem. Combined with a k-median algorithm in metric spaces [15], we
obtain a linear time (O((mℓ)1/p), 1)-approximation algorithm, which in turn allows us to
compute a coreset in linear (in n) time.

Metrification of p-DTW We begin with the following more general triangle inequality for
dtwp, which motivates analysing the metric closure of the input set. While dtwp does not



Conradi, Kolbe, Psarros and Rohde 30:5

s

x

y

t t1 t2 t3 t4

(α1, β1, γ1, δ1)

s1 s2 s3 s4

Wsx

Wxy

Wyt

(α2, β2, γ2, δ2) (α3, β3, γ3, δ3) (α4, β4, γ4, δ4) (α5, β5, γ5, δ5) (α6, β6, γ6, δ6)W =
( )

, , , , ,

s

x

y

t

Figure 3 Illustration of how the optimal traversals Wsx, Wxy and Wyt of visited curves can be
‘composed’ to yield a set W that induces a traversal W̃ (in red) of s and t. Any single matched
pair of vertices in Wsx, Wxy or Wyt is at most |W | ≤ ℓ + ℓ′ times a part of W .

satisfy the triangle inequality, the inequality shows it is never ‘too far off’. Remarkably, the
inequality does not depend on the complexity of the curves ‘visited’. Missing proofs of this
section can be found in the full version [11]. Figure 3 illustrates Lemma 4.1.

▶ Lemma 4.1 (Iterated triangle inequality). Let s ∈ Xd
ℓ , t ∈ Xd

ℓ′ and X = (x1, . . . , xr) be an
arbitrary ordered set of curves in Xd

m. Then

dtwp(s, t) ≤ (ℓ+ ℓ′)1/p

(
dtwp(s, x1) +

∑
i<r

dtwp(xi, xi+1) + dtwp(xr, t)
)
.

▶ Definition 4.2 (metric closure). Let (X,ϕ) be a finite set endowed with a distance function
ϕ : X ×X → R. The metric closure ϕ of ϕ is the function

ϕ : X ×X → R, (s, t) 7→ min
r≥2,{τ1,...,τr}⊂X

s=τ1,t=τr

∑
i<r

ϕ(τi, τi+1).

▶ Lemma 4.3. For any set of curves X and two curves σ, τ ∈ X of complexity at most m
it holds that the metric closure dtwp |X of the restriction of dtwp onto the set X is bounded
by dtwp(σ, τ) ≤ (2m)1/pdtwp |X(σ, τ) ≤ (2m)1/p dtwp(σ, τ).

Linear time algorithm Naïvely, we would like to apply linear time algorithms [9] to the
metric closure of dtwp. However, constructing the metric closure usually takes cubic time
resulting in cubic time algorithms. We circumvent this by applying Indyk’s sampling tech-
nique for bicriteria k-median approximation [15], which reduces a k-median instance with
n points to two k-median instances with O(

√
n) points, simply by sampling. We apply this

technique twice, so that we only compute the metric closure on four sampled subsets of size
O(n1/4), resulting in the following theorem.

EuroCG’24
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▶ Theorem 4.4. For any ε > 0 there is an algorithm which computes a (O(1+ε)(mℓ3)(1/p), 4)-
approximation for (k, ℓ)-median for an input set X of n curves of complexity m under dtwp

in time

O(nm3d+ nk log(k)ℓ2d+ nk2 log2(k)ε−4 log2(ε−1) + k7ε−5 log5(n)).

5 Coreset Application

The theoretical derivations of the previous sections culminate in an approximation algo-
rithm (Theorem 5.1) to (k, ℓ)-median that is particularly useful in the big data setting,
where n ≫ m. Our strategy is to first compute an efficient but not very accurate approx-
imation(Theorem 4.4) of (k, ℓ)-median, which we use to construct a coreset. By virtue of
the size reduction we greatly reduce the running time of slower more accurate algorithms,
yielding a better approximation. Missing proofs can be found in the full version [11].

Algorithm 1 ((32 + ε)(4mℓ)1/p)-approximate (k, ℓ)-median

procedure (k, ℓ)-Median(X ⊂ Xd
m, p, ε)

ε′ ← ε/46
Compute (O((16mℓ3)1/p), 4)-approximation C ′ (Theorem 4.4)
Compute bound γ(f̃x) of sensitivity for each curve x ∈ X from C ′

Compute sample size s← O(ε−2dℓk2(m2ℓ4)1/p log3(mℓ) log2(k) log(ε−1) log(n))
Sample and weigh ε′-coreset S of X of size s (Theorem 3.3)
Compute a 2-simplification for every curve in S resulting in the set S∗ of curves
Compute metric closure ϕ(x, y) = dtwp |S∗(x, y) for every x, y ∈ S∗

Return (5 + ε′, 1)-approximation of weighted metric k-median in (S∗, ϕ) (c.f. [3, 9])
end procedure

▶ Theorem 5.1. Let 0 < ε ≤ 1. There is an ((32 + ε)(4mℓ)1/p, 1)-approximate algorithm
with constant success probability ((k, ℓ)-Median in Algorithm 1) for (k, ℓ)-median on curves
under dtwp with a running time of Õ

(
n(m3d+ k2 + kℓ2d) + ε−6d3ℓ3k7 p

√
m6ℓ12

)
, where Õ

hides polylogarithmic factors in n, m, ℓ, k and ε−1.

▶ Corollary 5.2. There is an algorithm that computes an ε-coreset for (k, ℓ)-median in time
Õ
(
n(m3d+ k2 + kℓ2d) + ε−6d3ℓ3k7 p

√
m6ℓ12

)
with constant success probability of size

O(ε−2dℓk2(m2ℓ2)1/p log3(mℓ) log2(k) log(ε−1) log(n)).
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