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Abstract
A graph is 3-planar if it admits a drawing in the plane such that every edge is crossed at most
three times. A 3-planar graph is maximal 3-planar if addition of any edge results in a graph that is
not 3-planar. A 3-planar graph on n vertices has at most 5.5n − 11 edges, and a 3-planar graph
that has exactly 5.5n − 11 edges is an optimal 3-planar graph. In contrast to planar graphs where
maximal and optimal graphs coincide, a maximal 3-planar graph may have fewer edges than an
optimal 3-planar graph. In this paper, we study properties of maximal 3-planar graphs. First, we
characterize the graphs on nine vertices that are (maximal) 3-planar. Second, we show that—in
contrast to maximal 1– and 2-planar graphs—maximal 3-planar graphs may contain cut vertices.
Third, we give a first upper bound on the minimal edge density by constructing maximal 3-planar
graphs on n vertices with only 2.375n + O(1) edges.

1 Introduction

Planar graphs are graphs that can be drawn on the plane without crossings. If the addition
of any edge to a planar graph makes it impossible for the resulting graph to admit a plane
drawing, the planar graph is said to be a maximal planar graph. Maximal planar graphs
are well-studied and have many interesting properties. For example, the number of edges
in maximal planar graphs is solely dependent on the number of vertices. Specifically, every
maximal planar graph on n ≥ 3 vertices has 3n − 6 edges. It is natural to further explore
the edge density for various families of beyond-planar graphs, which have been extensively
studied over the past decade [5, 8].

In this paper, we focus on 3-planar graphs. A graph is k-planar if it admits a drawing
where each edge has at most k crossings. Pach and Tóth [11] gave upper bounds on the
number of edges in a k-planar graph, which they used to improve the Crossing Lemma.
Unlike planar graphs, the class of k-planar graphs is not closed under edge contractions.
Thus, many useful properties of minor closed classes do not apply to k-planar graphs.

As k gets larger, the density of a k-planar graph on n vertices clearly increases, but the
exact correlation is still unknown. Pach and Tóth [11] showed a general upper bound of
4.108

√
kn edges for k-planar graphs. For small values of k, i.e., k = 1 and k = 2, they also

gave tight upper bounds. The class of 1-planar graphs was introduced by Ringel [12] in the
context of planar graph colorings. A 1-planar graph has at most 4n − 8 edges, and there are
infinitely many optimal 1-planar graphs that achieve the bound [13]. A 2-planar graph on n

vertices has at most 5n − 10 edges, and there are infinitely many optimal 2-planar graphs
that achieve this bound [11].

A lot is left to be explored for maximal k-planar graphs, where a graph is maximal
k-planar if there is no edge that can be added such that the resulting graph is still k-planar.
In contrast to planar graphs, maximal k-planar graphs are not necessarily optimal k-planar
graphs. Indeed the gap between maximal and optimal can be very large for k-planar graphs.
Hudák et al. [9] showed an infinite family of maximal 1-planar graphs with 8

3 n+O(1) ≈ 2.667n

edges, and a sparser construction by Brandenburg et al. [4] only has 45
17 n + O(1) ≈ 2.647n

edges. Brandenburg et al. [4] also proved that every maximal 1-planar graph has at least
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28
13 n − O(1) ≈ 2.153n edges. This lower bound was further improved by Barát and Tóth [3]
to 20

9 n ≈ 2.22n.
Interestingly, the density even decreases for maximal k-planar graphs when k increases

from 1 to 2. Hoffmann and M. Reddy [6] showed that every maximal 2-planar graph on n ≥ 5
vertices has at least 2n edges, and they also described an infinite family of maximal 2-planar
graphs on n vertices with only 2n + O(1) edges. So, even though they allow more crossings,
some maximal 2-planar graphs have a lower edge density than any maximal 1-planar graph.

Results. First, in Section 3 we characterize the graphs on nine vertices that are (maximal) 3-
planar. Next, in Section 4 we exhibit maximal 3-planar graphs that contain vertices for which
all incident edges are crossed, in every simple 3-plane drawing of the graph. As a consequence,
maximal 3-planar graphs are not necessarily 2-connected and may contain vertices of degree
one. In contrast, all maximal 1-and 2-planar graphs are 2-connected. Finally, in Section 5,
we construct maximal 3-planar graphs on n vertices with only 2.375n + O(1) edges.

2 Preliminaries

A drawing is simple if any pair of edges has at most one common point, including endpoints.
To analyze k-plane drawings of a graph, one typical restriction is to consider a drawing that
minimizes the total number of crossings among all k-plane drawings of the graph, which is
called a crossing-minimal k-plane drawing. The benefit of such a restriction is that for k ≤ 3,
a crossing-minimal k-plane drawing is always simple [10]. Consequently, 3-planar graphs
always admit a simple 3-plane drawing.

▶ Lemma 1. If a 3-planar graph G is not maximal 3-planar, then there exists a simple
3-plane drawing of G that is not maximal 3-plane.

Proof. If G is not maximal 3-planar, then there exists a pair u, v of nonadjacent vertices
such that G′ = G ∪ e is 3-planar where e = (u, v). Take any simple 3-plane drawing of G′

and remove e to obtain a simple 3-plane drawing of G that is not maximal. ◀

In all figures of this paper, the edges are colored to indicate their number of crossings.
Uncrossed edges are shown green, singly crossed edges are shown purple, doubly crossed edges
are shown orange, and triply crossed edges are shown blue. Edges with an undetermined
number of crossings are shown black.

3 Characterization of (Maximal) 3-planar Graphs on 9 Vertices

Angelini et al. [2] showed that K8 is 3-planar, while K9 is 4-planar (but not 3-planar).
This motivated us to study the set of 3-planar graphs on nine vertices. With the help of a
computer program, we can enumerate all possible simple 3-plane drawings of a given graph;
see Section 6.

The basic idea is to check all graph structures on nine vertices in decreasing order based
on the number of edges. Specifically, starting from K9 \ K2, which is generated by removing
a single edge from a K9, we check if the given graph admits a 3-plane drawing. Further, if
we want to remove two edges from a clique, we can either remove two independent edges or
remove a path P3 of length two. If we restrict to a graph with nine vertices, that is equivalent
to saying that any graph with nine vertices and thirty-four edges will be isomorphic to either
K9 \ (K2 + K2) or K9 \ P3. We have a similar argument if we remove three edges.
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Figure 1 (Left) Drawing D1 of graph G1 by removing five independent edges from K10. (Right)
Drawing D′

1 of graph G′
1 by inserting a new vertex x10 to G1 and adding five edges incident to x10.

Using our computer program, we were able to verify that all graphs on nine vertices that
have at least 34 edges do not admit a simple 3-plane drawing, while all the remaining graphs
on nine vertices are 3-planar. The result can be verified with the code in our repository [7].

▶ Theorem 2. A graph on nine vertices is 3-planar if and only if it has at most 33 edges,
and it is maximal 3-planar if and only if it has exactly 33 edges.

We therefore notice that maximal 3-planar graphs and maximum 3-planar graphs on n

vertices coincide for n ≤ 9.

4 Uncrossed Edge in Maximal 3-planar Graphs

Though we allow crossings in beyond-planar graphs, it does not necessarily mean that every
edge will have a crossing. In a more general sense, crossings are not equally distributed over
the edges. In maximal k-planar graphs where k ≤ 2, it has been shown that every vertex
must be incident to an uncrossed edge in every crossing-minimal k-plane drawing [6]. But
when k = 3, the situation is different and we have the following

▶ Lemma 3. There exist infinitely many maximal 3-planar graphs that each contains a
vertex v such that all edges incident to v are crossed in every simple 3-plane drawing of the
graph.

Proof. The proof of Lemma 3 is based on a graph G′
1 that has the required properties. Then

we can use G′
1 to create larger graphs. To construct a graph G′

1, we start from a base graph
G1 that is isomorphic to K10 minus five independent edges. Specifically, we take the vertex
set as {x0, x1, ..., x9}, and include all edges of the induced complete graph except the five
edges {x0, x1}, {x2, x3}, {x4, x5}, {x6, x7} and {x8, x9}. We enumerated all simple 3-plane
drawings of G1 using our program and found that this graph has exactly one simple 3-plane
drawing up to automorphism. This drawing is illustrated in Fig. 1, and let this drawing be
D1. We can observe that it is impossible to add an edge to D1 while maintaining 3-planarity,
thus it proves G1 is a maximal 3-planar graph from Lemma 1.

We can further obtain a new graph G′
1 by adding a new vertex x10 to G1 and connecting it

to the five vertices x0, x2, x4, x6, x8. We claim that the drawing D′
1 illustrated in Fig. 1(right)

EuroCG’24



31:4 On Maximal 3-Planar Graphs

x10

Figure 2 Graph G2 by gluing two copies of G1 on a merged vertex.

is the unique simple 3-plane drawing of G′
1 (up to automorphisms). To see this, consider

every face of D1. It turns out that there exists exactly one face where the vertex x10 can be
placed such that the five edges to vertices x0, x2, x4, x6, x8 can be added while maintaining
3-planarity, and the resulting drawing is D′

1. This concludes that the graph G′
1 is maximal

3-planar. We further note that x10 is not incident to any uncrossed edge in any 3-plane
drawing of G′

1.
Further we can take two copies of the graph G′

1 and merge the two vertices with degree
five from each of the copies into a single vertex with degree ten to obtain a new graph G2. It
can be interpreted as gluing two copies of G′

1 together at the vertex x10. Refer to Fig. 2 for
one possible 3-plane drawing of G2.

We claim that G2 is a maximal 3-planar graph. Consider an arbitrary simple 3-plane
drawing of G2. The subdrawings corresponding to the two copies of G1 that are still simple
drawings should be the same as D1. It can also be viewed as adding a copy of D1 into an
existing drawing D1. Again, considering all the faces of D1 we can observe that the drawing
shown in Fig. 2 is the only possible 3-plane drawing of G2 up to automorphism.

This replication can be repeated infinitely many times to obtain larger graphs, and in
each such graph the vertex x10 is not incident to any uncrossed edge in every simple 3-plane
drawing, concluding the proof. ◀

Clearly, x10 is a cut vertex in G2 and every graph obtained by following the replicating
procedure. Thus, we have the following

▶ Theorem 4. There exist infinitely many maximal 3-planar graphs that are not 2-connected.

5 Number of Edges in Sparse Maximal 3-planar Graphs

We describe a construction of sparse maximal 3-planar graphs based on G1 in this section.

▶ Theorem 5. There exist an infinite family of maximal 3-planar graphs on n vertices with
at most 2.375n + O(1) edges.

Proof. We construct a nested graph with arbitrarily many layers where each layer is a
variation of G1 as shown in Fig. 3. Specifically, in each layer, we add a hermit vertex
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Figure 3 A single layer in the nested graph structure. Some labels are omitted for simplicity.

connecting to two endpoints of each planar edge, and a triangle to each original vertex, where
a hermit is a degree-two vertex.

Further, as shown in Fig. 3, consecutive layers are connected with each other with orange
dashed lines, which represent half edges. Specifically, suppose vertices from layer i are
indexed as xi

j for 0 ≤ j ≤ 9, and corresponding triangle vertices are labelled as xi ′
j and xi ′′

j .
To connect layers i and i + 1, an edge is added between xi ′

j and xi+1 ′
j+1 for even j. To close

the innermost and outermost layers, we simply use two 5-stars respectively to complete the
graph.

We argue that the constructed graph still admits few simple 3-plane drawings. We start
from each layer based on the unique simple drawing D1. For those inserted triangles, since
the drawing is symmetric considering the innermost face and the outermost face, it is enough
to argue about the outer triangles. We note that outer vertices xi

j of layer i for odd j should
be reachable from a single face because all vertices from other layers have to be drawn in
a single face of the drawing for layer i. Thus the only eligible face is the outermost face.
Observe that xi ′′

j connects to xi
j and xi ′

j , so the drawing of triangles has to be the same
as shown in Fig. 3. We then note that each planar edge is enclosed by blue curves. Thus
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every hermit vertex can only be drawn in faces on two sides of the planar edge. For the
closing 5-star, the argument is similar as stated for graph G′

1. Then consider all possible
simple 3-plane drawing of such a nested graph, it is impossible to add any edge in any of the
drawing, and this concludes that the graph is maximal 3-planar.

For each layer, we have 40 vertices and 90 edges. And between two layers, there are 5
edges connecting them. We can charge these 5 edges to one layer, and extend to arbitrarily
many layers. In total we will have 40k + 2 vertices and 95k + 5 edges for a graph with k

layers. And it gives an edge density of 95k+5
40k+2 · n = 2.375n + O(1) where n is the number of

vertices. This concludes the proof. ◀

It is possible that the construction for 2-planar graphs with roughly 2n edges [6] can be
extended to the 3-planar case; see Fig. 4. But new ideas are needed to prove maximality.
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Figure 4 Nested C14 is a possible maximal 3-planar graph.

6 Enumeration of 3-plane drawings

In this section, we sketch the program we used to enumerate all possible simple 3-plane
drawings of small graphs. This program was used to show certain properties of 3-planar
graphs, like maximality. The basic idea is similar to previous work [1, 6]. We adapted the
code for 2-planar graphs from [6] and extended it to 3-planar graphs. It is available in our
repository [7].

To enumerate all simple k-plane drawings of a graph up to strong isomorphism (that is,
up to a homeomorphism of the plane), we enumerate combinations of all possible drawings
of each edge. We fix a labeling of the vertices and an ordering of the edges to then use
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depth first search to explore all possible simple 3-plane drawings. The restriction to simple
drawings is without loss of generality by Lemma 1.

We add edges one by one to the current drawing, and try to complete the given graph.
Whenever we add an edge, we take every valid drawing of the edge into consideration. After
we run out of different ways to draw the current edge, we backtrack and try to draw the
previous edge differently. Whenever we successfully added all edges into the drawing, we
found a simple 3-plane drawing of the given graph. We record the drawing and continue.

The time complexity of such a search is exponential in the number of edges, and thus
it can be used for small graphs only. In practice, it takes roughly one hour to enumerate
drawings for graphs on 9 vertices, and 30 hours for graphs on 10 vertices. For larger graphs
it seems challenging to enumerate all simple 3-plane drawings within reasonable time limits.
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