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Abstract
We deal with the problem of decomposing a complete geometric graph into plane star-forests. In
particular, we disprove a recent conjecture by Pach, Saghafian and Schnider by constructing an
infinite family of complete geometric graphs on n vertices which can be decomposed into 2n

3 plane
star-forests. We also describe a method which can be potentially used to construct such infinite
families of geometric graphs decomposable into cn plane star-forests given only a single such graph,
for any given c ∈ ( 1

2 , 1).

1 Introduction

A classic question asked in graph theory is the following: “Given a graph G, what is the
minimal number of subgraphs with property P that G can be partitioned into?” Historically,
this question was asked for abstract graphs and property P was replaced with forests, trees,
complete bipartite graphs and many more [2, 7, 10]. Similar questions can be asked about
graphs drawn in the plane or on any other surface. Here we want to decompose our complete
graph into plane/k-planar/k-quasiplanar subgraphs with a given property. Answering such
questions is a similar, but separate research direction that has been pursued by many authors
in discrete geometry and graph drawing communities.

A geometric graph is a graph drawn in the plane, with vertices represented by points in
general position and edges as straight line segments between them.

Recently, there has been a lot of work done on decomposing geometric graphs into planar
subgraphs of a special kind, such as trees, stars, double stars etc. [11, 6]. This paper will be
concerned with plane star-forests. A star is a connected graph on k vertices with one vertex
of degree k − 1, which we call the center of the star, and k − 1 vertices of degree one. This
definition allows for a single edge to be a star, in this case we decide arbitrarily which of its
endpoints is the center. A star-forest is a forest whose every connected component is a star.
A star-forest is plane if it is drawn in the plane without crossings. It is easy to observe that
a complete graph Kn can be decomposed into n − 1 stars. A fact that is not obvious is that
Kn cannot be decomposed into less than n − 1 stars [3]. In the same paper, Akiyama and
Kano proved that Kn can be decomposed into ⌈ n

2 ⌉ + 1 star-forests.
The story is different for complete geometric graphs. Recently, Pach, Saghafian and

Schnider [8] showed that a complete geometric graph whose vertices form a convex polygon
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cannot be decomposed into fewer than n − 1 plane star-forests. In the same paper, the
authors posed the following question:
▶ Question 1.1. What is the minimal number of plane star-forests that a complete geometric
graph can be decomposed into?

Based on their findings they made the following conjecture:

▶ Conjecture 1.2 ([8]). Let n ≥ 1. There is no complete geometric graph with n vertices
that can be decomposed into fewer than ⌈3n/4⌉ plane star-forests.

The authors give a special configuration of n = 4k points and construct a simple
decomposition into 3n/4 star-forests. Motivated by this example, we find configurations of n

points that define a complete geometric graph which can be decomposed into ⌈2n/3⌉ plane
star-forests, disproving the conjecture.

Note on new results After submission of the paper to EuroCG we managed to obtain some
better results. Among other things, we answered Conejcture 4.1 positively, thus proving that
the bound ⌈ n

2 ⌉ + 1 is indeed tight. The current version of the paper is available on arXiv [5].

2 The Construction

Firstly, we will give the most general possible construction and then present the concrete
counterexample. We will write GP for a complete geometric graph whose underlying pointset
is P ⊂ R2.

▶ Theorem 2.1. Let c ∈ (1/2, 1) be a constant. If there is a complete geometric graph on
n0 points which can be partitioned into cn0 star-forests, in such a way that each vertex is
a center of at least one star, then for each integer k ≥ 1, there exists a complete geometric
graph on kn0 points that can be partitioned into ckn0 star-forests.

Proof. Let S be the underlying point set of the original complete geometric graph and let
k > 1 be an integer. Label the points in S by a1, . . . , an0 . Now, replace each ai by a set
Ai = {a1

i , ..., ak
i } of k points in general position in such a way that if we choose b1, . . . , bn0

where bi ∈ Ai, we obtain a point set of the same order type as S. Call the new point set Sk.
Now if F1, . . . , Fcn0 is the decomposition of GS into star-forests, from this, we will obtain
the decomposition of GSk into c(kn0) star-forests. Let aj be the center of a star in Fi. We
will construct k new stars with centers in a1

j , . . . , ak
j . Start with a1

j , add to it all of the edges
of the form {a1

j , al
j} that were not already used (in the case of a1

j , none were used). Now
for each edge of the form {aj , aj′} in Fi, add all of the edges from a1

j to the vertices in Aj′ .
Continue doing this for each vertex al

j , where l ∈ {1, 2, . . . , k}. We do this for each star
in Fi and for each forest in the original decomposition. The result of this process is cn0
families of star-forests, each of size k. And the planarity of the star-forests follows from the
definition of the point set Sk. To see this, assume that a tree in the new decomposition
has an intersection. Then the intersection is between edges whose 4 vertices are in different
Ai’s. But if this was the case, then a choice of transversal that includes this 4 vertices would
induce a crossing inside the original decomposition of GS. ◀

We note that the assumption that each point is a center of at least one forest is crucial as
otherwise the star-forests constructed in the proof do not cover all of the edges. For example
see Figure 1. The vertex v is not a center of any star and thus none of the edges between
vertices in Av are covered by the star-forests on the right.
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Figure 1 A complete geometric graph on 4 vertices decomposed into three star-forests and the
corresponding graph on 12 vertices with the wrong “decomposition” into 9 star-forests. (only 4 are
drawn for readability).

aaaa

Figure 2 A complete geometric graph on 4 vertices decomposed into three plane star-forests and
the corresponding graph on 12 vertices with the decomposition into 9 star-forests (only 4 are drawn
for readability). Each vertex of the point set has been used as a center of some star and colored
accordingly.

While Theorem 2.1 gives us a nice way of constructing infinitely many complete geometric
graphs that can be partitioned into few plane star-forests, we still need concrete small
examples to be able to produce the infinitudes. One example was given by the authors in
[8] and can be found in Figure 2. This example motivated Conjecture 1.2. We proceed in a
similar fashion.

▶ Lemma 2.2. There exists a configuration of 6 points in the plane which can be partitioned
into 4 plane star-forests in such a way that each point is a center of at least one star.

Proof. We consider a configuration of 6 points which is crossing-minimal according to [9].
We decompose the graph into 4 star-forests as in the Figure 3. The graph has thus been
decomposed into three 2-component star-forests colored in blue, red and black and one
3-component forest colored in purple. ◀

Now, using the pointset on n0 = 6 elements from the above lemma, which can be decomposed
into 2n0/3 = 4 star-forests, we obtain as an easy corollary a family of pointsets on n = 6k

points which can be decomposed into 2n/3 star-forests, thus disproving Conjecture 1.2. We
state this formally below.

▶ Corollary 2.3. For every k ∈ N, there exists a geometric graph on n = 6k vertices which
can be decomposed into 2n/3 plane star-forests.

EuroCG’24



32:4 Star-Forest Decompositions of Certain Geometric Graphs

Figure 3 A complete geometric graph on 6 vertices decomposed into four star-forests, vertices
are colored same as trees whose centers they are.

3 Computing Plane Star-Forest Decompositions on Pointsets with 6
Points

Using a simple computer search, we managed to find all pointsets on 6 points that can be
decomposed into 4 plane star-forests. Out of the 16 order types which can be found on [1],
we have found decompositions which satisfy the requirements from Theorem 2.1 for 6 of
them. Those pointsets and corresponding partitions can be seen in Figure 4. The code is
available at [4]. We plan to continue improving the code to be able to perform the search on
bigger pointsets. Currently, the generation of appropriate decompositions is very slow, and
since Stirling numbers grow very fast, we are not able to do the checks for bigger pointsets.

Figure 4 Star-forest decompostions of the pointsets that admit them.
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4 Further Research and Open Questions

It is still unclear to us whether the number 2n/3 is optimal, and we would be very surprised
if it is. Thus we make the following conjecture:

▶ Conjecture 4.1. For each c ∈ (1/2, 1), there exists an n ∈ N and a complete geometric
graph on n vertices which can be decomposed into ⌈cn⌉ plane star-forests.

If our conjecture is true, that would mean that the bound of ⌊n/2⌋ + 1 is almost tight.
We also note that there is an interesting variation of this problem that we have not

explored yet but where our approach can also be used. We define a k-star-forest to be a
star-forest with at most k components. Authors in [8] proposed the following conjecture:

▶ Conjecture 4.2. The number of plane k-star-forests needed to decompose a complete
geometric graph is at least (k+1)n

2k .

Our example does not show anything regarding Conjecture 4.2. But, it is not hard to see
that the construction from Theorem 2.1 preserves the maximal number of components among
all forests. Thus, we believe a similar approach could be used to attack this conjecture.
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