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Abstract
With the notable exception of an algorithm for the decision problem for planar piecewise smooth
curves due to Rote (2007), research into algorithms for computing the Fréchet distance has con-
centrated on comparing polygonal curves. We present an algorithm for the decision problem for
piecewise smooth curves that is both conceptually simple and naturally extends to the first algo-
rithm for the problem for piecewise smooth curves in Rd. To this end, we introduce a decomposition
of the free space diagram into a controlled number of pieces that can be used to solve the decision
problem using techniques similar to the polygonal case. Assuming the algorithm is given two con-
tinuous curves, each consisting of a sequence of m, resp. n, smooth pieces, where each piece belongs
to a sufficiently well-behaved class of curves, such as the set of algebraic curves of bounded degree,
we solve the decision problem in O(mn) time. Furthermore, we study approximation algorithms
for piecewise smooth curves that are also c-packed. We adapt the existing framework for (1 + ε)-
approximations and show that an approximate decision can be computed in O(cn/ε) time for any
ε > 0.

1 Introduction and motivation

The Fréchet distance is a well-studied distance measure between curves, with a long history
in both applications and algorithmic research. The wealth of work surrounding the analysis
of algorithms for computing the Fréchet distance is centered primarily on polygonal curves.
However, more complicated curves and especially splines are natural objects that have be-
come commonplace in industrial applications for, e.g., computer graphics, robotics and to
represent motion tracking or planning data. A crucial prerequisite to using smooth curves
similarly to polygonal curves in such contexts is the ability to effectively answer elementary
algorithmic questions for such curves. A natural and fundamental task in computational
geometry is the computation of the Fréchet distance between smooth curves such as splines.
Despite this, as far as we know, there is no known approach to realizing such a computa-
tion for curves in Rd. To tackle the case of smooth curves in the plane (d = 2), Rote [3]
introduced an approach based on analyzing the turning angle and planar curvature of the
planar curves. However, this approach does not easily generalize to higher dimensions. We
revisit this problem and present a novel, simpler approach, with the additional benefit that it
works for higher dimensions, with the same time complexity. Our methods are conceptually
simple, but rely on a number of key technical ingredients.

Problem definition Throughout the paper, γ1 and γ2 will be used to denote two piecewise
smooth curves in Rd with d fixed, that is, continuous maps γ1, γ2 : [0, 1] → Rd that are
comprised of m and n smooth pieces, each of class C2. Let A[0,1] be the set of continuous
and bijective maps α : [0, 1] → [0, 1] that are increasing. The Fréchet distance between
γ1 and γ2 is defined as dF (γ1, γ2) := inf

α,β∈A[0,1]
max

t∈[0,1]
∥γ1(α(t)) − γ2(β(t))∥. Our methods
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naturally allow any fixed ℓp norm with 1 < p < ∞ for the norm ∥ · ∥ (the cases p = 1, ∞,
while possible, would add a level of technicality to our treatment that distracts from its
relative simplicity). We focus primarily on the decision problem of deciding whether the
Fréchet distance between two piecewise smooth curves is at most a given δ > 0.

Results Our first main contribution is that we establish an algorithm to solve the decision
problem for the Fréchet distance between piecewise smooth curves. Assuming that the
curves are algebraically bounded curves, i.e., piecewise smooth algebraic curves where
the degree of the curves is bounded by a constant, we obtain a bound of O(mn) for the time
complexity of the decision problem, which matches the polygonal case. The running time
is independent of the ambient dimension but the algebraic complexity of the operations
involved in the algorithm depends on the dimension and the nature of the curves. Our
algorithm for the decision problem results in an algorithm for the computation of the Fréchet
distance for algebraically bounded curves in O(mn log(mn)) time using parametric search,
similarly to the polygonal case.

It is known [1] that the decision problem cannot be solved in strongly subquadratic
time, so research has focused on investigating algorithms for restricted classes of curves.
Our second contribution is that we show that we can adapt the framework from [2] for an
efficient (1 + ϵ)-approximation algorithm for the Fréchet distance between two c-packed,
polyognal curves to the setting of c-packed piecewise smooth curves in Rd. To this end, we
introduce a simplification procedure for piecewise smooth curves and distill the necessary
ingredients to obtain a linear time decision algorithm for algebraically bounded c-packed
curves.

Comparison to previous work To arrive at an algorithm for the decision problem for
smooth planar curves for the ℓ2-norm for a given δ in general position, Rote uses a parti-
tioning of the smooth curves, induced by condition on the turning angle and planar curva-
ture, to obtain pieces for which the associated free space diagram FSDδ (Section 2) is
well-behaved. In contrast to this, our approach is to analyze the free space diagram directly,
by studying the boundary of the free space Dδ in FSDδ, leading to a conceptually simpler
algorithm. The free space is defined as the set of parameter value pairs at which the curves
are at most a distance of δ apart. We propose a refined decomposition of each cell of FSDδ

into a controlled number (depending on the degree of the curves) of subcells, for which
determining the existence of a monotone path connecting two intervals on the boundary
of a subcell is easy. Here, the role of convexity of the free space in a cell for polygonal
curves is replaced by monotonicity of the boundary curves of Dδ within each subcell of the
refined decomposition. We emphasize that our construction of the refined decomposition
exclusively accesses the same values that are also required in Rote’s work to process each
subcell of FSDδ.

Unlike the polygonal case, the free space within a cell of FSDδ can be very complicated,
as illustrated by a contour plot of the distance function in parameter space for two degree
3 splines in R3 in Figure 1 for different values of δ. Figure 3 shows another example of the
kind of behavior of the free space one can expect within a cell. We note that both Rote’s
decision algorithm as well as ours assume values of δ for which the boundary of Dδ has
no singularities. We show that singularities of the boundary of Dδ are confined to a small
number of critical values of δ and are thus not necessary for the computation of dF .
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Figure 1 Two smooth curves in R3 and a contour plot of the associated distance function in the
joint parametric space of the curves.

Computational assumptions We assume that we can compute the intersection of a curve
with a sphere of a given radius centered at a point of another curve and find the parameter
values in [0, 1] that correspond to the intersections.

2 A combinatorial description of the free space diagram

For two piecewise smooth curves γ1, γ2 : [0, 1] → Rd consisting of m and n pieces, respec-
tively, and δ > 0, the free space Dδ = Dδ(γ1, γ2) is defined as

Dδ(γ1, γ2) =
{

(x, y) ∈ [0, 1]2|∥γ1(x) − γ2(y)∥ ≤ δ
}

.

The complement of Dδ in [0, 1]2 is referred to as the forbidden region. There is a natural
partition of the joint parameter space [0, 1]2 of both curves into m · n rectangular cells such
that γ1 and γ2 are smooth when restricting to the interior of each rectangle. The resulting
decomposition of [0, 1]2 together with the partitioning into the free space and forbidden
region is known as the free space diagram FSDδ. A key motivation behind the definition
is the observation that dF (γ1, γ2) ≤ δ iff there is a path from (0, 0) to (1, 1) through the free
space in [0, 1]2 that is monotone in both coordinates.

Overview of the algorithm Similarly to the classical polygonal case, to solve the decision
problem, we investigate the existence of a monotone (in both coordinates) path from (0, 0) to
(1, 1) in the free space Dδ. To this end, we refine the free space diagram using the boundary
Bδ of the free space. Our decision algorithm has the following high-level description.

1. Mark the minima and maxima of the boundary Bδ of the free space in FSDδ in the x

(horizontal) and y (vertical) direction.
2. Cut each cell of FSDδ into subcells, horizontally (vertically) through each marked point

if it has a vertical (horizontal) tangent. Mark each point of intersection of a cut with Bδ.
3. For each resulting subcell, pair the marked points on the boundary according to how

they are connected by Bδ through monotone arcs, so that adjacent points are paired.
4. Solve the decision problem for FSDδ using only the marked points and pairings by

computing reachable intervals on the boundaries of cells, in particular
a. process all cells in lexicographical order of their indices (row by row, from the left);
b. for each cell, process all subcells within the cell in lexicographical order.
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2.1 Refining the free space diagram
We consider the boundary Bδ of FSDδ as a set of curves, as opposed to the boundary of a
region. Let Ising be the set of singularities of Bδ in the interior of the cells of FSDδ, consisting
of points where Bδ has a cusp or intersects itself. Like Rote, we assume that Ising = ∅. It
turns out that for almost all δ, there are no singular points of Bδ in the interior of each
cell in FSDδ associated to the smooth pieces of the curves, so that Ising = ∅, after possibly
applying a small perturbation to δ, as illustrated in Figure 2. Intuitively, the scarcity of
critical values for δ can be explained by noting that each critical value corresponds to a
value of δ for which there are points (t1, t2) ∈ Bδ such that

d
dt1

∥γ1(t1) − γ2(t2)∥p = 0 = d
dt2

∥γ1(t1) − γ2(t2)∥p, (1)

equations which themselves do not depend on δ. In contrast, we note that for the norms ℓ1
and ℓ∞ in the definition of the Fréchet distance, Bδ may contain cusp singularities for all
values of δ in an open interval.

Dδ+ϵDδ−ϵ Dδ

Figure 2 Illustration of singular points and changes of the boundary Bδ as δ changes.

Let Eh ⊂ Bδ (Ev ⊂ Bδ) be the set of extrema of the free space in the y direction, with
horizontal tangent (in the x direction, with vertical tangent). For simplicity of exposition,
we assume that each of Eh and Ev is a collection of isolated points. In particular, Bδ does
not have a vertical or horizontal segment, which means that there is no arc of one curve
that lies at a constant distance δ from a point on the other.

For a point z ∈ Eh (Ev), we fix the cell in FSDδ containing z, and trace the vertical
(horizontal) line incident to z inside this cell. The result is a refinement of each cell of FSDδ

into a collection of subcells {S}, illustrated in Figure 3 for one cell of FSDδ.

▶ Lemma 2.1. In the interior of each subcell in {S}, Bδ is a union of smooth arcs that are
monotone in both coordinates of R2 and disjoint except possibly at the boundary of a subcell.

We record each intersection IS of Bδ with the boundary of each subcell S, which together
form the set I =

⋃
S is subcell IS of all intersections of subcell walls with Bδ. Notice that Bδ

can be naturally interpreted as a graph Gδ with vertex set I, and each edge a monotone
arc contained in a subcell. We partition the two sets Eh and Ev into the sets E+

h and E−
h ,

and E+
v and E−

v , respectively, according to whether the forbidden region lies locally to the
right of or above the point (−), or to the left of or below the point (+). For the bottom
and left edge of each subcell S, we refer to the information of whether the boundary Bδ at
each point in IS is increasing or decreasing as a function of the horizontal x-coordinate as
the slope information of these points. In other words, the slope information at a point
z ∈ IS can be thought of as an extra bit associated to z that encodes whether Bδ curves to
the left or to the right at z, illustrated in Figure 3 by arrows.
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Figure 3 The decomposition of a cell of the free space diagram into subcells arising from the
horizontal and vertical lines at extremities of the forbidden region in the coordinate directions.

The slope information on the bottommost and leftmost edges of the original cells of FSDδ

leads to a construction recipe for the combinatorial structure of Gδ from its vertex set.

▶ Lemma 2.2. Assume δ is such that Ising = ∅. There is an algorithm that reproduces the
combinatorial structure of Gδ, using the sets E+

h , E−
h , E+

v , E−
v , and I along with the slope

information on the bottommost and leftmost edges of FSDδ, in time O(|I|).

▶ Remark. Figure 4 illustrates the necessity of some knowledge of the slope information on
edges of a subcell for the accurate reconstruction of Bδ inside a cell.

As illustrated in Figure 5, the slope information for points in a subcell can be gleaned
by evaluating the distance between the two curve segments at certain test points.

The parts of the cell walls that are reachable by monotone paths in the free space can be
computed in a structurally similar way to the polygonal case, leading to an algorithm for the

Figure 4 Two different sets of slope information and their combinatorial structures in a subcell.
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z ∈ E+
h

∥γ1 − γ2∥ < δ

∥γ1 − γ2∥ > δ

z ∈ E−
h

∥γ1 − γ2∥ > δ

∥γ1 − γ2∥ < δ

z ∈ E−
h

∥γ1 − γ2∥ > δ∥γ1 − γ2∥ < δ

z ∈ E+
h

∥γ1 − γ2∥ < δ
∥γ1 − γ2∥ > δ

Figure 5 Finding slope information by evaluating the distance at points.

decision problem. The crucial insight is that each arc of the boundary of the free space inside
each subcell is a monotone arc, which allows for to transfer the reachable intervals on the
bottom and left subcell walls to neighboring cell walls in constant time. The following result
is due to there only being a constant number of subcells in each original cell for algebraically
bounded curves, with constant depending only on the allowed degree of the curves.

▶ Proposition 2.3. Given two algebraically bounded piecewise smooth curves γ1, γ2 in Rd

comprised of m and n pieces, respectively, and a value of δ such that Bδ has no singularities,
one can decide if dF (γ1, γ2) ≤ δ. The running time is bounded by O(mn).

The solution to the decision problem can be used to compute the Fréchet distance in
the same way as in the case of polygonal curves, using parametric search. For this, the
first step is to identify the O(mn) critical values where marked points appear or disappear,
components merge, appear, or start touching the boundary of cells. We then apply a binary
search among these O(mn) critical values to narrow down the range of values for the Fréchet
distance to be a critical value corresponding to a change of the order in the x- and y-direction
of the marked points in the free space diagram. Inbetween these O(mn) critical values,
Cole’s variant of parametric search with a parallel sorting algorithm for both the x- and y-
coordinates of all the marked points of Bδ yields an overall running time of O(mn log(mn))
for the computation of the Fréchet distance.

▶ Theorem 2.4. Let γ1 and γ2 be two algebraically bounded curves in Rd consisting of m

and n pieces, respectively. Then the Fréchet distance between γ1 and γ2 can be computed in
O(mn) space and in O(mn log(mn)) operations (of bounded algebraic complexity).
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3 The decision problem in linear time for c-packed curves

A curve γ is c-packed if the total arc length of γ inside any ball of radius r is at most
cr. By utilizing a simplification procedure for piecewise smooth curves that transforms c-
packed curves into c′-packed curves and guarantees a minimum arclength of each piece of
the simplification, one can show that the number of grid cells that are reachable and contain
free space, of simplified c-packed curves, depends linearly on n. This ultimately leads to our
main result concerning approximate decision algorithms.

▶ Corollary 3.1. Let γ1 and γ2 be two piecewise smooth algebraically bounded c-packed
curves, 1 ≥ ϵ > 0 and δ > 0. There is an algorithm that correctly outputs, in O(cn/ϵ) time,
either (i) a (1 + ϵ)-approximation to dF (γ1, γ2), (ii) dF (γ1, γ2) < δ, or (iii) dF (γ1, γ2) > δ.
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