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Abstract
In this paper, we study the computation of shortest paths within the geometric amoebot model,
a commonly used model for programmable matter. Shortest paths are essential for various tasks
and therefore have been heavily investigated in many different contexts. For example, for the
geometric amoebot model, Kostitsyna et al. have utilized shortest path trees to transform one
amoebot structure into another [DISC, 2023]. We consider the reconfigurable circuit extension of
the model where the amoebot structure is able to interconnect amoebots by so-called circuits. These
circuits permit the instantaneous transmission of simple signals between connected amoebots.

We propose two distributed algorithms for the shortest path forest problem where, given a set of
k sources and a set of ℓ destinations, the amoebot structure has to compute a forest that connects
each destination to its closest source on a shortest path. For hole-free structures, the first algorithm
constructs a shortest path tree for a single source within O(log ℓ) rounds, and the second algorithm
a shortest path forest for an arbitrary number of sources within O(log n log2 k) rounds. The former
algorithm also provides an O(1) rounds solution for the single pair shortest path problem (SPSP)
and an O(log n) rounds solution for the single source shortest path problem (SSSP) since these
problems are special cases of the considered problem.

Related Version Full Version: https://arxiv.org/abs/2402.12123

1 Introduction

Programmable matter is matter that has the ability to change its physical properties in a
programmable fashion [15]. Many exciting applications have already been envisioned for pro-
grammable matter such as self-healing structures and minimal invasive surgery, and shape-
changing robots have already been prominent examples of the potentials of programmable
matter in many blockbuster movies.

In the amoebot model, the matter consists of simple particles (called amoebots). In the
geometric variant of the model, the amoebots form a connected amoebot structure on the
infinite triangular grid, on which they move by expansions and contractions. However, since
information can only travel amoebot by amoebot, many problems come with a natural lower
bound of Ω(d) where d is the diameter of the structure.

For that reason, we consider the reconfigurable circuit extension to the amoebot model
where the amoebot structure is able to interconnect amoebots by so-called circuits. These
circuits permit the instantaneous transmission of simple signals between connected amoe-
bots. The extension allows polylogarithmic solutions for various fundamental problems, e.g.,
leader election [8], and spanning tree construction [12].
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(a) Amoebot structure. (b) Reconfigurable circuit extension.

Figure 1 Amoebot model. The left figure shows an amoebot structure. The nodes indicate
X. The red edges indicate EX . The right figure shows an amoebot structure with c = 2 external
links between adjacent amoebots. The nodes on the boundary are the pins. The nodes within
the amoebots indicate the partition sets. An edge between a partition set PS and a pin p implies
p ∈ PS . Each color indicates another circuit. The figures were taken from [8].

In this paper, we consider the shortest path forest problem where, given a set of sources
and a set of destinations, the amoebots have to find a shortest path from each destination
to the closest source. Shortest paths are a fundamental problem in both centralized and
distributed systems and have also a number of important applications in the amoebot model.

For example, consider shape formation. Many algorithms for the amoebot model utilize
a canonical shape, e.g., a line, as an intermediate structure [6, 11]. However, this is rather
inefficient if the target structure is already close to the initial structure. For such cases,
Kostitsyna et al. proposed an algorithm that utilizes shortest paths to move amoebots
through the structure to their target positions [10]. Another application for shortest paths
is energy distribution [4, 16]. The amoebots require energy to perform their movements that
can be provided by other amoebots, e.g., amoebots located at external energy sources. In
order to minimize energy loss, it is more efficient to transfer the energy via a shortest path.

2 Geometric Amoebot Model

The (geometric) amoebot model was proposed by Derakhshandeh et al. [5]. The model places
a set of n anonymous finite state machines (called amoebots) on some graph G = (V, E).
Each amoebot occupies one node and every node is occupied by at most one amoebot. Let
the amoebot structure X ⊆ V be the set of nodes occupied by the amoebots. We assume that
GX = (X, EX) is connected, where GX = G∆|X is the graph induced by X. In the geometric
variant of the model, G is the infinite regular triangular grid graph G∆ = (V∆, E∆) (see
Figure 1a).

3 Reconfigurable Circuit Extension

In the reconfigurable circuit extension [8], each edge between two neighboring amoebots
u and v is replaced by c edges called external links with endpoints called pins, for some
constant c ≥ 1 that is the same for all amoebots. For each of these links, one pin is owned
by u while the other pin is owned by v. In this paper, we assume that neighboring amoebots
have a common labeling of their incident external links.

Each amoebot u partitions its pin set PS(u) into a collection C(u) of pairwise disjoint
subsets such that the union equals the pin set, i.e., PS(u) =

⋃
C∈C(u) C. We call C(u) the

pin configuration of u and C ∈ C(u) a partition set of u. Let C =
⋃

u∈S C(u) be the collection
of all partition sets in the system. Two partition sets are connected iff there is at least one
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external link between those sets. Let L be the set of all connections between the partition
sets in the system. Then, we call H = (C, L) the pin configuration of the system and any
connected component C of H a circuit (see Figure 1b). Note that if each partition set of C
is a singleton, i.e., a set with exactly one element, then every circuit of H just connects two
neighboring amoebots. An amoebot is part of a circuit iff the circuit contains at least one
of its partition sets. A priori, an amoebot u may not know whether two of its partition sets
belong to the same circuit or not since initially it only knows C(u).

Each amoebot u can send a primitive signal (a beep) via any of its partition sets C ∈ C(u)
that is received by all partition sets of the circuit containing C at the beginning of the next
round. The amoebots are able to distinguish between beeps arriving at different partition
sets. More specifically, an amoebot receives a beep at partition set C if at least one amoebot
sends a beep on the circuit belonging to C, but the amoebots neither know the origin of the
signal nor the number of origins.

We assume the fully synchronous activation model, i.e., the time is divided into syn-
chronous rounds, and every amoebot is active in each round. On activation, each amoebot
may update its state, reconfigure its pin configuration, and activate an arbitrary number of
its partition sets. The beeps are propagated on the updated pin configurations. The time
complexity of an algorithm is measured by the number of synchronized rounds required by
it.

4 Problem Statement and Our Contribution

Let S, D ⊆ X be two non-empty subsets. We call each amoebot in S a source, and each
amoebot in D a destination. A (S, D)-shortest path forest is a set of rooted trees that
satisfies the following properties.

1. For each s ∈ S, the set contains a tree Ts = (Vs, Es) rooted at s with Vs ⊆ X and
Es ⊆ EX .

2. For each s ∈ S, each leaf of Ts is in S ∪ D.

3. For each s1, s2 ∈ S, Vs1 and Vs2 are disjoint.

4. For each u ∈ D, there is a tree Ts such that u ∈ Vs, i.e., D ⊆
⋃

s∈S Vs.

5. For each s ∈ S and u ∈ Vs, the unique path from s to u in Ts is a shortest path from s

to u in GX , and s has the smallest distance to u among all amoebots in S.
We call an (S, X)-shortest path forest also an S-shortest path forest.

We consider the (k, ℓ)-shortest path forest problem ((k, ℓ)-SPF) for k, ℓ ≥ 1. Let two sets
S, D ⊆ X of amoebots be given such that |S| = k and |D| = ℓ, i.e., each amoebot u ∈ X

knows whether u ∈ S and whether u ∈ D. We say that X computes a (S, D)-shortest path
forest if each amoebot in

⋃
s∈S Vs \S knows its parent within the (S, D)-shortest path forest.

The goal of the amoebot structure is to compute a (S, D)-shortest path forest.
Note that we obtain the classical single pair shortest path problem (SPSP) for k = ℓ = 1,

and the classical single source shortest path problem (SSSP) for k = 1 and ℓ = n.
We will present two deterministic algorithms for (k, ℓ)-SPF. For hole-free amoebot struc-

tures, our shortest path tree algorithm solves the problem within O(log ℓ) rounds for k = 1,
and our shortest path forest algorithm within O(log n log2 k) for k ≥ 1. Note that the former
result implies that we can solve SPSP within O(1) rounds, and SSSP within O(log n) rounds.
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(a) Initial structure. (b) x-portal graph. (c) y-portal graph. (d) z-portal graph.
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(e) Axes.

Figure 2 Portal graphs. Each red connected component indicates a portal. We obtain the portal
graphs by fusing the amoebots of each portal to a single node.

5 Related Work

The reconfigurable circuit extension was introduced by Feldmann et al. [8]. They proposed
solutions for the leader election, compass alignment, and chirality agreement problems. Each
of these solutions requires O(log n) rounds w.h.p. Afterwards, they considered the recogni-
tion of various classes of shapes. An amoebot structure is able to detect parallelograms with
linear or polynomial side ratio within O(log n) rounds w.h.p. Further, an amoebot structure
is able to detect shapes composed of triangles within O(1) rounds if the amoebots agree
on a chiracilty. Feldmann et al. proposed the PASC algorithm which allows the amoebot
structure to compute distances along a path [8, 12]. With the help of it, Padalkin et al.
were able to solve the global maxima, spanning tree, and symmetry detection problems in
polylogarithmic time [12].

Shortest path problems are broadly studied both in the sequential and distributed set-
ting. In distributed setting, adjacent nodes are able to communicate via messages. The
CONGEST model limits the size of each message to a logarithmic number of bits (in n).
For weighted SSSP, Chechik and Mukhtar proposed a randomized algorithm that takes
Õ(

√
nd1/4 + d) rounds [1]. The best known lower bound is Ω(

√
n + d) [7, 13].

In the amoebot model, Kostitsyna et al. were the first to consider SSSP [9, 10]. By
applying a breadth-first search approach, they compute a shortest path tree within O(n2)
rounds. For simple amoebot structures without holes, they introduced feather trees – a
special type of shortest path trees. These can be computed within O(d) rounds where d is
the diameter of the structure. To our knowledge, there is no further work on shortest path
problems in the amoebot model or its reconfigurable circuit extension.

6 Results

Coy et al. [3] have solved the shortest path problem for hybrid communication networks
that can be modelled as grid graphs without holes. Our shortest path tree algorithm for
k = 1 adapts their approach as follows. The idea is to utilize portal graphs (see Figure 2).
The vertices (called d-portals) of the d-portal graph are the connected components if we
remove all edges that are not in parallel with the d-axis. Two d-portals are adjacent in the
d-portal graph iff there exists an edge between them. We can show that for triangular grid
graphs without holes, the distance between two nodes is half the sum of the distances of
their portals in the portal graphs. Note that this equation does not hold anymore if the
amoebot structure has holes. Further, it can be shown that the portal graph is a tree. This
allows us to utilize the Euler tour technique [14] in combination with the PASC algorithm
to compute distances in the portal graphs. We obtain the following result.

▶ Theorem 6.1. The shortest path tree algorithm computes an ({s}, D)-shortest path forest
within O(log ℓ) rounds.
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(a) Initial amoebot structure.

(b) Regions after the first phase.

(c) Regions after the second phase.

Figure 3 Regions. The red amoebots indicate the splitting portals. The encircled amoebots
indicate the splitting amoebots.

Our shortest path forest algorithm for k ≥ 1 takes a divide and conquer approach. The
idea is to split the amoebot structure into two regions, to recursively compute a shortest
path forest for both regions, and to finally merge them. In the following, we will elaborate
on these steps.

In the first step, we split the amoebot structure into smaller regions. For that, we make
use of so-called x-portals [2], i.e., connected components of the intersections of the amoebot
structure with an x-axis (see red amoebots in Figure 3a). Our goal is to split the amoebot
structure until each region intersects at most two x-portals with at least one source. We
split the amoebot structure in two phases. In the first phase, we split the amoebot structure
at all portals with at least one source and at most Ok further portals (see Figure 3b). The
splitting portal is part of both regions. In the second step, we split the amoebot structure
further at amoebots at bottlenecks (see Figure 3c). The splitting amoebot is part of both
regions. We can easily compute a shortest path forest for each resulting region. We omit
the details for these computations. Each region will maintain a shortest path forest.
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Figure 4 Propagation of the shortest path forest of the blue region into the green region. The
left figure shows the initial situation, and the right figure the result. The red amoebots indicate
the portal. The encircled amoebots indicate the sources. The pink and purple edges indicate the
shortest path trees.

Figure 5 Phases of the propagation procedure. The red amoebots indicate the portal. The
left figure indicates the amoebots visible by the portal. The right figure shows the phases. In the
first phase, we propagate the shortest path forest to the green amoebots. In the second phase, we
propagate the shortest path forest to the blue amoebots. We propagate the shortest path forests
through the amoebots with a dot.

In order to merge two adjacent regions and with that their shortest path forests, we
proceed as follows. We first propagate the shortest path forests of both regions into the
other region, respectively (see Figure 4). The propagation happens in two phases. In the
first phase, we propagate the shortest path forest to all amoebots visible by the splitting
portal (see green amoebots in Figure 5). We can show that each amoebot can determine its
parent by comparing the distances of two amoebots on the portal to their closest sources. In
the second phase, we propagate the shortest path forest to the remaining amoebots, which
may form several connected components. We propagate the shortest path forest into each
of those independently of each other. For each connected component, we can propagate the
shortest path forest through one of the its amoebots (see amoebots with a dot in Figure 5).
This allows us to apply our shortest path tree algorithm for k = 1 with that amoebot as the
source to finish the propagation (see Theorem 6.1).

Finally, we have to merge the resulting shortest path forests of both regions. By applying
the PASC algorithm on each path from the source to a leaf in both shortest path forests,
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each amoebots computes its distance to the closest source of both regions. This allows each
amoebot to determine the closest source of both regions and with that to choose its parent
in the merged shortest path forest.

Note that all steps (splitting, propagation, merging, etc.) make extensive use of the
geometric properties of the amoebot structure, e.g., that it is free of holes. By utilizing
O(k) portals to split the amoebot structure into regions and by merging the regions with
respect to a centroid decomposition tree, we obtain the following result.

▶ Theorem 6.2. The shortest path forest algorithm computes an (S, D)-shortest path forest
within O(log n log2 k) rounds.
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