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Abstract
We are considering the geometric amoebot model where a set of n amoebots is placed on the
triangular grid. An amoebot is able to send information to its neighbors, and to move via expansions
and contractions. Since amoebots and information can only travel node by node, most problems
relevant for programmable matter have a natural lower bound of Ω(D) where D denotes the diameter
of the structure. Inspired by the nervous and muscular system, Feldmann et al. have proposed the
reconfigurable circuit extension and the joint movement extension of the amoebot model with the
goal of breaking this lower bound.

In the joint movement extension, the way amoebots move is altered. Amoebots become able
to push and pull other amoebots. Feldmann et al. demonstrated the power of joint movements by
transforming a line of amoebots into a rhombus within O(log n) rounds. However, they left the
details of the extension open. The goal of this paper is therefore to formalize the joint movement
extension. In order to provide a proof of concept for the extension, we consider two fundamental
problems of modular robot systems: reconfiguration and locomotion.

We approach these problems by defining meta-modules of rhombical and hexagonal shape,
respectively. The meta-modules are capable of movement primitives like sliding, rotating, and
tunneling. This allows us to simulate reconfiguration algorithms of various modular robot systems.
Finally, we construct three amoebot structures capable of locomotion by rolling, crawling, and
walking, respectively.
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1 Introduction

Programmable matter consists of homogeneous nano-robots that are able to change the
properties of the matter in a programmable fashion, e.g., the shape, the color, or the density
[18]. We are considering the geometric amoebot model [3, 4, 5] where a set of n nano-robots
called amoebots is placed on the triangular grid. An amoebot is able to send information to
its neighbors, and to move by first expanding into an unoccupied adjacent node, and then
contracting into that node. Since amoebots and information can only travel node by node,
most problems relevant for programmable matter have a natural lower bound of Ω(D) where
D denotes the diameter of the structure. Inspired by the nervous and muscular system,
Feldmann et al. [9] proposed the reconfigurable circuit extension and the joint movement
extension with the goal of breaking this lower bound.
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In the reconfigurable circuit extension, the amoebot structure is able to interconnect
amoebots by circuits. Each amoebot can send a primitive signal on circuits it is connected
to. The signal is received by all amoebots connected to the same circuit. Among others,
Feldmann et al. [9] solved the leader election problem, compass alignment problem, and
chirality agreement problem within O(log n) rounds with high probability (w.h.p.). These
problems will be important to coordinate the joint movements. Afterwards, Padalkin et al.
[16] explored the structural power of the circuits by considering the spanning tree problem
and symmetry detection problem. Both problems can be solved within polylogarithmic time
w.h.p.

In the joint movement extension, the way amoebots move is altered. In a nutshell, an
expanding amoebot is capable of pushing other amoebots away from it, and a contracting
amoebot is capable of pulling other amoebots towards it. Feldmann et al. [9] demonstrated
the power of joint movements by transforming a line of amoebots into a rhombus within
O(log n) rounds. However, they left the details of the extension open. The goal of this
paper is therefore to formalize the joint movement extension. In order to provide a proof of
concept for the extension, we consider two fundamental problems of modular robot systems
(MRS): reconfiguration and locomotion. We study these problems from a centralized view
to explore the limits of the extension.

In the reconfiguration problem, an MRS has to reconfigure its structure into a given
shape. Examples for reconfiguration algorithms in the original amoebot model can be found
in [6, 7, 14, 15]. However, all of these are subject of the aforementioned natural lower bound.
To our knowledge, polylogarithmic time solutions were found for two types of MRSs: in the
nubot model [20] and crystalline atom model [2].

In the locomotion problem, an MRS has to move along an even surface as fast as possible.
In the original amoebot model, one would use the spanning tree primitive to move along
the surface [3]. However, we only obtain a constant velocity with that. In terrestrial envir-
onments, there are three basic types of locomotion: rolling, crawling, and walking [11, 13].
For each of these locomotion types, we will present an amoebot structure.

2 Geometric Amoebot Model

In this section, we introduce the geometric amoebot model [4]. We slightly deviate from the
original model to make it more suitable to our extension. A set of n amoebots is placed
on the infinite regular triangular grid graph G∆ = (V, E) (see Figure 1). An amoebot is
an anonymous, randomized finite state machine in form of a line segment. The endpoints
may either occupy the same node or two adjacent nodes. If the endpoints occupy the same
node, the amoebot has length 0 and is called contracted and otherwise, it has length 1 and
is called expanded. Every node of G∆ is occupied by at most one amoebot. Two endpoints
of different amoebots that occupy adjacent nodes in G∆ are connected by bonds (red edges).
An amoebot can move through contractions and expansions. We refer to [4] for more details.

Let the amoebot structure S ⊆ V be the set of nodes occupied by the amoebots. We say

⇒

(a) Expansion.

⇒

(b) Contraction.

⇒

(c) Handover.

Figure 1 Movement in the geometric amoebot model. Red lines indicate bonds. Blue amoebots
are expanding. Green amoebots are contracting.
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⇒ ⇒

(a) Expansion.

⇒ ⇒

(b) Contraction.

⇒

(c) Handover.

Figure 2 Movements in the extension. Red lines indicate bonds. Blue amoebots are expanding.
Green amoebots are contracting. The first two figures show a movement in 0.5 time steps.

that S is connected if and only if GS is connected, where GS = G∆|S is the graph induced
by S. Initially, S is connected. Also, we assume the fully synchronous activation model,
i.e., the time is divided into synchronous rounds, and every amoebot is active in each round.
We justify this assumption with the reconfigurable circuit extension. On activation, each
amoebot may perform a movement and update its state as a function of its previous state.
However, if an amoebot fails to perform its movement, it remains in its previous state. The
time complexity of an algorithm is measured by the number of synchronized rounds required
by it.

3 Joint Movement Extension

In the joint movement extension [9], the way the amoebots move is altered. The idea
behind the extension is to allow amoebots to push and pull other amoebots. The necessary
coordination of such movements can be provided by the reconfigurable circuit extension
[9, 16]. In the following, we formalize the joint movement extension. Joint movements are
performed in two steps.

In the first step, the amoebots remove bonds from GS as follows. Each amoebot can
decide to release an arbitrary subset of its currently incident bonds in GS . A bond is removed
if and only if either of the amoebots at the endpoints releases the bond. Let EL ⊆ ES denote
the set of all edges occupied by amoebots and ER ⊆ ES the set of the remaining bonds, and
GR = (S, EL ∪ ER) the resulting graph. We require that GR is connected since otherwise,
disconnected parts might float apart. We say that a connectivity conflict occurs if and only
if GR is not connected. Whenever a connectivity conflict occurs, the amoebot structure
transitions into an undefined state such that we become unable to make any statements
about the structure.

In the second step, each amoebot may perform one of the following movements within
the time period [0, 1]. A contracted amoebot may expand on one of the axes as follows (see
Figure 2a). At t = 0, the amoebot can reorientate itself and reassign each of its incident
bonds to one of its endpoints. At t ∈ [0, 1], the amoebots has a length of t. In the process,
the incident bonds do not change their orientations or lengths. As a result, the expanding
amoebot pushes all connected amoebots. An expanded amoebot may contract analogously
by reversing the contraction (see Figure 2b). Thereby, it pulls all connected amoebots.

Furthermore, a contracted amoebot x occupying node u and an expanded amoebot y

occupying nodes v and w may perform a handover if there is a bond b between u and v, as
follows (see Figure 2c). At an arbitrary t ∈ [0, 1], we flip b = {u, v} and {v, w} such that
x becomes an expanded amoebot with endpoints occupying nodes u and v, y becomes a
contracted amoebot with both endpoints occupying w, and b becomes {v, w}. We have to
include the handover to ensure universality of the model since otherwise, it would not be
possible to move through a narrow tunnel.

In certain situations, the amoebots may not be able to perform their movements. We
distinguish between two cases. First, the amoebots may not be able to perform their move-
ments while maintaining their relative positions (see Figure 3a). We call that a structural
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⇒

(a) Structural conflicts and mappings. In the left figure, the expansions cause a structural conflict. In
the right figure, the amoebot structure can be mapped onto the triangular grid after the movement.

⇒

t = 0.0

⇒

t = 0.4 t = 1.0

(b) Collision. Initially, we have a valid amoebot structure given (t = 0). The resulting amoebot structure
can be mapped on G∆ (t = 1). However, for t ∈ [0.25, 0.75], parts of the structure collide.

Figure 3 Joint movements. Red lines indicate bonds. Blue amoebots are expanding horizontally.

conflict. Second, parts of the structure may collide into each other. More precisely, a col-
lision occurs if there is a t ∈ [0, 1] such that two non-adjacent bonds intersect at some
point (see Figure 3b). Whenever either a structural conflict or a collision occurs, the amoe-
bot structure transitions into an undefined state such that we become unable to make any
statements about the structure. The detection of structural conflicts and collisions is not
within the scope of this paper simply because we only consider movements where structural
conflicts and collisions cannot occur. We refer to [10] for more details.

Otherwise, at t = 1, we obtain a graph GM = (S, EM ) that can be mapped on the
triangular grid G∆ (see Figure 3a). In compliance with the orientations of all bonds and line
segments, the mapping of GM is unique except for translations since GR is connected. We
choose any mapping as our next amoebot structure. Afterwards, the amoebots reestablish
all possible bonds.

We assume that the joint movements are performed within look-compute-move cycles. In
the look phase, each amoebot observes its neighborhood and receives signals (beeps) from
other amoebots, according to the reconfigurable circuit structure of the system. In the
compute phase, each amoebot may perform computations, change its state, and decide the
actions to perform in the next phase (i.e., which bonds to release, and which movement to
perform). In the move phase, each amoebot may release an arbitrary subset of its incident
bonds, and perform a movement.

4 Proof of Concept

We now provide a proof of concept for the joint movement extension by considering two
fundamental problems: reconfiguration and locomotion.

In a first step, we combine multiple amoebots to meta-modules. In other models for
programmable matter and modular robots, meta-modules have proven to be very useful.
For example, they allow us to bypass restrictions on the reconfigurability [8, 19] and to
simulate (reconfiguration) algorithms for other models [1, 17]. We present two types of
meta-modules: meta-modules of rhombical and hexagonal shape. For these, we can show
various movement primitives (see Figures 4 and 5).

The meta-modules allow us to simulate reconfiguration algorithms for lattice-type MRSs
of similar shape if we can implement the same movement primitives. By simulating the
reconfiguration algorithm of Aloupis et al. [2] for rhombical robots (crystalline atoms) and
the reconfiguration algorithm of Hurtado et al. [12] for hexagonal robots, we obtain the
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⇒

(a) Contraction primitive.

⇒ ⇒ ⇒

(b) Reorientation primitive.

⇒ ⇒

(c) Realignment primitive.

⇒ ⇒

(d) Rotation primitive.

⇒
R1

R2
R3

⇒

(e) Slide primitive.

R
⇒ ⇒

⇒ ⇒
R

(f) k-tunnel primitive.

Figure 4 Movement primitives for rhombical meta-modules. Red meta-modules perform a pull
operation, and blue meta-modules a push operation.

following results.

▶ Theorem 4.1. There is a centralized reconfiguration algorithm for m hexagonal meta-
modules that requires O(m) rounds. Each module has to perform at most O(m) moves.

▶ Theorem 4.2. There is a centralized reconfiguration algorithm for m rhombical meta-
modules that requires O(log m) rounds and performs Θ(m log m) moves overall.

Finally, we consider amoebot structures capable of locomotion along an even surface.
There are three basic types of terrestrial locomotion: rolling, crawling, and walking [11, 13].
In the following, we will construct an amoebot structure for each type.

Our rolling amoebot structure imitates a continuous track that rotates around a set of
wheels. We build it from hexagonal meta-modules of alternating side lengths ℓ and ℓ − 1

⇒⇒⇒

(a) Switching primitive.

⇒R1

R2

H1

H2

⇒

(b) Rotation primitive.

Figure 5 Movement primitives for hexagonal meta-modules.
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⇒

⇒

⇒

⇒

Figure 6 Rolling structure. The blue meta-modules rotate clockwise around the green meta-
modules. We highlight one of the rotating meta-modules in a darker blue.

(see Figure 6). The structure consists of two parts: a connected substrate structure (green
meta-modules), and a closed chain of meta-modules rotating along the outer boundary of
the substrate (blue meta-modules). The amoebot structure moves by rotating the blue
meta-modules around the substrate (compare to Figure 5b). We obtain the initial structure
after two rotations. In doing so, the structure has moved a distance of 2 · ℓ. By performing
the movements periodically, we obtain the following theorem.

▶ Theorem 4.3. Our rolling structure composed of hexagonal meta-modules of alternating
side lengths ℓ and ℓ − 1 moves a distance of 2 · ℓ within each period of constant length.

Our crawling amoebot structure imitates earthworms. It consists of r rhombical meta-
modules of side length ℓ − 1 (see Figure 7). The amoebot structure moves by alternately
contacting and expanding its body (compare to Figure 4a) while utilizing the meta-module at
the front and at the end as an anchor, respectively. As a result, the contraction (expansion)
pulls (pushes) the structure to the front. By performing the movements periodically, we
obtain the following theorem.
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⇒

⇒

Figure 7 Crawling structure.

⇒

Figure 8 Walking structure.

▶ Theorem 4.4. A line of r rhombical meta-modules of side length ℓ − 1 moves a distance
of r−2

2 · ℓ every 2 rounds.

Our walking amoebot structure imitates millipedes. It consists of rhombical meta-
modules of side length ℓ − 1 (compare to Figure 8). Let p denote the number of legs.
The body and each leg consists of a line of q rhombical meta-modules. The structure moves
by moving the legs back and forth. For that, we simply apply the realignment primitive
(see Figure 4c) on all meta-modules within the legs. Note that we reach the initial amoebot
structure after two leg movements. Hence, we obtain the following theorem.

▶ Theorem 4.5. Our walking structure composed of rhombical meta-modules of side length
ℓ − 1 with p legs composed of q rhombical meta-modules moves a distance of 2 · q · ℓ within
each period of constant length.
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