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Abstract
We study the Fréchet queries problem. It is a data structure problem, where we are given a set S

of n polygonal curves and a distance threshold ρ. The data structure should support queries with
a polygonal curve q for the elements of S, for which the continuous Fréchet distance to q is at
most ρ. We study the case that the ambient space of the curves is 1-dimensional and show an
intimate connection to the well-studied rectangle stabbing problem. Using known data structures
for rectangle stabbing or orthogonal range searching this directly leads to a data structure with size
in O(n logt−1 n) and query time in O(logt−1 n + k), where k denotes the output size and t can be
chosen as the maximum number of vertices of either (a) the stored curves or (b) the query curves.
Note that we omit factors depending on the complexity of the curves that do not depend on n.

Related Version arXiv:2401.03762

1 Introduction

The Fréchet distance is a popular measure of similarity of two curves q and s. We focus
on a data structuring problem which we refer to as the Fréchet queries problem. Here, in
the preprocessing phase, we are given a set S of n polygonal curves of complexity at most
ts, a distance threshold ρ, and the complexity tq of the query time series. The task is to
store this set in a data structure that can answer the following type of queries efficiently:
For a polygonal curve q of complexity tq, output all curves in S that have Fréchet distance
at most ρ to q. We denote with the complexity of a curve the number of vertices that
defines it. Afshani and Driemel [2] studied this problem in 2018 for 2-dimensional curves
providing non-trivial upper and lower bounds for the exact case. Their data structure
is based on multi-level partition trees using semi-algebraic range searching and has size
in O

(
n(log log n)O(ts

2)
)

and uses query time in O
(√

n · logO(ts
2) n + k

)
, where k is the

output size and ts and tq are assumed to be constant. Recently, Cheng and Huang [6] have
generalized their approach for higher dimensions. Other works on variants of this problem
have focused on the approximate setting [4, 7, 8, 9, 10]. We study the exact setting and—
following previous work by Bringmann, Driemel, Nusser and Psarros [4] and Driemel and
Psarros [8]—we restrict the ambient space of the curves to be 1-dimensional, that is, they
are time series.

Preliminaries For any two points p1, p2 ∈ Rd, p1p2 is the directed line segment from p1
to p2. The linear interpolation of each pair of consecutive vertices of a sequence of vertices
s1, . . . , sts

∈ Rd is called a polygonal curve. This curve is also denoted as ⟨s1, . . . , sts
⟩. We

can represent polygonal curves as functions s : [1, ts] → Rd, where s(i+α) = (1−α)si+αsi+1
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Figure 1 The free space diagram Fρ(q, s) of two time series with a feasible path trough a feasible
sequence of cells C = ((1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 4), (4, 5)), which is drawn in grey.
Predicates (P1), (P2), (P3(1, 2)), (P4(3, 4)), (P5(1, 2, 3)) and (P6(3, 4, 4)) are true, because the points
pi are contained in the free space.

for i ∈ {1, . . . , ts − 1} and α ∈ [0, 1]. The (continuous) Fréchet distance between polygonal
curves q : [1, tq] → Rd and s : [1, ts] → Rd is defined as

dF(q, s) = inf
hq∈Fq,hs∈Fs

max
p∈[0,1]

∥q(hq(p)) − s(hs(p))∥2,

where Fq is the set of all continuous, non-decreasing functions hq : [0, 1] → [1, tq] with
hq(0) = 1 and hq(1) = tq, respectively Fs for s.

We show an intimate connection of the Fréchet queries problem to the following classical
problems studied in computational geometry. For rectangle stabbing, a set S of n axis-aligned
d-dimensional rectangles in Rd needs to be preprocessed into a data structure so that all
rectangles in S containing a query point q can be reported efficiently, ensuring that each
such rectangle is reported exactly once. Orthogonal range searching is its dual. Here, a
set S of n points in Rd is preprocessed into a data structure so that for a d-dimensional
axis-aligned query rectangle R all points contained in S can be reported efficiently, ensuring
that each such point is reported exactly once.

2 Predicates for Evaluating the Fréchet distance

In this section, we review the predicates used by Afshani and Driemel and how they enable
the evaluation of the Fréchet distance in a data structure context. For this, we first recall the
definition of the free space diagram from Alt and Godau [3]. For time series q : [1, tq] → R
and s : [1, ts] → R, the set Fρ(q, s) := {(x, y) ∈ [1, tq] × [1, ts] | |q(x) − s(y)| ≤ ρ} is called
free space diagram. Refer to Figure 1 for an example. They showed that there exists a
path in Fρ(q, s) from (1, 1) to (tq, ts) which is monotone in both coordinates if and only if
dF (q, s) ≤ ρ. For such a path, we say it is feasible.

We can decompose the rectangle [1, tq] × [1, ts] into (tq − 1) · (ts − 1) cells such that the
cell Cij = [i, i+1]× [j, j +1] corresponds to the part in the free space diagram defined by the
edges qiqi+1 and sjsj+1. By definition of the free space diagram, it follows that Cij ∩Fρ(q, s)
lies between two parallel lines. Therefore, we focus on the boundary of the cells Cij .

Our query algorithm will iterate over all possibilities of sequences of cells that a feasible
path could traverse in the free space diagram. In light of this, we call a sequence of cells
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C = ((i1, j1), . . . , (it, jt)) valid, if (i1, j1) = (1, 1), (it, jt) = (tq −1, ts−1), and (im+1, jm+1) ∈
{(im, jm + 1), (im + 1, jm)} for all m < t. The tuple (i, j) represents the cell Cij . Further, a
valid sequence of cells is called feasible in Fρ(q, s), if there exists a feasible path in Fρ(q, s)
traversing exactly the cells in C. The following predicates due to Afshani and Driemel [2]
can be used to decide whether a valid sequence of cells is feasible in Fρ(q, s). See Figure 1
for an example.

(P1) (Endpoint (start)) This predicate is true iff |s1 − q1| ≤ ρ.
(P2) (Endpoint (end)) This predicate is true iff |sts

− qtq
| ≤ ρ.

(P3(i, j)) (Vertex of s - edge of q) This predicate is true iff ∃ p3 ∈ qiqi+1 s.t. |p3 − sj | ≤ ρ.
(P4(i, j)) (Vertex of q - edge of s) This predicate is true iff ∃ p4 ∈ sjsj+1 s.t. |p4 − qi| ≤ ρ.
(P5(i, j, k)) (Monotone in q) This predicate is true iff ∃ p3, p5 ∈ qiqi+1 s.t. p3 lies not

after p5 on the time series q and |p3 − sj | ≤ ρ and |p5 − sk| ≤ ρ.
(P6(i, l, j)) (Monotone in s) This predicate is true iff ∃ p4, p6 ∈ sjsj+1 s.t. p4 lies not

after p6 on the time series s and |p4 − qi| ≤ ρ and |p6 − ql| ≤ ρ.

The following lemma verifies that the predicates can be used to test if the Fréchet distance
between two curves is at most a given value.

▶ Lemma 2.1 (Afshani and Driemel [2]). Let C = ((i1, j1), (i2, j2), . . . , (it, jt)) be a valid
sequence of cells. Then C is feasible in Fρ(q, s) if and only if the following predicates defined
by q, s and ρ are true: (P1) and (P2) and (P3(i, j)) if (i, j − 1), (i, j) ∈ C and (P4(i, j))
if (i − 1, j), (i, j) ∈ C and (P5(i, j, k)) if (i, j − 1), (i, k) ∈ C for j < k and (P6(i, l, j)) if
(i − 1, j), (l, j) ∈ C for i < l.

3 Simplification of the Predicates

Given a sequence of cells C and a time series s, we want to find intervals I1, . . . , Itq
such

that C is feasible in Fρ(q, s) if and only if qi ∈ Ii for all i, where q = ⟨q1, . . . , qtq ⟩ is a time
series with some additional properties. The intervals will be defined using the predicates.
Lemma 2.1 shows which predicates need to be true such that C is feasible in Fρ(q, s).

▶ Lemma 3.1. Let q = ⟨q1, . . . , qtq ⟩ and s = ⟨s1, . . . , sts⟩ be two time series. Then the
following holds for the predicates in the free space diagram Fρ(q, s):

(i) (P1) is true ⇔ q1 ∈ [s1 − ρ, s1 + ρ],
(ii) (P2) is true ⇔ qtq

∈ [sts
− ρ, sts

+ ρ],
(iii) (P3(i, j)) is true ⇔ if qi ≤ qi+1 : qi ≤ sj + ρ and qi+1 ≥ sj − ρ and

if qi ≥ qi+1 : qi ≥ sj − ρ and qi+1 ≤ sj + ρ,
(iv) (P4(i, j)) is true ⇔ qi ∈ [min{sj − ρ, sj+1 − ρ}, max{sj + ρ, sj+1 + ρ}],
(v) (P5(i, j, k) is true ⇔ (P3(i, j)) and (P3(i, k)) are true and one of the following holds:

|sj − sk| ≤ 2ρ, or
|sj − sk| > 2ρ and sj ≤ sk and qi ≤ sj + ρ and qi+1 ≥ sk − ρ, or
|sj − sk| > 2ρ and sj > sk and qi ≥ sj − ρ and qi+1 ≤ sk + ρ.

To determine the truth value of the monotone in s predicates (P6), we introduce the
new concept of forward and backward numbers fi(q) and bi(q). Here, we take advantage of
the fact that the direction of each edge of a time series can only be orientated forward or
backward with respect to the x-axis. Refer to Figure 2 as an example.

EuroCG’24
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Figure 2 Illustration of the values f2(s) = 5 and b5(s) = 9 for a time series s.

▶ Definition 3.2 (forward and backward numbers). For a time series q = ⟨q1, . . . , qtq ⟩ and
i ∈ {1, . . . , tq}, we denote by the forward number fi(q) ≤ tq (resp. backward number
bi(q) ≤ tq) the highest number such that ⟨qi − ρ, qfi(q) + ρ⟩ (resp. ⟨qi + ρ, qbi(q) − ρ⟩) is
oriented forward (resp. backward) and its Fréchet distance to the time series ⟨qi, . . . , qfi(q)⟩
(resp. ⟨qi, . . . , qbi(q)⟩) is at most ρ, i.e.,

fi(q) := max{k ∈ {i, . . . , tq} | dF(⟨qi, . . . , qk⟩, ⟨qi − ρ, qk + ρ⟩) ≤ ρ and qi − ρ ≤ qk + ρ},

bi(q) := max{k ∈ {i, . . . , tq} | dF(⟨qi, . . . , qk⟩, ⟨qi + ρ, qk − ρ⟩) ≤ ρ and qi + ρ ≥ qk − ρ}.

Note, that for all i ≤ x ≤ fi(q), it holds that dF(⟨qi, . . . , qx⟩, ⟨qi − ρ, qx + ρ⟩) ≤ ρ and
qi−ρ ≤ qx+ρ. Respectively, for bi(q). The next lemma shows how the forward and backward
numbers can be used to determine values of the predicates (P6). To decide whether a valid
sequence of cells is feasible or not in Fρ(q, s), predicate (P6(i, l, j)) needs to be true only if
all predicates (P6(x, y, j)) need to be true with i ≤ x < y ≤ l by Lemma 2.1.

▶ Lemma 3.3. Let q = ⟨q1, . . . , qtq
⟩ and s = ⟨s1, . . . , sts

⟩ be time series, i, l ∈ {1, . . . , tq}
with i < l and j ∈ {1, . . . , ts − 1}. If sj ≤ sj+1 (resp. sj ≥ sj+1), then (P6(x, y, j)) is true
∀i ≤ x < y ≤ l if and only if fi(q) ≥ l (resp. bi(q) ≥ l) and (P4(x, j))is true ∀i ≤ x ≤ l.

4 Data Structure

In this section, we present two data structures solving the Fréchet queries problem. We
start with some assumptions, that can be made for the time series. Let s = ⟨s1, . . . , st⟩ be
a time series. Then, we can assume that either s2j−1 ≤ s2j ≥ s2j+1 for all j (M-shaped), or
s2j−1 ≥ s2j ≤ s2j+1 for all j (W-shaped). Moreover, we can assume that the complexity of
all time series in S is exactly ts by simply adding dummy vertices in the end otherwise.

By Lemma 2.1, a sequence of cells C is feasible in the free space diagram Fρ(q, s) if
and only if the predicates in Lemma 2.1 defined by C are true. The truth assignment of
all predicates (P1), (P2), (P3), (P4) and (P5) can be determined using intervals defined by
s and ρ. Furthermore, C can only be feasible in Fρ(q, s) if for all (i − 1, j), (l, j) ∈ C with
i ≤ l, the monotone in s predicate (P6(i, l, j)) is true. By Lemma 3.3, we can use the forward
number fi(q) in the case that sj ≤ sj+1 (i.e., j is odd if s is M-shaped) to determine whether
(P6(i, l, j)) is true. We define the forward number fi(C) as the highest such number l that
is needed for C to be feasible in Fρ(q, s). Respectively, if sj ≥ sj+1 (i.e., j is even if s is
M-shaped) for bi(q) and we define the backward number bi(C). Formally, we get

fi(C) =
{

l ≥ i, if ∃ (i − 1, j), (l, j) ∈ C s.t. j is odd and (l + 1, j) /∈ C,

i, otherwise;

bi(C) =
{

l ≥ i, if ∃ (i − 1, j), (l, j) ∈ C s.t. j is even and (l + 1, j) /∈ C,

i, otherwise.
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As C is valid there exists a unique j such that (i − 1, j), (i, j), . . . , (l, j) ∈ C. Hence, the
numbers fi(C) and bi(C) are well-defined.

The Data structure. Let SM be the set of stored time series that are M-shaped and SW

the set of those that are W-shaped. We will describe how SM is stored. The time series
in SW are stored in the same way after they were mirrored at the origin. Consequently,
for those the query algorithm mirrors the query time series q at the origin and is then the
same as for the time series in SM . For all valid sequences of cells C, we build two associated
rectangle stabbing data structures storing the time series in SM as tq-dimensional axis-
aligned rectangles. One for the case that the query time series q is M-shaped and the other
one for the case that q is W-shaped. Knowing the shape of q, Lemma 2.1 and 3.1 define for
every s ∈ SM an interval for every vertex qi of the query time series in which it must lie
such that C can be feasible in Fρ(q, s). For a time series s, we store the Cartesian product
of those tq intervals in the associated rectangle stabbing data structure. Note that even if
the complexity of the stored time series is greater than tq, we store only a tq-dimensional
rectangle for it.

The Query Algorithm. Let q be a query time series of complexity tq. The query al-
gorithm starts with computing the numbers f1(q), . . . , ftq (q), b1(q), . . . , btq (q). For all valid
sequences of cells C, we check whether fi(C) ≤ fi(q) and bi(C) ≤ bi(q) for all i. If so, we
do a query search in the rectangle stabbing data structure depending on C and the shape
of q with the point (q1, q2, . . . , qtq

) and output all time series associated with a rectangle
containing this point.

▶ Theorem 4.1. The Fréchet queries problem for constant parameters tq ≥ 2 and ts can be
solved with a data structure of size in O(n logtq−2 n) and query time in O(logtq−1 n + k),
where k is the size of the output (without duplicates).

Proof. The number of valid sequences of cells is constant and the forward and backwards
numbers can be computed in constant time because ts and tq are constant. So, the size and
the query time of the data structure follow by using the rectangle stabbing data structure by
Afshani, Arge and Larsen [1]. The correctness follows by the discussion above and the fact
that there exists a feasible valid sequences of cells in Fρ(q, s) if and only if dF (q, s) ≤ ρ. ◀

Using an orthogonal range searching data structure, it is possible to store the time series
in S as ts-dimensional points and the query time series defines ts-dimensional axis-aligned
rectangles depending on C. The data structure by Afshani, Arge and Larsen [1] leads to the
following.

▶ Corollary 4.2. The Fréchet queries problem for constant parameters tq and ts > 2 can
be solved with a data structure of size in O

(
n(log n/ log log n)ts−1)

that uses query time in
O(log n(log n/ log log n)ts−3 + k), where k is the size of the output (without duplicates).

Known lower bounds for rectangle stabbing and orthogonal range searching by Afshani,
Arge and Larsen [1] and by Chazelle [5] can be applied to the Fréchet queries problem,
because those problems can be transformed to it. Consider a data structure that solves the
Fréchet queries problem and operates on a pointer machine. If it uses nh space, it must use
query time in Ω(log n(log n/ log h)⌊t/2⌋−2 + k). And, if it uses query time in O(logc n + k),
where c is a constant, it must use space in Ω(n(log n/ log log n)⌊t/2⌋−1). In both cases, k

denotes the size of the output (without duplicates) and t = min{tq, ts}.

EuroCG’24
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