Capturing the Shape of a Point Set with a Line Segment

Nathan van Beusekom ${ }^{1}$, Marc van Kreveld ${ }^{2}$, Max van Mulken ${ }^{1}$, Marcel Roeloffzen ${ }^{1}$, Bettina Speckmann ${ }^{1}$, and Jules Wulms ${ }^{1}$
1 Department of Mathematics and Computer Science, TU Eindhoven [n.a.c.v.beusekom | m.j.m.v.mulken | m.j.m.roeloffzen | b.speckmann | j.j.h.m.wulms]@tue.nl
2 Department of Information and Computing Sciences, Utrecht University m.j.vankreveld@uu.nl

Abstract

Detecting groups or clusters in point sets is an important task in a wide variety of application areas. In addition to detecting such groups, the group's shape carries meaning. In this paper, we aim to represent a group's shape using a simple geometric object: a line segment. Specifically, given a radius r, we say a line segment represents the shape of a point set P if it is within Hausdorff distance r from each point $p \in P$. Finding the shortest such line segment is equivalent to stabbing a set of circles of radius r using the shortest line segment. We describe an algorithm for this task that runs in $O\left(n \log h+h^{2}\right)$ time, where n is the size of the point set and h is the size of its convex hull.

Related Version A full version of the paper is available at arxiv.org/abs/2402.12285

1 Introduction

Studying groups or clusters in point sets is an important task in a wide variety of application areas. There are many algorithms and approaches to find such groups; examples include the well-known k-means clustering [11] or DBSCAN [9]. In addition to the mere existence of such groups, the group's characteristics can carry important information as well. In wildlife ecology, for example, the perceived shape of herds of prey animals contains information about the behavioral state of animals within the herd [15]. Since shape is an abstract concept that can get arbitrarily complex, it is often useful to have a simplified representation of group shape that can efficiently be computed.

In this paper, we use a simple geometric object, a line segment, as a shape descriptor of a group of entities in a point-location data set. Specifically, our input is a set P of n points in \mathbb{R}^{2}, and a radius r. Our goal is to find an (oriented) line segment $q_{1} q_{2}$ that lies within Hausdorff distance r from each point $p \in P$. We call such a line segment a shape-representing line segment of P. We propose an algorithm that finds the shortest shape-representing line segment in $O\left(n \log h+h^{2}\right)$ time, where h is the size of the convex hull of P.

For a line segment $q_{1} q_{2}$ to be within Hausdorff distance r from a point p, it must intersect the circle of radius r centered at p. Thus, we reformulate the problem: given a set of circles C_{P} of radius r centered at points in P, we must find the shortest line segment $q_{1} q_{2}$ that intersects all circles in C_{P} (see Figure 1). We assume that the set P is in general position; no three points of P lie on a line, and that at most two circles of C_{P} intersect in a point.

Due to space constraints, most proofs are omitted; they can be found in the full version.

Figure 1 The line segment (blue) must hit every circle of radius r, centered at the points in P.

Related work. A number of shape descriptors have been proposed over the years. A few popular ones are the alpha shape of a point set [7] or the characteristic shape [6], both of which generate shape-representing polygons. Another way to generate the shape of a point set is to fit a function to the point set $[3,10,17]$. The set of problems of finding one or more geometric objects that intersect a different set of geometric objects is known as the set of stabbing problems [8], and several variants have been studied [2, 5, 14]. To our knowledge, stabbing a set of circles with the shortest line segment has not been studied. However, inverse variants that stab line segments with one or more circles have been studied [4, 13].

2 Computing the Shortest Shape-Representing Line Segment

Our algorithm is similar to the rotating calipers algorithm [16]. We start by finding the shortest shape-representing line segment for fixed orientation α, after which we rotate by π while maintaining the line segment, and return the shortest one. Note that, even though a shape-representing line segment does not exist for every orientation, we can easily find an initial orientation α for which it does exist using rotating calipers; these are the orientations at which the rotating calipers have width $\leq 2 r$. Although, our input point set P can be of any shape, the following lemma shows that it suffices to consider only its convex hull $\mathrm{CH}(P)$.

Lemma 2.1. If a line segment $q_{1} q_{2}$ intersects all circles defined by the vertices of the convex hull $C H(P)$, then $q_{1} q_{2}$ also intersects all circles defined by the points in P.

Proof. Since $q_{1} q_{2}$ crosses each circle defined by $\mathrm{CH}(P)$, each vertex of $\mathrm{CH}(P)$ has a distance of at most r to $q_{1} q_{2}$. Any point on the edges of the convex hull are also at most r to $q_{1} q_{2}$, by definition. All other points in P are inside the convex hull and thus each point in P must have a distance of at most r to $q_{1} q_{2}$.

We can compute $\mathrm{CH}(P)$ in $O(n \log h)$ time, where h is the size of the convex hull [1, 12]. Observe that, if rotating calipers initially finds no orientation with width $>2 r$, then point set P can be enclosed by a circle of radius at most r, and the shortest shape-representing line segment is the center point of this enclosing circle. Hence, in the rest of this paper we assume that the shortest shape-representing line segment has non-zero length.

Fixed orientation. We describe how to find the shortest shape-representing line segment with fixed orientation α. Using rotating calipers [16], we can find all orientations in which a shape-representing line segment exists. We pick α such that such a solution exists; for ease

Figure 2 Two extremal tangents τ_{1} and τ_{2} for horizontal orientation α. The shortest line segment of orientation α that intersects all circles, ends at the boundary of the gray regions.
of exposition and without loss of generality, we assume α to be horizontal. Let the left/right half-circle of a circle c be the half-circle between $\pi / 2$ and $3 \pi / 2$ and between $3 \pi / 2$ and $5 \pi / 2$, respectively. Lemma 2.1 permits us to consider only points of P on the convex hull, thus for the remainder of this paper we use C_{P} to indicate the set of circles of radius r centered at the vertices of $\mathrm{CH}(P)$. We use $\mathcal{A}\left(C_{P}\right)$ to denote the circle arrangement of C_{P}.

Observe that every horizontal line that lies below the bottom-most top horizontal tangent τ_{1} and above the top-most bottom horizontal tangent τ_{2} of all circles crosses all circles (see Figure 2). If τ_{1} lies below τ_{2}, then there exists no horizontal line that crosses all circles.

To place $q_{1} q_{2}$ in the strip between τ_{1} and τ_{2}, we can define two regions R_{1}, R_{2} in which endpoints q_{1} and q_{2} must be placed such that the line segment between q_{1} and q_{2} intersects all circles (see Figure 2). The boundaries of R_{1} and R_{2} are defined by a convex sequence S_{1} and S_{2} of (in horizontal orientation) the right-most left arcs and left-most right arcs, delimited by the two tangents τ_{1}, τ_{2}, as well as these tangents themselves. If R_{1} and R_{2} intersect, then we can place a single point in their intersection at distance at most r from all points in P. Note that q_{1} and q_{2} must be on the convex sequences S_{1} and S_{2}, respectively; otherwise, we can move the endpoint onto the convex sequence, shortening $q_{1} q_{2}$ and still intersecting all circles.

- Lemma 2.2. For fixed orientation α, we can compute S_{1} and S_{2} in $O\left(h^{2}\right)$.

Next, we must place q_{1} and q_{2} on S_{1} and S_{2}, respectively, such that $q_{1} q_{2}$ is shortest. We show that $q_{1} q_{2}$ is the shortest line segment of orientation α when the tangents of S_{1} at q_{1} and S_{2} at q_{2} have equal slope. Vertices on S_{1} and S_{2} have a range of tangents (see Figure 3).

Lemma 2.3. Let S_{1} and S_{2} be two convex sequences of circular arcs, and let q_{1} and q_{2} be points on S_{1} and S_{2}, respectively, such that line segment $q_{1} q_{2}$ has orientation α. If the tangent on S_{1} at q_{1} and the tangent on S_{2} at q_{2} have equal slope, then $q_{1} q_{2}$ is minimal.

Observe that the length of $q_{1} q_{2}$ is unimodal between τ_{1} and τ_{2}. We can hence binary search in $O(\log h)$ time for the optimal placement of q_{1} and q_{2}. By Lemmata 2.2 and 2.3 we can compute the shortest shape-representing line segment of orientation α in $O\left(h^{2}\right)$ time.

Rotation. After finding the shortest line segment for a fixed orientation α, as described in the previous section, we sweep through all orientations α while maintaining $\tau_{1}, \tau_{2}, S_{1}$, S_{2}, and the shortest shape-representing line segment $q_{1} q_{2}$ of orientation α. We allow all of these maintained structures to change continuously as the orientation changes, and store the shortest shape-representing line segment found. Any time a discontinuous change would

EuroCG'24

Figure 3 Two convex sequences between τ_{1} and τ_{2}. There are multiple points on the left convex sequence that have the same tangent as the right yellow vertex. Still, there is only one line segment in horizontal orientation for which the tangents of its endpoints are equal (blue).
happen, we trigger an event to reflect these changes. We pre-compute and maintain a number of certificates in an event queue, which indicate at which orientation the next event occurs. This way we can perform the continuous motion until the first certificate is violated, recompute the maintained structures, repair the event queue, and continue rotation. We distinguish four types of events:

1. q_{1} or q_{2} moves onto/off of a vertex of S_{1} or S_{2};
2. τ_{1} or τ_{2} is a bi-tangent with the next circle on the convex hull;
3. τ_{1} or τ_{2} hits a (prospective) vertex of S_{1} or S_{2};
4. τ_{1} and τ_{2} are the same line.

Since the shortest line segment $q_{1} q_{2}$ in orientation α is completely determined by τ_{1}, τ_{2}, S_{1}, and S_{2}, the above list forms a complete description of all possible events. Thus, we maintain at most two certificates for events of type 1,2 , and 3 , and only a single certificate for type-4 events, which are stored in a constant-size event queue Q, ordered by appearance orientation. Insert, remove, and search operations on Q can hence be performed in $O(1)$ time.

Event handling. In the following descriptions, we assume that an event happens at orientation α, and that ε is picked such that no other events occur between $\alpha-\varepsilon$ and $\alpha+\varepsilon$. Some event may occur in two symmetric cases; one of each is omitted here.
(1) q_{1} / q_{2} moves onto/off of a vertex of S_{1} / S_{2}. We describe, without loss of generality, how to handle the event involving q_{1} and S_{1}; the case for q_{2} and S_{2} are analogous. See Figure 4 for an example of this event. Observe that, since vertices of S_{1} cover a range of tangents, there are intervals of orientations at which q_{1} remains at a vertex of S_{1}. As such, we describe two different cases for this event: q_{1} moves onto or off a vertex of S_{1}.

If q_{1} was moving over an arc of S_{1} at $\alpha-\varepsilon$ and encounters a vertex at α, then the movement path of q_{1} is then updated to remain on the encountered vertex. Additionally, we

Figure 4 When q_{1} / q_{2} is at a vertex of S_{1} / S_{2}, it stops moving.

Figure 5 When the defining circle of τ_{1} / τ_{2} changes, τ_{1} / τ_{2} is parallel to a convex hull edge.
place a new type-1 certificate into the event queue that is violated when q_{1} should move off of the vertex, e.g. when the final orientation covered by the vertex is reached.

- Lemma 2.4. Throughout the full π rotation, q_{1} / q_{2} moves onto/off of a vertex of S_{1} / S_{2} at most $O\left(h^{2}\right)$ times, and we can resolve each occurrence of such an event in $O(1)$ time.
(2) τ_{1} or τ_{2} is bi-tangent with the next circle on the convex hull. We describe, without loss of generality, how to handle the event involving τ_{1}; the case for τ_{2} is analogous. See Figure 5 for an example of this event. When τ_{1} is a bi-tangent of two circles defined by their centers $u, v \in P$ then, by definition of τ_{1}, u and v must both be the extremal points in the direction θ perpendicular to α. Therefore, (u, v) must be an edge on the convex hull. Suppose that, without loss of generality, u was the previous extremal vertex in direction $\theta-\varepsilon$, then v is extremal in direction $\theta+\varepsilon$. As such, τ_{1} belongs to u at $\alpha-\varepsilon$, and to v at $\alpha+\varepsilon$. When this happens, we insert a new type- 2 certificate into the event queue that is violated at the orientation of the next convex hull edge. Additionally, we recompute the certificates of type 3 and 4 that are currently in the event queue to reflect the updated τ_{1}.
- Lemma 2.5. Throughout the full π rotation, τ_{1} or τ_{2} are bi-tangent with another circle at most $O(h)$ times. The two circles that define such a bi-tangent are adjacent in the convex hull, and we can resolve each occurrence of such an event in $O(1)$ time.
(3) τ_{1} or τ_{2} hits a (prospective) vertex of S_{1} or S_{2}. We describe, without loss of generality, how to handle the event involving τ_{1} and S_{1}; the case for τ_{2} and S_{2} is analogous. Additionally, we can distinguish between the case where τ_{1} does not belong to an arc on S (Figure 6, event 3.1) and the case where it does (Figure 7, event 3.2). We will describe the prior case here. The latter is similar, but has different certificates; the differences are described below. Let vertex v be a vertex on convex sequence S_{1} that is intersected by τ_{1} at orientation α. Then either vertex v is on S_{1} at orientation $\alpha-\varepsilon$ but no longer on S_{1} at $\alpha+\varepsilon$, or vice versa.

If the arc of S_{1} intersecting τ_{1} is shrinking, then at orientation α, that arc is completely removed from S_{1}; vertex v becomes the endpoint of S_{1} and starts moving along the next arc of S_{1} with the intersection point between τ_{1} and S_{1}. If the affected arc or vertex appeared in a type-1 certificate in the event queue, it is updated to reflect the removal of the arc and the new movement of the vertex. Additionally, we place a new type-3 certificate into the event queue that is violated when τ_{1} intersects the next vertex on S_{1} (event 3.1), or when τ_{1} hits an intersection point between S_{1} and the defining circle of τ_{1} (event 3.2).

- Lemma 2.6. Throughout the full π rotation, τ_{1} or τ_{2} hits a vertex of S_{1} or S_{2} at most $O\left(h^{2}\right)$ times, and we can resolve each occurrence of such an event in $O(1)$ time.

Figure 6 When τ_{1} / τ_{2} hits a vertex of $\mathcal{A}\left(C_{P}\right)$, an arc may need to be added to S_{1} / S_{2}.

Figure 7 When τ_{1} / τ_{2} hits an intersection of its defining circle, the composition of S_{1} / S_{2} changes.
(4) τ_{1} and τ_{2} are the same line. When this event takes place, then τ_{1} and τ_{2} are the inner bi-tangent of their two respective defining circles. See Figure 8 for an example. We distinguish two different cases for this event: either there is a solution at $\alpha-\varepsilon$ and no solution at $\alpha+\varepsilon$, or vice versa.

If there was a solution at $\alpha-\varepsilon$ and there is none at $\alpha+\varepsilon$, we simply stop maintaining $q_{1} q_{2}, S_{1}$ and S_{2} until there exists a solution again. As such, we remove all type-1 and type-3 certificates from the event queue and place a new type-4 certificate into the event queue that is violated at the next orientation where τ_{1} and τ_{2} are the same line.

- Lemma 2.7. Throughout the full π rotation, τ_{1} and τ_{2} become the same line at most $O(h)$ times, and we can resolve each occurrence of such an event in $O(h)$ time.
- Theorem 2.8. Given a point set P consisting of n points and a radius r, we can find the shortest shape-representing line segment in $O\left(n \log h+h^{2}\right)$ time.

Figure 8 When τ_{1} and τ_{2} are the same line, they are an inner bi-tangent of their two defining circles.

3 Discussion

An obvious open question is whether the shortest shape-representing line segment can be computed in $O(n \log h)$. In the full version of this abstract, we show that we can actually compute the convex sequence in linear time, given the convex hull. The question is then whether the convex sequence can be traversed efficiently, without using the full circle arrangement $\mathcal{A}\left(C_{P}\right)$. We expect that this may be possible, yet, even this is not sufficient: Observe that in a regular k-gon with a diameter $2 r+\varepsilon$, a solution appears/disappears $O(n)$ times. Then, a linear-time convex sequence construction is not sufficient. Furthermore, the circles contributing to a convex sequence may be as far as $n / 2$ vertices apart on the convex hull, making amortization difficult. In the full version of this abstract we show that we can compute a $(1+\varepsilon)$-approximation in $O(n \log h+h / \varepsilon)$ time by sampling orientations and applying the fixed orientation algorithm.

References

1 Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discret. Comput. Geom., 16(4):361-368, 1996.
2 Timothy M. Chan, Thomas C. van Dijk, Krzysztof Fleszar, Joachim Spoerhase, and Alexander Wolff. Stabbing rectangles by line segments-how decomposition reduces the shallow-cell complexity. In 29th International Symposium on Algorithms and Computation, 2018.

3 Danny Z. Chen and Haitao Wang. Approximating points by a piecewise linear function. Algorithmica, 66(3):682-713, 2013.
4 Merce Claverol, Elena Khramtcova, Evanthia Papadopoulou, Maria Saumell, and Carlos Seara. Stabbing circles for sets of segments in the plane. Algorithmica, 80:849-884, 2018.
5 José Miguel Díaz-Báñez, Matias Korman, Pablo Pérez-Lantero, Alexander Pilz, Carlos Seara, and Rodrigo I Silveira. New results on stabbing segments with a polygon. Computational Geometry, 48(1):14-29, 2015.
6 Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern recognition, 41(10):3224-3236, 2008.
7 Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. On the shape of a set of points in the plane. IEEE Transactions on information theory, 29(4):551-559, 1983.
8 Herbert Edelsbrunner, Hermann A. Maurer, Franco P. Preparata, Arnold L. Rosenberg, Emo Welzl, and Derick Wood. Stabbing line segments. BIT Numerical Mathematics, 22:274-281, 1982.
9 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Second International Conference on Knowledge Discovery and Data Mining (KDD-96), pages 226-231. AAAI Press, 1996.
10 S. Louis Hakimi and Edward F. Schmeichel. Fitting polygonal functions to a set of points in the plane. CVGIP: Graphical Models and Image Processing, 53(2):132-136, 1991.
11 John A. Hartigan and Manchek A. Wong. Algorithm as 136: A k-means clustering algorithm. Journal of the royal statistical society., 28(1):100-108, 1979.
12 David G Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algorithm? SIAM journal on computing, 15(1):287-299, 1986.
13 Konstantin Kobylkin. Stabbing line segments with disks: complexity and approximation algorithms. In International Conference on Analysis of Images, Social Networks and Texts, pages 356-367. Springer, 2017.

38:8 Capturing the Shape of a Point Set with a Line Segment

14 Lena Marie Schlipf. Stabbing and Covering Geometric Objects in the Plane. PhD thesis, FU Berlin, 2014.
15 Ariana Strandburg-Peshkin, Damien R. Farine, Margaret C. Crofoot, and Iain D. Couzin. Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. eLife, 6:e19505, 2016.
16 Godfried T. Toussaint. Solving geometric problems with the rotating calipers. In IEEE Melecon, volume 83, page A10, 1983.
17 Der Perng Wang. A new algorithm for fitting a rectilinear x-monotone curve to a set of points in the plane. Pattern Recognition Letters, 23(1-3):329-334, 2002.

