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Abstract
Detecting groups or clusters in point sets is an important task in a wide variety of application areas.
In addition to detecting such groups, the group’s shape carries meaning. In this paper, we aim
to represent a group’s shape using a simple geometric object: a line segment. Specifically, given
a radius r, we say a line segment represents the shape of a point set P if it is within Hausdorff
distance r from each point p ∈ P . Finding the shortest such line segment is equivalent to stabbing a
set of circles of radius r using the shortest line segment. We describe an algorithm for this task that
runs in O(n log h + h2) time, where n is the size of the point set and h is the size of its convex hull.

Related Version A full version of the paper is available at arxiv.org/abs/2402.12285

1 Introduction

Studying groups or clusters in point sets is an important task in a wide variety of application
areas. There are many algorithms and approaches to find such groups; examples include the
well-known k-means clustering [11] or DBSCAN [9]. In addition to the mere existence of
such groups, the group’s characteristics can carry important information as well. In wildlife
ecology, for example, the perceived shape of herds of prey animals contains information about
the behavioral state of animals within the herd [15]. Since shape is an abstract concept that
can get arbitrarily complex, it is often useful to have a simplified representation of group
shape that can efficiently be computed.

In this paper, we use a simple geometric object, a line segment, as a shape descriptor of
a group of entities in a point-location data set. Specifically, our input is a set P of n points
in R2, and a radius r. Our goal is to find an (oriented) line segment q1q2 that lies within
Hausdorff distance r from each point p ∈ P . We call such a line segment a shape-representing
line segment of P . We propose an algorithm that finds the shortest shape-representing line
segment in O(n log h + h2) time, where h is the size of the convex hull of P .

For a line segment q1q2 to be within Hausdorff distance r from a point p, it must intersect
the circle of radius r centered at p. Thus, we reformulate the problem: given a set of circles
CP of radius r centered at points in P , we must find the shortest line segment q1q2 that
intersects all circles in CP (see Figure 1). We assume that the set P is in general position;
no three points of P lie on a line, and that at most two circles of CP intersect in a point.

Due to space constraints, most proofs are omitted; they can be found in the full version.
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Figure 1 The line segment (blue) must hit every circle of radius r, centered at the points in P .

Related work. A number of shape descriptors have been proposed over the years. A few
popular ones are the alpha shape of a point set [7] or the characteristic shape [6], both of
which generate shape-representing polygons. Another way to generate the shape of a point
set is to fit a function to the point set [3, 10, 17]. The set of problems of finding one or more
geometric objects that intersect a different set of geometric objects is known as the set of
stabbing problems [8], and several variants have been studied [2, 5, 14]. To our knowledge,
stabbing a set of circles with the shortest line segment has not been studied. However, inverse
variants that stab line segments with one or more circles have been studied [4, 13].

2 Computing the Shortest Shape-Representing Line Segment

Our algorithm is similar to the rotating calipers algorithm [16]. We start by finding the
shortest shape-representing line segment for fixed orientation α, after which we rotate by π

while maintaining the line segment, and return the shortest one. Note that, even though a
shape-representing line segment does not exist for every orientation, we can easily find an
initial orientation α for which it does exist using rotating calipers; these are the orientations
at which the rotating calipers have width ≤ 2r. Although, our input point set P can be of
any shape, the following lemma shows that it suffices to consider only its convex hull CH(P ).

▶ Lemma 2.1. If a line segment q1q2 intersects all circles defined by the vertices of the
convex hull CH(P ), then q1q2 also intersects all circles defined by the points in P .

Proof. Since q1q2 crosses each circle defined by CH(P ), each vertex of CH(P ) has a distance
of at most r to q1q2. Any point on the edges of the convex hull are also at most r to q1q2, by
definition. All other points in P are inside the convex hull and thus each point in P must
have a distance of at most r to q1q2. ◀

We can compute CH(P ) in O(n log h) time, where h is the size of the convex hull [1, 12].
Observe that, if rotating calipers initially finds no orientation with width > 2r, then point
set P can be enclosed by a circle of radius at most r, and the shortest shape-representing
line segment is the center point of this enclosing circle. Hence, in the rest of this paper we
assume that the shortest shape-representing line segment has non-zero length.

Fixed orientation. We describe how to find the shortest shape-representing line segment
with fixed orientation α. Using rotating calipers [16], we can find all orientations in which a
shape-representing line segment exists. We pick α such that such a solution exists; for ease
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Figure 2 Two extremal tangents τ1 and τ2 for horizontal orientation α. The shortest line segment
of orientation α that intersects all circles, ends at the boundary of the gray regions.

of exposition and without loss of generality, we assume α to be horizontal. Let the left/right
half-circle of a circle c be the half-circle between π/2 and 3π/2 and between 3π/2 and 5π/2,
respectively. Lemma 2.1 permits us to consider only points of P on the convex hull, thus for
the remainder of this paper we use CP to indicate the set of circles of radius r centered at
the vertices of CH(P ). We use A(CP ) to denote the circle arrangement of CP .

Observe that every horizontal line that lies below the bottom-most top horizontal tangent
τ1 and above the top-most bottom horizontal tangent τ2 of all circles crosses all circles (see
Figure 2). If τ1 lies below τ2, then there exists no horizontal line that crosses all circles.

To place q1q2 in the strip between τ1 and τ2, we can define two regions R1, R2 in which
endpoints q1 and q2 must be placed such that the line segment between q1 and q2 intersects
all circles (see Figure 2). The boundaries of R1 and R2 are defined by a convex sequence
S1 and S2 of (in horizontal orientation) the right-most left arcs and left-most right arcs,
delimited by the two tangents τ1, τ2, as well as these tangents themselves. If R1 and R2
intersect, then we can place a single point in their intersection at distance at most r from all
points in P . Note that q1 and q2 must be on the convex sequences S1 and S2, respectively;
otherwise, we can move the endpoint onto the convex sequence, shortening q1q2 and still
intersecting all circles.

▶ Lemma 2.2. For fixed orientation α, we can compute S1 and S2 in O(h2).

Next, we must place q1 and q2 on S1 and S2, respectively, such that q1q2 is shortest. We
show that q1q2 is the shortest line segment of orientation α when the tangents of S1 at q1
and S2 at q2 have equal slope. Vertices on S1 and S2 have a range of tangents (see Figure 3).

▶ Lemma 2.3. Let S1 and S2 be two convex sequences of circular arcs, and let q1 and q2
be points on S1 and S2, respectively, such that line segment q1q2 has orientation α. If the
tangent on S1 at q1 and the tangent on S2 at q2 have equal slope, then q1q2 is minimal.

Observe that the length of q1q2 is unimodal between τ1 and τ2. We can hence binary
search in O(log h) time for the optimal placement of q1 and q2. By Lemmata 2.2 and 2.3 we
can compute the shortest shape-representing line segment of orientation α in O(h2) time.

Rotation. After finding the shortest line segment for a fixed orientation α, as described
in the previous section, we sweep through all orientations α while maintaining τ1, τ2, S1,
S2, and the shortest shape-representing line segment q1q2 of orientation α. We allow all of
these maintained structures to change continuously as the orientation changes, and store
the shortest shape-representing line segment found. Any time a discontinuous change would

EuroCG’24



38:4 Capturing the Shape of a Point Set with a Line Segment

τ1

τ2

Figure 3 Two convex sequences between τ1 and τ2. There are multiple points on the left convex
sequence that have the same tangent as the right yellow vertex. Still, there is only one line segment
in horizontal orientation for which the tangents of its endpoints are equal (blue).

happen, we trigger an event to reflect these changes. We pre-compute and maintain a
number of certificates in an event queue, which indicate at which orientation the next event
occurs. This way we can perform the continuous motion until the first certificate is violated,
recompute the maintained structures, repair the event queue, and continue rotation. We
distinguish four types of events:
1. q1 or q2 moves onto/off of a vertex of S1 or S2;
2. τ1 or τ2 is a bi-tangent with the next circle on the convex hull;
3. τ1 or τ2 hits a (prospective) vertex of S1 or S2;
4. τ1 and τ2 are the same line.

Since the shortest line segment q1q2 in orientation α is completely determined by τ1, τ2,
S1, and S2, the above list forms a complete description of all possible events. Thus, we
maintain at most two certificates for events of type 1, 2, and 3, and only a single certificate
for type-4 events, which are stored in a constant-size event queue Q, ordered by appearance
orientation. Insert, remove, and search operations on Q can hence be performed in O(1) time.

Event handling. In the following descriptions, we assume that an event happens at orienta-
tion α, and that ε is picked such that no other events occur between α − ε and α + ε. Some
event may occur in two symmetric cases; one of each is omitted here.

(1) q1/q2 moves onto/off of a vertex of S1/S2. We describe, without loss of generality,
how to handle the event involving q1 and S1; the case for q2 and S2 are analogous. See
Figure 4 for an example of this event. Observe that, since vertices of S1 cover a range of
tangents, there are intervals of orientations at which q1 remains at a vertex of S1. As such,
we describe two different cases for this event: q1 moves onto or off a vertex of S1.

If q1 was moving over an arc of S1 at α − ε and encounters a vertex at α, then the
movement path of q1 is then updated to remain on the encountered vertex. Additionally, we

α− ε α α+ ε

Figure 4 When q1/q2 is at a vertex of S1/S2, it stops moving.
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α− ε α α+ ε

Figure 5 When the defining circle of τ1/τ2 changes, τ1/τ2 is parallel to a convex hull edge.

place a new type-1 certificate into the event queue that is violated when q1 should move off
of the vertex, e.g. when the final orientation covered by the vertex is reached.

▶ Lemma 2.4. Throughout the full π rotation, q1/q2 moves onto/off of a vertex of S1/S2 at
most O(h2) times, and we can resolve each occurrence of such an event in O(1) time.

(2) τ1 or τ2 is bi-tangent with the next circle on the convex hull. We describe, without
loss of generality, how to handle the event involving τ1; the case for τ2 is analogous. See
Figure 5 for an example of this event. When τ1 is a bi-tangent of two circles defined by
their centers u, v ∈ P then, by definition of τ1, u and v must both be the extremal points in
the direction θ perpendicular to α. Therefore, (u, v) must be an edge on the convex hull.
Suppose that, without loss of generality, u was the previous extremal vertex in direction
θ − ε, then v is extremal in direction θ + ε. As such, τ1 belongs to u at α − ε, and to v at
α + ε. When this happens, we insert a new type-2 certificate into the event queue that is
violated at the orientation of the next convex hull edge. Additionally, we recompute the
certificates of type 3 and 4 that are currently in the event queue to reflect the updated τ1.

▶ Lemma 2.5. Throughout the full π rotation, τ1 or τ2 are bi-tangent with another circle at
most O(h) times. The two circles that define such a bi-tangent are adjacent in the convex
hull, and we can resolve each occurrence of such an event in O(1) time.

(3) τ1 or τ2 hits a (prospective) vertex of S1 or S2. We describe, without loss of generality,
how to handle the event involving τ1 and S1; the case for τ2 and S2 is analogous. Additionally,
we can distinguish between the case where τ1 does not belong to an arc on S (Figure 6, event
3.1) and the case where it does (Figure 7, event 3.2). We will describe the prior case here.
The latter is similar, but has different certificates; the differences are described below. Let
vertex v be a vertex on convex sequence S1 that is intersected by τ1 at orientation α. Then
either vertex v is on S1 at orientation α − ε but no longer on S1 at α + ε, or vice versa.

If the arc of S1 intersecting τ1 is shrinking, then at orientation α, that arc is completely
removed from S1; vertex v becomes the endpoint of S1 and starts moving along the next arc
of S1 with the intersection point between τ1 and S1. If the affected arc or vertex appeared
in a type-1 certificate in the event queue, it is updated to reflect the removal of the arc and
the new movement of the vertex. Additionally, we place a new type-3 certificate into the
event queue that is violated when τ1 intersects the next vertex on S1 (event 3.1), or when τ1
hits an intersection point between S1 and the defining circle of τ1 (event 3.2).

▶ Lemma 2.6. Throughout the full π rotation, τ1 or τ2 hits a vertex of S1 or S2 at most
O(h2) times, and we can resolve each occurrence of such an event in O(1) time.
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α− ε α α+ ε

Figure 6 When τ1/τ2 hits a vertex of A(CP ), an arc may need to be added to S1/S2.

α− ε α α+ ε

Figure 7 When τ1/τ2 hits an intersection of its defining circle, the composition of S1/S2 changes.

(4) τ1 and τ2 are the same line. When this event takes place, then τ1 and τ2 are the
inner bi-tangent of their two respective defining circles. See Figure 8 for an example. We
distinguish two different cases for this event: either there is a solution at α − ε and no
solution at α + ε, or vice versa.

If there was a solution at α − ε and there is none at α + ε, we simply stop maintaining
q1q2, S1 and S2 until there exists a solution again. As such, we remove all type-1 and type-3
certificates from the event queue and place a new type-4 certificate into the event queue that
is violated at the next orientation where τ1 and τ2 are the same line.

▶ Lemma 2.7. Throughout the full π rotation, τ1 and τ2 become the same line at most O(h)
times, and we can resolve each occurrence of such an event in O(h) time.

▶ Theorem 2.8. Given a point set P consisting of n points and a radius r, we can find the
shortest shape-representing line segment in O(n log h + h2) time.

α− ε α α+ ε

Figure 8 When τ1 and τ2 are the same line, they are an inner bi-tangent of their two defining circles.
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3 Discussion

An obvious open question is whether the shortest shape-representing line segment can be
computed in O(n log h). In the full version of this abstract, we show that we can actually
compute the convex sequence in linear time, given the convex hull. The question is then
whether the convex sequence can be traversed efficiently, without using the full circle
arrangement A(CP ). We expect that this may be possible, yet, even this is not sufficient:
Observe that in a regular k-gon with a diameter 2r + ε, a solution appears/disappears O(n)
times. Then, a linear-time convex sequence construction is not sufficient. Furthermore, the
circles contributing to a convex sequence may be as far as n/2 vertices apart on the convex
hull, making amortization difficult. In the full version of this abstract we show that we can
compute a (1 + ε)-approximation in O(n log h + h/ε) time by sampling orientations and
applying the fixed orientation algorithm.
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