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——— Abstract

We study the recognition complexity of subgraphs of 2- and 3-connected planar cubic graphs.
Recently, we presented [ESA 2022] a quadratic-time algorithm to recognize subgraphs of planar
cubic bridgeless (but not necessarily connected) graphs, both in the variable and fixed embedding
setting (the latter only for 2-connected inputs). Here, we extend our results in two directions: First,
we present a quartic-time algorithm to recognize subgraphs of 2-connected planar cubic graphs in the
fixed embedding setting, even for disconnected inputs. Second, we prove NP-hardness of recognizing
subgraphs of 3-connected planar cubic graphs in the variable embedding setting.

1 Introduction

Given a planar graph G of maximum degree at most 3 (i.e., a subcubic planar graph), we
want to augment G by adding further vertices and edges to obtain a 3-regular (i.e., cubic)
planar graph H, which is then called a 3-augmentation of G. An embedding' of H induces
an embedding € of G, and each face f of £ may contain edges of E(H) — E(G), called new
edges, or even vertices of V(H) — V(G), called new vertices, or none of these. It is easy to
see that 3-augmentations always exist. However, this becomes non-trivial if we require H
to be k-connected for some k € {1,2,3}. See Fig. 1 for some problematic cases. Here, we
study whether a subcubic planar graph G admits some k-connected 3-augmentation H, or
equivalently, the recognition of subgraphs of k-connected cubic planar graphs. We consider
several variants where the input graph G is given with a fixed embedding £ and the desired
3-augmentation H must extend £, and /or where the input graph G is already k’-connected for
some k' € {0,1,2}. (If G is 3-connected, then H = G is the only connected 3-augmentation.)

! We consider combinatorial (crossing-free) embeddings with no specific choice of an outer face.

Gy C Gs C Gs C

Figure 1 For k = 1,2, 3, the planar subcubic graph G} (in black) admits a (k — 1)-connected
3-augmentation Hy (new vertices and edges in orange), but no k-connected 3-augmentation.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13-15, 2024.

This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



40:2 Recognizing 2- and 3-Connected Subgraphs of Planar Cubic Graphs

Previous Results. Motivated by the problem whether a given planar graph G is 3-edge-
colorable (whose complexity is still open), we recently considered the sufficient (although not
necessary) condition of whether G admits a bridgeless 3-augmentation. In fact, this can be
tested in quadratic-time in the variable embedding setting, and also in the fixed embedding
setting, provided that G is 2-connected [3].

Hartmann, Rollin and Rutter [5] studied, for each k,r € N, whether a planar graph G
can be augmented by adding edges (but no vertices!), to a k-connected r-regular planar
graph H. In particular, for r = 3, they show that the problem is NP-complete in the variable
embedding setting for all k& € {0,1, 2,3}, as well as in the fixed embedding setting when k = 3.
For the remaining cases of fixed embedding and &k € {0, 1,2} they present a polynomial-time
algorithm.

Let us also refer to [3] for more related work and other augmentation problems.

Our Results. We resolve the complexity of finding a k-connected 3-augmentation for a
given subcubic planar graph G in two new cases. See Fig. 2 and the following theorem.

» Theorem 1.1. Let G be an n-vertex planar graph with an embedding € and A(G) < 3.

1. We can compute, in time O(n*), a 2-connected 3-augmentation H extending £, or conclude
that none exists. If G is connected, then O(n?) time suffices.

2. It is NP-complete to decide whether G admits a 3-connected 3-augmentation.

Note that Statements 1 and 2 concern the fixed and variable embedding setting, respectively.
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Figure 2 Complexity of finding 3-augmentations. Colors indicate results in this paper and [3] .

» Remark. For our polynomial-time algorithms in the fixed embedding setting, we shall reduce
the problem to a particular version of the GENERALIZED FACTOR problem (definitions in
Section 2). This approach is similar to the treatment of 2-connected input graphs in [3]. But
here, for graphs containing bridges or consisting of several connected components, additional
tools and a more refined analysis are needed, which is also reflected in the increased runtime.

Statements marked with (%) are proven in the full version [4].

2 Preliminaries

A graph G = (V, E) is k-connected if G — S is connected for every set S C V of at most k — 1
vertices in (. Similarly, G is k-edge-connected if G — S is connected for every set S C E of
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at most k — 1 edges in G. We denote by 0(G) the largest k for which G is k-edge-connected.
If G has maximum degree at most 3, then G is k-connected if and only if §(G) > k.

For an integer ¢ > 3, let W, be the graph obtained from C,[JP; by subdividing each edge
in one cycle C; exactly once. See Fig. 3 (left) for an illustration. Consider a planar graph G
with an embedding &, and a vertex v € V(G) with degq(v) =€ > 3. A wheel-extension at v
is the graph and embedding obtained by replacing v with W,, and by attaching v’s incident
edges to the subdivision vertices of W, in a one-to-one non-crossing way. See Fig. 3 (right).

Figure 3 Left: C500P, with subdivision vertices. Right: Wheel-extension.

» Observation 2.1 (x). Let G be a graph (possibly containing multi-edges, but no loops), let
v € V(G) be a vertex with deg(v) > 3, and let G' be obtained from G by a wheel-extension
at v. Then 0(G') > min{0(G), 3}.

Generalized Factors. Let H be a graph with a set B(v) C {0,...,degy(v)} assigned to
each vertex v € V(H). Following Lovdsz, a spanning subgraph G C H is called a B-factor
of H if and only if deg,(v) € B(v) for every vertex v € V(H) [6]. Deciding whether a
graph H admits a B-factor is known as the GENERALIZED FACTOR problem. In general, the
GENERALIZED FACTOR problem is NP-complete [6]. Still, for certain well-behaved sets B(-),
the problem becomes polynomial-time solvable. A set B(v) is said to have a gap of length
¢ > 1 if there is an integer ¢ € B(v) such that i +1,...,i+ ¢ ¢ B(v), and i + ¢+ 1 € B(v).
If all gaps of each B(v) have length 1, then an algorithm by Cornuéjols can compute a
B-factor in time O(|V (H )\4) [1]. Moreover, if there are no two consecutive forbidden degrees
1,1 +1€{0,...,degy(v)} for any v, i.e., 4,9+ 1 ¢ B(v), then a B-factor can be computed
in time O(|V(H)| - |E(H)|) by a result of Sebd [7]. (The latter condition is slightly stronger
than requiring gaps of length at most 1, explaining the better runtime.)

3 2-Connected 3-Augmentations with a Fixed Embedding

We consider the 3-augmentation problem for arbitrary input graphs G and 2-connected
output graphs H, corresponding to the third column of the table in Fig. 2. For the variable
embedding setting, a quadratic-time algorithm is given in [3, Theorem 2]. For the fixed
embedding setting here, we present a quartic-time algorithm. We start with a reduction to
graphs G with §(G) > 2.

» Lemma 3.1 (). Let G be a planar graph with embedding £. There is a planar super-
graph G' 2 G with §(G") > 2 whose embedding &' extends £, such that G has a 2-connected
3-augmentation extending & if and only if G’ has one extending &'.

The proof is simple and just requires the following preprocessing of G: Replace all
vertices v € V(@) with degs(v) < 1 by copies of K3 as shown in Fig. 4 (left/middle).

» Lemma 3.2. Let G be a planar n-vertex graph with an embedding £, §(G) > 2, and
A(G) < 3. Then we can compute, in time O(n*), a 2-connected 3-augmentation H of G
extending £, or conclude that none exists. If G is connected, then time O(n?) suffices.
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Figure 4 Left/Middle: Replacement rules. Right: Gadget to avoid parallel edges.

Proof. The proof is by a linear-time reduction to an equivalent instance A of the GENERAL-
1ZED FACTOR problem, such that A fulfills the necessary condition to apply an O(n*)-time
algorithm by Cornuéjols [1, Section 3], or even an O(n?)-time algorithm by Sebé [7, Section 3].

We construct the 2-connected 3-augmentation H of G by adding new edges and vertices
into the faces of £. Therefore, the obtained embedding of H extends &.

Some faces of £ stand out, as these must contain new edges (and possibly vertices) to
reach 2-connectedness. We call these the connecting faces F,.. Obviously, all faces incident to
at least two connected components are connecting faces. Further, for each bridge e of G, the
unique face f incident to both sides of e is a connecting face because the only way to add new
connections between the components separated by e is through f. Recall that a 3-regular
graph is 2-connected if and only if it is connected and bridgeless, so these are the only two
types of connecting faces. All other faces are considered to be normal faces, denoted by F,.

For a connecting face f € F., let Gy be the subgraph of G on the vertices and edges
incident to f, let By be its blocks (i.e., maximal 2-connected components or bridges), and
let T’y be its block-cut-forest. We partition By into Sy U If U Ly:

Sy :={b € By | b forms a trivial (i.e., single-vertex) tree in T¢}  (singleton blocks)
Iy :=={b € By | bis an inner vertex of a non-trivial tree in 7).} (inner blocks)
Ly :={be€ By | bis a leaf in a non-trivial tree in T} (leaf blocks)

The GENERALIZED FACTOR instance A is a bipartite graph with bipartition classes V
and F. Here, V := {v € V | deg;(v) = 2} contains all vertices of G not yet having degree 3.
Similarly, vertices in F represent the faces of £. Edges of a B-factor of A will determine the
faces of £ containing the new edges. In particular, F contains one vertex corresponding to
each normal face in F), of £. Additional vertices in F are needed to handle the connecting
faces. For each connecting face f € F,, we add all blocks in By as vertices to F. (If there are
two faces f,g in € such that By and By contain blocks corresponding to the same subgraph
of G, then F contains two such vertices: one corresponding to the block in By, and another
to the block in By.)

In A, each x € F is incident to exactly the following v € V: If x is a normal face f, € F,,
then x is connected to all v € V that are incident to f,, in £. Otherwise, if x is a block b € By
for some connecting face f. € F., then x is connected to all v € V that are contained in b.
See Fig. 5 for an example.

Lastly, we need to assign a set B(z) C {0,1,...,deg,(x)} of possible degrees to each
vertex x € (VU F):

{1}, xeV
{0,2,3,...,deg,(x x € F,
B(z) = 11{0,1,2,...,deg,(z
{1,2,3,...,deg,(x
{2,3,4,...,deg,(x

x € Iy for some connecting face f € F.

H
h
}, @ € Ly for some connecting face f € F,
h

x € Sy for some connecting face f € F,

The order and size of A are linear in n as every vertex v € V(G) is contained in at most
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Figure 5 (a) A planar subcubic graph G. (b) Its corresponding GENERALIZED FACTOR instance.
Thick edges denote a possible solution. (c¢) A 2-connected 3-augmentation of G (with an indicated
wheel-extension).

three distinct faces, and at most three blocks of G for any face f of £. Moreover, A can be
computed in linear time; see the full version [4, Claim 3.3] for a proof.

Also in the full version [4, Claims 3.4 and 3.5], we formally prove that A admits a B-factor
if and only if G has a 2-connected 3-augmentation H. To convey an intuition, consider a
B-factor A’ of A. Every vertex v € V is incident to exactly one edge va € E(A’). Here, x is
either a face f, or there is a face f such that x is a block in By. In order to obtain H, we
add a new half-edge incident to v into f. Now, for each face f of £, we connect all half-edges
within f to a new vertex vy. Applying a wheel-extension (Obs. 2.1) to every vertex vy
of degree larger than 3, and replacing each vertex vy of degree 2 by the gadget in Fig. 4
(right), yields a 2-connected 3-augmentation of G. For the other direction, observe that each
degree-2-vertex of G is, in H, incident to a new edge inside a face f of £. A B-factor A’ of A
is obtained by adding vx to E(A’), where x € F is either f or a block in By (containing v).

It remains to argue that we can compute a B-factor of A efficiently. By inspecting the
sets B(z) for all z € (VUJF), we can see that none of them contains a gap of size 2 or greater.
Therefore, we are in a special case of the GENERALIZED FACTOR problem that can be solved,
in O(n*) time, by Cornuéjols’ algorithm [1].

A closer inspection yields that only for x € Sy the sets B(z) contain two forbidden
degrees. (Note that deg,(v) < 2 for all v € V: If there is a face f such that v is contained in
two blocks of G¢, then both edges incident to v are bridges; thus v is incident to no other
face. Otherwise, this follows from degs(v) < 2, i.e., v being incident to at most two faces.)
Therefore, if Sy = ) for all connecting faces f € F¢, then we can even apply the algorithm
by Sebd, taking only O(n?) time [7]. In particular, this is the case if G is connected. <

4 NP-Hardness for 3-Connected 3-Augmentations

In this section, we shall prove that deciding whether a given planar graph G admits a 3-
connected 3-augmentation is NP-complete. In particular, we show that the problem remains
NP-complete when restricted to connected graphs G. This implies the NP-completeness
results represented in the fourth column of the table in Fig. 2.

Recall that an embedding of any 3-connected 3-augmentation H induces an embedding £
of G, and for convenience, let us call the pair (H, &) a solution for G. Let us also define a
(< 2)-subdivision of a graph R to be the result of subdividing each edge in R with up to two
vertices. Note that, if R is 2-connected, then so is every (< 2)-subdivision of R.

EuroCG’'24
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» Lemma 4.1 (x). Let G be a graph obtained from a (< 2)-subdivision Ra of a 3-connected
planar graph R by attaching a degree-1 vertex to each subdivision vertex. Then G admits a
solution (H,E) if and only if no face of € has exactly one or two incident degree-1 vertices.

By Lem. 4.1, any graph G as described in the lemma admits a 3-connected 3-augmentation
if and only if it admits an embedding £ with no face incident to exactly one or two degree-1
vertices. Testing such graphs for such embeddings, however, turns out to be NP-complete.

» Theorem 4.2 (x). Deciding whether a given graph is a subgraph of a 3-regular 3-connected
planar graph is NP-complete.

Proof Idea. We reduce from the NP-complete problem PLANAR-MONOTONE-3SAT [2],
where an instance is a monotone 3SAT-formula ¥ together with a planar embedding Ey
of its bipartite variable-clause incidence graph Iy, such that (1) the z-axis contains each
variable, (2) no edge crosses the z-axis, and (3) each clause above (respectively below) the
x-axis is positive (respectively negative).

variable gadget positive splitter gadget positive clause gadget

Figure 6 Gadgets used in the NP-hardness reduction.

We obtain a graph Gy from the embedding ¢ using the gadgets in Fig. 6. Each variable
gadget is the start of one upper and one lower corridor, each with alternating red (standing
for FALSE) and blue (standing for TRUE) faces. Each positive splitter gadget splits one
upper corridor into two, and each positive clause gadget is the end of one upper corridor of
each appearing variable. Negative splitter and negative clause gadgets below the x-axis are
symmetric, with red and blue swapped. See Fig. 7 for a full example.

With some extra vertices and edges, the result is a (< 2)-subdivision of a 3-connected
3-regular graph R. Attaching degree-1 vertices as in Lem. 4.1 gives Gy, and we ask for an
embedding £ of Gy with no face having one or two degree-1 vertices. The crux is, that
except for the two highlighted faces in the clause gadgets, any pair of neighboring red and
blue faces has in total at most five subdivision vertices. Thus, for each variable x, either only
blue or only red faces in all splitters and corridors have degree-1 vertices. Setting x to TRUE
in the former and to FALSE in the latter case, satisfies all clauses. See Fig. 8 for an example.

In fact, W is satisfiable if and only if Gy admits an embedding as required by Lem. 4.1. <«

» Remark. The (< 2)-subdivision in the above reduction behaves quite similar to Giy. The
only problem is that a face f may have been chosen by exactly two incident degree-2 vertices
to contain their third (new) edge without creating a 2-edge-cut; namely, with a direct edge.
Thus, the above reduction also yields NP-completeness of recognizing induced subgraphs of
3-connected 3-regular planar graphs, even for 2-connected inputs with a unique embedding.
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Figure 7 Illustration of a PLANAR-MONOTONE-3SAT embedding £y and a corresponding
graph Gy. Extra vertices and edges added for 3-connectivity of R are shown in gray.

Figure 8 Part of the graph Gu together with a 3-connected 3-augmentation in orange. This
corresponds to a clause with two true variables (left with a splitter gadget, and middle) and one
false variable (right).
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