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Abstract
We study the subtrajectory clustering problem. Given a trajectory T , the goal is to identify a set of
subtrajectories such that each point on T is included in at least one subtrajectory, and subsequently
group these subtrajectories together based on similarity under the Fréchet distance. We wish to
minimize the set of groups. This problem was shown to be NP-complete by Akitaya, Brüning,
Chambers, and Driemel (2021), and the focus has mainly been on approximation algorithms. We
study a restricted variant, where we may only pick subtrajectories that start and end at vertices of
T , and give an approximation algorithm that significantly improves previous algorithms in both
running time and space, whilst being deterministic.
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1 Introduction

Buchin et al. [8] proposed the subtrajectory clustering problem. The goal is to partition
an input trajectory T of n vertices into subtrajectories, and to group these subtrajectories
into clusters such that all subtrajectories in a cluster have low Fréchet distance to one
another. The clustering under the Fréchet distance is a natural application of Fréchet
distance and a well-studied topic [9, 10, 11, 14, 15] that has applications in for example
map reconstruction [6, 7]. Throughout recent years, several variants of the algorithmic
problem have been proposed [1, 3, 5, 8]. Agarwal et al. [1] aim to give a general definition for
subtrajectory clustering by defining a function f that evaluates the quality of a set of clusters
C. Their definition, however, does not encompass the definition in [8] and has nuances
with respect to [3, 5, 13]. Regardless of variant, the subtrajectory clustering problem has
been shown to be NP-complete [1, 3, 8]. Agarwal et al. [1] therefore propose a bicriterial
approximation scheme. They present a heuristic algorithm for the following. Suppose that
we are given some ∆ ≥ 0. Let k denote the smallest integer such that there exists a clustering
C with k clusters with score f(C) ≤ ∆. The goal is to compute a clustering C ′ with
O(k polylog n) clusters and score f(C) ∈ Θ(∆).
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Figure 1 The trajectory T (blue, left) is covered by four pathlets. Each pathlet is given by a
reference curve (green, red, yellow) and the subcurve(s) of T the curve covers.

Akitaya et al. [3] present a less general, but more computable, bicriterial approximation
problem: suppose that we are given some ∆ ≥ 0 and integer ℓ ≥ 1. An (ℓ, ∆)-clustering is a
set C∗ of clusters (sets of subtrajectories) where (Figure 1):

C∗ covers T : for all points t on T , there is a cluster Z ∈ C∗ and curve S ∈ Z containing
t, and
every cluster Z ∈ C∗ contains a “reference curve” PZ with at most ℓ vertices, and
for every Z ∈ C∗, all subtrajectories Q ∈ Z have dF (PZ , Q) ≤ ∆.

Under the discrete Fréchet distance, [3] compute an (ℓ, 19∆)-clustering C of O(kℓ2 log kℓ) size,
using O(n) space and Õ(kn2) expected running time. Brüning et al. [5] compute, under the
continuous Fréchet distance, an (ℓ, Θ(∆))-clustering of O(kℓ log kℓ) size (where the constant
in Θ(∆) is considerably large). Their algorithm uses Õ(n3) space and has Õ(kn3) expected
running time. Recently, Conradi and Driemel [13] improve both the size and the distance of
the clustering. Under the continuous Fréchet distance, they compute an (ℓ, 11∆)-clustering
of O(k log n) size using Õ(n4ℓ) space and Õ(kn4ℓ + n4ℓ2) time.

Contribution. In this abstract, we give significant improvements in both space and running
time complexities, for the restricted case where the clustering needs to be target-discrete. A
clustering is target-discrete whenever all subtrajectories in a cluster are restricted to have
their endpoints lie on vertices of the input. Under this natural restriction, even under the
continuous Fréchet distance, our algorithm is near-quadratic and uses near-quadratic space.
In the full version we further lower the space used to O(nℓ log n). Additionally, in the full
version we investigate the unrestricted setting, as well as other variants.

2 Problem Statement

Curves and subcurves. A curve (or polyline) with n vertices is a piecewise-linear map
P : [1, n]→ Rd whose breakpoints (called vertices) are at each integer parameter, and whose
pieces are called edges. For 1 ≤ a ≤ b ≤ n, we define the subcurve P [a, b] of P that starts at
P (a) and ends at P (b). If a and b are integers, we call P [a, b] a vertex-subcurve of P .
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Fréchet distance. We define the Fréchet distance using the concept of the free space diagram.
For ∆ ≥ 0, the ∆-free space diagram is defined as follows.

▶ Definition 2.1 (Free space diagram). For two curves P and Q with n and m vertices,
respectively, the ∆-free space diagram ∆-FSD(P, Q) of P and Q is the set of all points
(x, y) ∈ [1, n]× [1, m] in their parameter space with Euclidean distance d(P (x), Q(y)) ≤ ∆.

The grid cells of the free space diagram are the squares [i, i + 1]× [j, j + 1] for integers i

and j. The obstacle space of ∆-FSD(P, Q) is its complement ([1, n]× [1, m]) \∆-FSD(P, Q).

Alt and Godau [4] observed that two curves P and Q have Fréchet distance at most ∆ between
them precisely if there exists a bimonotone path from (1, 1) to (n, m) in ∆-FSD(P, Q).

Input and output. We consider clustering a curve T with n vertices that we call the
trajectory. Given parameters ℓ ∈ N and ∆ ≥ 0, we consider constructing an (ℓ, ∆)-clustering
of T , which is a set of (ℓ, ∆)-pathlets:

▶ Definition 2.2 (Pathlet). An (ℓ, ∆)-pathlet is a tuple (P, I) where P is a curve with at
most ℓ vertices and I is a set of intervals in [1, n] where dF (P, T [a, b]) ≤ ∆ for all [a, b] ∈ I.

We call P the reference curve of (P, I). We call the pathlet target-discrete if all intervals
in I have integer endpoints. The coverage of a pathlet is Cov(P, I) =

⋃
I.

We can see a pathlet (P, I) as a cluster, where the center is P and all subtrajectories induced
by I get mapped to P . The coverage of a set of pathlets C is Cov(C) :=

⋃
(P,I)∈C

Cov(P, I). An

(ℓ, ∆)-clustering is a set C of (ℓ, ∆)-pathlets with Cov(C) = [1, n].

3 Quality of greedy algorithm

Subtrajectory clustering is closely related to the set cover problem. In this problem, we
have a discrete universe U and a family of sets S in this universe, and the goal is to pick a
minimum number of sets in S such that their union is the whole universe. For subtrajectory
clustering with target-discrete pathlets, we can set U = {[i, i + 1] | i ∈ [1, n − 1] ∩ N} and
S = {[i, i+1] ∈

⋃
I | there exists an (ℓ, ∆)-pathlet (P, I)}. That is, the universe is the set of

intervals parameterizing the edges of T , and S is the family of sets of edge parameterizations
of T that can be covered by a pathlet.

The decision variant of set cover is NP-complete [17]. However, the following greedy
strategy gives an O(log n) approximation of the minimal set cover size [12]. Suppose we have
picked a set Ŝ ⊆ S that does not yet cover all of U . The idea is then to add a set S ∈ S that
maximizes S ∩ (U \ Ŝ), and repeat the procedure until U is fully covered.

We use this greedy strategy to focus on constructing a pathlet that covers the most
uncovered edges of T . In other words, we greedily grow a set of pathlets C, each time adding
a (ℓ, ∆)-pathlet (P, I) that (approximately) maximizes the coverage ∥Cov(P, I)\Cov(C)∥.

4 Pathlet-preserving simplification

Naively, the subtrajectory clustering problem searches over an infinite number of reference
curves for the pathlets, namely, all curves in Rd. In prior work, Brüning et al. [5] used a
simplification of T that significantly reduces the search space at the cost of increasing ∆ by
a factor 11, with the assumption that reference curves should be line segments. We propose
an alternative solution that increases ∆ by only a factor 4, while also giving guarantees for
reference curves of arbitrary length.
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Our simplification algorithm combines the simplification algorithms of Guibas et al. [16]
and Agarwal et al. [2]. The simplification is essentially a greedy procedure. Consider
moving along T , starting at T (1). We look for a locally maximal value t for which
dF (T [1, t], T (1)T (t)) ≤ ∆ (see fig. 2), and we replace T [1, t] by the directed line segment
T (1)T (t). We then recursively apply this procedure to the subcurve T [t, n], until t = n.

Let S be the resulting curve. In the full version we prove Lemma 4.1.

▶ Lemma 4.1. The curve S has Fréchet distance at most ∆ to T , and has the property
that for any (ℓ, ∆)-pathlet (P, I), there exists an (ℓ + 2, 4∆)-pathlet (P ′, I) with the same
coverage, where P ′ is a subcurve of S. Moreover, we can construct S in O(n log n) time.

The consequence of simplification. The above result lets us focus on subcurves of S as
reference curves only (see Figure 3). Still, the endpoints of reference curves may lie anywhere
on S. However, any such reference curve S[a, b] is either a segment (if ⌊a⌋ = ⌊b⌋), or it can
be decomposed into three subcurves: S[a, ⌈a⌉], S[⌈a⌉, ⌊b⌋] and S[⌊b⌋, b], the second of which
is a vertex-subcurve, and the other two are a prefix and suffix of an edge, respectively. This
observation leads to the following algorithm (Algorithm 1) where we iteratively grow a set of
(ℓ, ∆′)-pathlets C (where ∆′ ∈ Θ(∆)). In essence, we run the greedy algorithm of Section 3.
Each iteration, let C be the current set of pathlets and let (P, I) be the (ℓ, ∆)-pathlet that
maximizes the coverage ∥Cov(P, I)\Cov(C)∥. We compute:

a vertex-subcurve with maximal coverage, and
a prefix or suffix of an edge e with maximal coverage.

Via our above argument, the coverage ∥Cov(P ′, I ′)\Cov(C)∥ of the pathlet (P ′, I ′) that
we compute with maximal coverage is at least 1

3 ’rd of ∥Cov(P, I)\Cov(C)∥.
In this abstract, we restrict ourselves to vertex-subcurves of S, constructing a vertex-to-

vertex (ℓ, ∆′)-pathlet (P, I), where P is a vertex-subcurve of S and ∆′ = 4∆. In the full
version, we show how to construct an optimal (2, ∆′)-pathlet (P, I), where P is a prefix or
suffix of an edge of S.

5 Constructing pathlets with a given reference curve

Suppose first that we have been given the reference trajectory S[i, i′] and need to construct
an optimal (ℓ, ∆′)-pathlet (S[i, i′], I) using it (for |S[i, i′]| ≤ ℓ and some given ∆′). We then
proceed as follows. For every integer j′ ∈ [1, n], we consider the minimum integer j for which
dF (S[i, i′], T [j, j′]) ≤ ∆′, and if it exists, we create a unique interval Ij′ = [j, j′] and add it
to I. This trivially maximizes the coverage ∥Cov(S[i, i′], I) \Cov(C)∥ for any set of pathlets
C, and thus gives an optimal pathlet given S[i, i′].

2∆

T (1)

Figure 2 A trajectory T with all points T (t) where dF (T [1, t], T (1)T (t)) ≤ ∆ indicated in orange.
The last point of each orange connected component may be used for the simplification.
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Construct a pathlet-preserving simplification (S, MST , MT S) of T

Set ∆′ ← 4∆
Set C ← ∅
while Cov(C) ̸= [1, n] do

Construct a vertex-to-vertex (ℓ, ∆′)-pathlet (Pver, Iver)
Construct a prefix (2, ∆′)-pathlet (Ppre, Ipre)
Construct a suffix (2, ∆′)-pathlet (Psuf , Isuf)

Set (P, I) ∈ {(Pver, Iver), (Ppre, Ipre), (Psuf , Isuf)} to be the pathlet with
maximum coverage over [1, n] \ Cov(C)

Add (P, I) to C
return C

Algorithm 1: SubtrajectoryClustering(T , ℓ, ∆)

Figure 3 The simplification S of T (top-left, red). The bottom-left clustering of T may be
achieved by the right set of paths in ∆′-FSD(S, T ). Endpoints of paths with the same color must
align vertically, and the horizontal projections of the paths must cover the whole vertical axis.

We compute the above intervals using a data structure that stores information about
certain points in the free space diagram. The types of queries we use are:

1. given integers i, i′, j and j′, determine if dF (S[i, i′], T [j, j′]) ≤ ∆′, and
2. given integers i, i′ and j′, determine if dF (S[i, i′], T [j, j′]) ≤ ∆′ for some integer j.

▶ Lemma 5.1. In O(n2 log n) time, we can preprocess S and T into a data structure of
O(n2 log n) size, such that queries of type 1 can be answered in O(log n) time, and queries
of type 2 can be answered in O(1) time.

With the above data structure, we compute the intervals Ij′ in O(n log n) time altogether.
First, compute the first integer j′ for which (i′, j′) is reachable by some point (i, j) in column
i. This takes j′ queries of type 2. All intervals Ik′ for k′ < j′ are empty. Next, we compute
the first integer j for which dF (S[i, i′], T [j, j′]) ≤ ∆′. This takes j queries of type 1. We then
set Ij′ = [j, j′].

Observe that by planarity of the free space diagram, no non-empty interval Ik′ = [k, k′]
with k′ ≥ j′ has k < j. This is because if Ik′ = [k, k′], then there exists a bimonotone path
from (i, k) to (i′, k′), which intersects the bimonotone path from (i, j) to (i′, j′). Thus there
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also exists a bimonotone path from (i, k) to (i′, j′), and since k < j, we would have that
Ij′ = [k, j′].

With the above observation, we can ignore the interval [1, j − 1] for the first endpoints
of the intervals Ik′ , for k′ > j′. It follows that we use only O(n) queries, of either type, to
determine all intervals. This gives the following result:

▶ Theorem 5.2. Let C be a set of target-discrete pathlets and ∆′ ≥ 0. Given the data
structure of Lemma 5.1, we can construct in O(n log n) time a target-discrete (ℓ, ∆′)-pathlet
(P, I) maximizing ∥Cov(P, I) \ Cov(C)∥.

6 Subtrajectory clustering

As stated at the end of Section 4, in the full version we give an algorithm for constructing an
optimal (2, ∆′)-pathlet (P, I) where P is a subsegment of an edge of S. This algorithm reports
an optimal pathlet in O(n2 log n) time, using O(n) space. Together with the algorithm of
Section 5, we can construct an optimal (ℓ, 4∆)-pathlet whose reference curve is either a
vertex-subcurve of S or a subsegment of an edge of S. The construction takes O(n2ℓ log n)
time and uses O(n2 log n) space. The greedy set cover argument of Section 3 yields:

▶ Theorem 6.1. Let T be a trajectory with n vertices, and let ℓ ∈ N and ∆ ≥ 0 be parameters.
In O(kn2ℓ log2 n) time and O(n2 log n) space, we can construct a target-discrete (ℓ, 4∆)-
clustering of T with at most 3k ln n + 1 pathlets, where k is the minimum number of pathlets
in an (ℓ, ∆)-clustering.
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