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Abstract
For all non-degenerate triangles T , we determine the minimum number of colors needed to color the
plane such that no max-norm isometric copy of T is monochromatic.
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1 Introduction

Modern combinatorial geometry is both deep and wide with powerful tools galore. Neverthe-
less, some of its questions, that may look quite simple at first glance, repel all the attempts
to answer them for several decades. Perhaps the most famous problem of this sort is due
to Nelson who asked in 1950 to find the chromatic number χ(R2) of the Euclidean plane
defined as the minimum number of colors needed to color the plane R2 such that no two
points at unit Euclidean distance apart are of the same color. Despite the long history of
research, it is only known that 5 ≤ χ(R2) ≤ 7, where the lower bound was obtained less than
five years ago, see [3, 7]. For multidimensional versions of this problem, see [2].

In their celebrated trilogy [4, 5, 6], Erdős, Graham, Montgomery, Rothschild, Spencer,
and Straus laid the foundation of Euclidean Ramsey theory which deals with questions of the
similar flavor but with more complex configurations forbidden to be monochromatic, see [9].
After a pair of points, the second simplest configuration is a (vertex set of a) triangle. We
denote by χ(R2, T ) the minimum number of colors needed to color the plane such that no
isometric (i.e., translated and rotated) copy of a triangle T is monochromatic. Erdős et al.
conjectured in [6, Conjecture 3] that χ(R2, T ) ≥ 3 for all triangles T except for an equilateral
one1, i.e., that two colors are never enough. Despite the efforts of various researchers, this
conjecture was verified only for a few special families of triangles, see [6, 15, 16]. From
the other direction, it is easy to see that χ(R2, T ) ≤ χ(R2) and thus χ(R2, T ) ≤ 7 for all
triangles T . Perhaps surprisingly, no better general upper bound is known, though Graham
conjectured, see [9, Conjecture 11.1.3] and [17], that χ(R2, T ) ≤ 3 for all triangles T , which
was confirmed for ‘not very flat’ triangles in [1]. Let us also mention that currently the best
bounds for multidimensional variant of this problem were recently obtained in [14].

In this paper, we continue the line of research from [8, 11, 12, 13] and consider a max-norm
counterpart of the aforementioned problem. To give a formal definition, let us recall some
basic notions and facts first. The `∞-distance between z1 = (x1, y1), z2 = (x2, y2) ∈ R2 is
given by ‖z1− z2‖∞ = max{|x1− x2|, |y1− y2|}. In contrast to the Euclidean case, it is easy

∗ Supported by ERC Advanced Grant ‘GeoScape’ No. 882971.
1 For an equilateral triangle 4, the same group of authors observed that χ(R2,4) = 2 and conjectured

in [6, Conjecture 1] that the corresponding two-coloring is unique, which was later disproved in [10].
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to find the exact value of χ(R2
∞) defined as the minimum number of colors needed to color

the plane such that no two points at unit `∞-distance apart are of the same color: see the
folklore proof that χ(R2

∞) = 4 in the left-hand side of Figure 1 or e.g. in [12, Section 2.1]
for more details. A subset T ′ ⊂ R2 is called an `∞-isometric copy of T ⊂ R2, if there
exists a bijection f : T → T ′ such that ‖z1 − z2‖∞ = ‖f(z1) − f(z2)‖∞ for all z1, z2 ∈ T .
Finally, we denote by χ(R2

∞, T ) the minimum number of colors needed to color the plane
such that no `∞-isometric copy of T is monochromatic. As earlier, it is easy to see that
χ(R2

∞, T ) ≤ χ(R2
∞) and thus χ(R2

∞, T ) is equal to either 2, or 3, or 4 for every triangle T .
We will show that all three of these options indeed take place.

Note that the value of χ(R2
∞, T ) depends only on the side lengths of T and is independent

of the particular position of T in the plane. For all positive a ≤ b ≤ c satisfying the triangle
inequality c ≤ a+ b, let T (a, b, c) be an arbitrary triple of points in the plane with pairwise
`∞-distances between them of a, b, c. This triangle is degenerate if c = a + b, otherwise it
is non-degenerate. Observe that if both fractions a

c and b
c are rational, then after a proper

scaling, we can assume without loss of generality that a, b, c are coprime integers. For all
such non-degenerate triangles T , our next result gives the exact value of χ(R2

∞, T ).

I Theorem 1.1. Let a ≤ b ≤ c be positive integers such that c < a+ b and gcd(a, b, c) = 1.
Put T = T (a, b, c). If (1) a+ b+ c is odd, or (2) a and b are odd, c ≥ a+ b− gcd(a, b), then
χ(R2

∞, T ) = 2. Otherwise, χ(R2
∞, T ) = 3.

Our next result covers the remaining case of ‘irrational’ non-degenerate triangles.

I Theorem 1.2. Let a ≤ b ≤ c be positive reals such that c < a+ b and a
c or b

c is irrational.
Put T = T (a, b, c). If a = q1ξ, b = q2η, c = p1ξ + p2η for some odd integers p1, p2, q1, q2 and
reals ξ, η such that ξ

η is irrational, then χ(R2
∞, T ) = 3. Otherwise, χ(R2

∞, T ) = 2.

For a degenerate triangle T = T (a, b, a+ b), several results follow from [8], where much
more general problems were studied. First, observe that every five-point subset of a nine-
element set {0, a, a+ b}2 ⊂ R2 contains an `∞-isometric copy of T and thus χ(R2

∞, T ) ≥ 3. If
a
b is irrational, the axiom of choice allows one to construct the corresponding three-coloring
of the plane showing that this bound is tight, see [8, Section 5]. Otherwise, after a proper
scaling, we can assume without loss of generality that a and b are coprime integers. In
case a ≡ b (mod 3), it is again not hard to construct a coloring of the plane matching the
aforementioned lower bound, see the right-hand side of Figure 1 for an illustration and [8,
Section 4] for a formal proof. In the remaining case a 6≡ b (mod 3), we conjecture that three
colors are not enough, which we verified for a+ b ≤ 7 by computer search.

I Conjecture 1.3. If a, b ∈ N are such that a 6≡ b (mod 3), then χ
(
R2

∞, T (a, b, a+ b)
)

= 4.

In what follows, we refer to `∞-distances and `∞-isometric copies simply as distances
and copies, respectively. Whenever we consider a two-coloring of the plane, we call these
colors red and blue or 0 and 1 for clarity. We also assume that side lengths a, b, c of a triangle
T = T (a, b, c) are reals satisfying a ≤ b ≤ c and c < a+ b, i.e., that T is non-degenerate.

We structure the reminder of the paper as follows. In Section 2, we give a necessary
condition for a triple of points to form a copy of T . In Section 3, we find some properties
satisfied by every red-blue coloring of the plane containing no monochromatic copies of T ,
for one of which, namely for Lemma 3.3, we do not provide a proof in this version of the
article. Though this proof is similar to others and based on an absolutely elementary idea
(if two vertices of T are red, then the third one must be blue, and vice versa), its exact
implementation is not that simple, and we have to omit it in order to meet the condition
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on manuscript length. Finally, in Section 4, we show that these properties are mutually
exclusive if T satisfies neither (1) nor (2), which would complete the proof of Theorem 1.1.
Note that Theorem 1.2 follows from these properties in a very similar manner, but we have
to omit this proof too.

Figure 1 A 4-coloring of the plane with no monochromatic points at unit distance apart, and a
3-coloring of the plane with no monochromatic copies of degenerate triangles T (a, b, a+ b) for all
coprime a, b ∈ N such that a ≡ b (mod 3). All squares are unit. Each colored square includes only
the bottom left vertex along with the left and the bottom sides from its boundary.

2 Copies of a non-degenerate triangle

I Lemma 2.1. Let z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3) ∈ R2 be a copy of T . Then at
least one of the differences |y1 − y2|, |y2 − y3|, |y3 − y1| equals either a, or b, or c. Moreover,
at least one of the differences |x1 + y1−x2− y2|, |x2 + y2−x3− y3|, |x3 + y3−x1− y1| equals
either a+ b− c, or c+ a− b, or b+ c− a.

Proof. The distance between two points is determined by the absolute value of the difference
of their either x- or y-coordinates. Therefore, one of the axes, say x, determines at least two
of the distances ‖z1 − z2‖∞, ‖z2 − z3‖∞, ‖z3 − z1‖∞ by the pigeonhole principle. Assume
that ‖z2 − z3‖∞ = |x2 − x3| = a, ‖z3 − z1‖∞ = |x3 − x1| = b. Observe that x3 cannot lie
between x1 and x2, since in that case we would get that c = ‖z1 − z2‖∞ ≥ |x1 − x2| = a+ b,
a contradiction. Hence, let us assume that x1 = x3 + b, x2 = x3 + a. This implies that
|x1 − x2| = b− a < c = ‖z1 − z2‖∞ and thus |y1 − y2| = c as desired. To prove the second
half of the statement, note that if y1 = y2 + c, then |x1 + y1 − x2 − y2| = b+ c− a, while if
y1 = y2−c, then |x1 +y1−x2−y2| = c+a−b. The same reasoning works in all the remaining
cases, corresponding to possible permutations of axes, indexes, and side lengths. J

This simple statement immediately gives the following sufficient condition for a horizontal
coloring, which is constant on every horizontal line y = y0, or for a diagonal coloring, which
is constant on every diagonal line x+ y = y0, to contain no monochromatic copies of T .

I Corollary 2.2. The following two statements are valid:

1. Let C̄(·) be a coloring of the line such that no two points at distance a, b, or c apart are
monochromatic. Then the corresponding horizontal coloring of the plane, defined by the
equation C(x, y) = C̄(y), contains no monochromatic copies of T .

2. Let C ′(·) be a coloring of the line such that no two points at distance a+ b− c, c+ a− b,
or b+ c− a apart are monochromatic. Then the corresponding diagonal coloring of the
plane, defined by the equation C(x, y) = C ′(x+ y), contains no monochromatic copy of T .
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3 Patterns in an arbitrary two-coloring

For this section, let us fix a red-blue coloring of the plane such that no copy of T is
monochromatic. We call a vector (x0, y0) its period (resp. anti-period) if for all x, y ∈ R, the
colors of two points (x, y) and (x+ x0, y + y0) are the same (resp. distinct). It is clear that
the addition of these vectors resembles the multiplication of signs: the sum of two periods or
two anti-periods is a period, while the sum of an anti-period and a period is an anti-period.

I Lemma 3.1. If one of the four vectors (±b, a− c), (a− c,±b) is not an anti-period, then
there exists a monochromatic axis-parallel segment of length c+ a− b. Similar statements
are valid for other permutations of the side length.

Proof. If (a− c, b) is not an anti-period, then there exist x1, y1 ∈ R such that the two points
(x1, y1) and (x1 +c−a, y1−b) are of the same color, say, both are red. It is easy to check that
this pair together with an arbitrary point from the segment {(x1+c, y) : y1−c ≤ y ≤ y1+a−b}
form a copy of T . Since there are no red copies of T , we conclude that this vertical segment
of length c+a− b is entirely blue, as desired. Similar arguments work for the other cases. J

I Corollary 3.2. If no axis-parallel segment of length c+ a− b is monochromatic, then all
eight vectors (±a, c − b), (c − b,±a), (±b, a − c), (a − c,±b) are anti-periods, and all six
vectors (2a, 0), (2b, 0), (2c, 0), (0, 2a), (0, 2b), (0, 2c) are periods. Moreover, if there also
exist n,m, k ∈ Z such that 0 < 2an+ 2bm+ 2ck ≤ a+ b− c, then four vectors (±c, b− a),
(b− a,±c) are anti-periods as well.

I Lemma 3.3. If a < b and there exists a monochromatic axis-parallel segment of length
c+ a− b, then there also exists a monochromatic axis-parallel line.

I Lemma 3.4. If the horizontal line y = 0 is red, then both lines y = a and y = b are blue.
Moreover, if there also exist n,m ∈ Z such that n+m is even and c− b ≤ an+ bm ≤ a, then
the line y = c is blue as well.

Proof. Each point (x0, a) on the line y = a forms a copy of T together with two red points
(x0− c, 0) and (x0 + b− c, 0). Thus the line y = a is entirely blue. Similarly, each point (x0, b)
on the line y = b forms a copy of T together with two red points (x0− c, 0) and (x0 +a− c, 0).
Thus the line y = a is also entirely blue.

To prove the second half of the statement, observe that the first half implies that the
color of the horizontal line y = an+ bm is determined by the parity of n+m. In particular,
if n+m is even, then this line is red. Now it is easy to see that each point (x0, c) on the line
y = c forms a copy of T together with two red points (x0 − b, an+ bm) and (x0 + a− b, 0).
Hence, the line y = c is also entirely blue, as desired. J

4 Proof of Theorem 1.1

First of all, note that the upper bound χ(R2
∞, T ) ≤ 3 is immediate from the first half of

Corollary 2.2 and the following special case of [18, Corrolary 2.1] due to Zhu.

I Theorem 4.1. Let a ≤ b ≤ c be positive integers such that c < a+ b and gcd(a, b, c) = 1.
Then there exists a three-coloring of the line such that no two points at distance a, b, or c
apart are monochromatic.

Therefore, to complete the proof, we only need to show that there exists a two-coloring of
the plane such that no copy of T is monochromatic if and only if either (1) or (2) holds. We
begin by showing the sufficiency of these conditions using the following two explicit colorings.
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I Lemma 4.2. If (1) holds, then no copy of T is monochromatic under a diagonal two-coloring
of the plane defined by C(x, y) = bx+ yc mod 2.

Proof. It is clear that bx1c 6≡ bx2c (mod 2) whenever x1, x2 ∈ R are at odd distance apart.
Since all three values a+ b− c, c+ a− b, and b+ c− a are odd by (1), the second half of
Corollary 2.2 completes the proof. J

I Lemma 4.3. If (2) holds, then no copy of T is monochromatic under a horizontal two-
coloring of the plane defined by C(x, y) = by/dc mod 2, where d = gcd(a, b).

Proof. Assume the contrary, namely that for some z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3) ∈
R2 that form a copy of T , the values by1/dc, by2/dc, by3/dc are of the same parity, say all
three are even. By Lemma 2.1, we can assume without loss of generality that y1 − y2 equals
either a, or b, or c. Note that the former two cases immediately yield a contradiction since
both fractions a/d and b/d are odd by (2). So in what follows we suppose that y1 − y2 = c.
In particular, this implies that ‖z1 − z2‖∞ = c, and thus one of the distances ‖z2 − z3‖∞,
‖z3 − z1‖∞ equals a, while the other one equals b.

It is easy to check that if ‖z2 − z3‖∞ = a, ‖z3 − z1‖∞ = b, then y1 − b ≤ y3 ≤ y2 + a.
Observe that both b(y1 − b)/dc = by1/dc − b/d and b(y2 + a)/dc = by2/dc + a/d are odd.
Moreover, the length of this segment is equal to a+ b− c which does not exceed d by (2).
Therefore, this segment is too short for the parity of by/dc to change from odd to even
and back again as y ranges between the endpoints. Hence, by3/dc is also odd, and we see
the contradiction. In the remaining case when ‖z2 − z3‖∞ = b, ‖z3 − z1‖∞ = a, we have
y1 − a ≤ y3 ≤ y2 + b, and the similar argument completes the proof. J

To prove the second half of the theorem, observe that if neither (1) nor (2) holds, then either
(3) a and b are of different parity, c is odd, or
(4) a and b are odd, c is even, and c < a+ b− gcd(a, b).
So it remains only to show that in each of these two cases, there are no two-colorings of the
plane with no monochromatic copies of T . Let us assume the contrary and fix an arbitrary
such red-blue coloring.

First, we suppose that no axis-parallel segment of length c + a − b is monochromatic.
On the one hand, the first half of Corollary 3.2 implies that all six vectors (2a, 0), (2b, 0),
(2c, 0), (0, 2a), (0, 2b), (0, 2c) are periods, and so are all their linear combinations. Since
gcd(2a, 2b, 2c) = 2, we conclude that both (2, 0) and (0, 2) are periods. Hence, every vector
such that both its coordinates are even integers is also a period. On the other hand, note
that a+ b− c is a positive even integer, and thus a+ b− c ≥ 2 = gcd(2a, 2b, 2c). Therefore,
we can also apply the second half of Corollary 3.2 in our case to find twelve anti-periods in
total including (a, c− b), (b, a− c) and (c, b− a). However, both coordinates of one of these
three vectors are even integers, and so this vector should be a period instead, a contradiction.

Second, suppose that there exists a monochromatic axis-parallel segment of length c+a−b.
Besides, note that each of the conditions (3) and (4) yields a < b. So we can apply Lemma 3.3
to find a monochromatic axis-parallel line. Without loss of generality, assume that this line
is given by the equation y = 0 and that it is entirely red. Now it is easy to deduce from
the first half of Lemma 3.4 that for all i, j ∈ Z such that i + j is odd, the horizontal line
y = ai+ bj is blue. If (3) holds, then we obtain a contradiction by taking i = b, j = −a.

If (4) holds, we use a slightly more complex argument. Observe that there exist n,m ∈ Z
such that an + bm = a − gcd(a, b). Since both a and b are odd, we conclude that n + m

is even. Moreover, the inequality c − b ≤ a − gcd(a, b) = an + bm is immediate from (4).
Therefore, we can aslo apply the second half of Lemma 3.4 in our case to deduce that the
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horizontal line y = ai+ cj is blue for all i, j ∈ Z such that i+ j is odd. Finally, we obtain
the desired contradiction by taking i = c, j = −a.
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