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Abstract
A fundamental question is whether one can maintain a maximum independent set (MIS) in polylog-
arithmic update time for a dynamic collection of geometric objects in Euclidean space. For a set of
intervals, it is known that no dynamic algorithm can maintain an exact MIS in sublinear update
time. Therefore, the typical objective is to explore the trade-off between update time and solution
size. Substantial efforts have been made in recent years to understand this question for various
families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects.

We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the plane
that maintains a constant-factor approximate MIS in polylogarithmic expected amortized update
time. Moreover, for a fully dynamic set of n unit disks in the plane, we show that a 12-approximate
MIS can be maintained with worst-case update time O(logn), and optimal output-sensitive reporting.

Related Version When details are missing, refer to the full version at arxiv.org/abs/2308.00979.

1 Introduction

The maximum independent set (MIS) problem is a fundamental problem in theoretical
computer science, and it is one of Karp’s 21 classical NP-complete problems [18]. In the MIS
problem, we are given a graph G = (V,E), and the objective is to choose a subset S ⊆ V of
maximum cardinality such that no two vertices in S are adjacent. The intractability of MIS
carries even under strong algorithmic paradigms. For instance, it is known to be hard to
approximate: no polynomial-time algorithm can achieve an approximation factor n1−ε (for
|V | = n and a constant ε > 0) unless P=ZPP [23]. In fact, even if the maximum degree of G
is bounded by 3, no polynomial-time approximation scheme (PTAS) is possible [4].

Geometric Independent Set. In geometric settings, the input is a collection L = {`1, . . . , `n}
of geometric objects, e.g., intervals, disks, squares, rectangles, etc., and we wish to compute a
maximum independent set in their intersection graph G: Each vertex in G corresponds to an
object in L, and each edge connects the vertices of two intersecting objects. Thus a MIS of
G corresponds to a maximum cardinality subset L′ ⊆ L of pairwise disjoint objects. A large
body of work has been devoted to geometric MIS problems, due to their wide applicability,
for example in scheduling [2], VLSI design [16], map labeling [1], and data mining [19, 3].
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Objects Approx. Ratio Update time Reference

Intervals 1 + ε O(ε−1 logn) [12]
Squares O(1) O(log5 n) amortized [5]
Arbitrary radii disks O(1) (logn)O(1) expec. amortized Theorem 1.2

Unit disks O(1) O(logn) worst-case Theorem 1.1
1 + ε n(1/ε)Ω(1) Full version [8]

f -fat objects in Rd Of (1) Of (logn) worst-case Full version [8]
d-dimensional hypercubes (1 + ε) · 2d Od,ε(log2d+1 n · log2d+1 U) [15]
Table 1 Summary of results on dynamic independent sets for n geometric objects.

Dynamic Geometric Independent Set. In dynamic settings, objects are inserted into or
deleted from the collection L over time. The typical objective is to achieve (almost) the same
approximation ratio as in the offline (static) case while keeping the update time, i.e., the
time to update the solution after insertion/deletion, as small as possible. We call this the
Dynamic Geometric Maximum Independent Set problem (for short, DGMIS).

Henzinger et al. [15] studied DGMIS for various geometric objects, such as intervals,
hypercubes, and hyperrectangles. Many of their results extend to the weighted version
of DGMIS, as well. Based on a lower bound of Marx [22] for the offline problem, they
showed that any dynamic (1 + ε)-approximation for squares in the plane requires Ω(n1/ε)
update time for any ε > 0, ruling out the possibility of sub-polynomial time dynamic
approximation schemes. On the positive side, they obtained dynamic algorithms with update
time polylogarithmic in both n and N , where the corners of the objects are in a [0, N ]d
integer grid, for any constant dimension d (therefore their aspect ratio is also bounded by N).
Bhore et al. [5] presented the first fully dynamic algorithms with polylogarithmic update time
for DGMIS, where the input objects are intervals and axis-aligned squares. For intervals,
they presented a fully dynamic (1 + ε)-approximation algorithm with logarithmic update
time. Later, Compton et al. [12] achieved a faster update time for intervals, by using a new
partitioning scheme. Recently, Bhore et al. [6] studied the MIS problem for intervals in the
streaming settings, and obtained lower bounds.

Moreover, Bhore et al. [7] studied the DGMIS problem in the context of dynamic map
labeling and presented dynamic algorithms for several subfamilies of rectangles that also
perform well in practice. Cardinal et al. [9] designed dynamic algorithms for fat objects in
fixed dimension d with sublinear worst-case update time. However, despite the remarkable
progress on the DGMIS problem in recent years, the following question remained unanswered.
I Question 1. Does an algorithm exist that, for a given dynamic set of disks in the plane,
maintains a constant-factor approximate MIS in polylogarithmic update time?

Our Contributions In this paper, we answer Question 1 in the affirmative (Theorems 1.1–
1.2); see Table 1. As a first step, we address the case of unit disks in the plane.

I Theorem 1.1. For a fully dynamic set of unit disks in the plane, a 12-approximate MIS can
be maintained with worst-case update time O(logn), and optimal output-sensitive reporting.

We prove Theorem 1.1 in the full version [8]. Similarly to classical approximation
algorithms for the static problem [16], we lay out four shifted grids such that any unit disk
lies in a grid cell for at least one of the grids, see Figure 1. For each grid, we maintain an
independent set that contains at most one disk from each grid cell, thus we obtain four
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Figure 1 (a) The four shifted grids G1, . . . , G4, which respectively do not intersect the blue,
green, yellow, and red disks. (b) The radius-1 squares inside grid cells, along with the center points
of the disks that lie completely inside grid cells, as crosses. In the bottom right, besides red squares
for G4, the squares of all other grids are added to show that the squares together partition the plane.

independent sets S1, . . . , S4 at all times, where the largest is a constant-factor approximation
of the MIS. Using the MIX algorithm [9], we can maintain an independent set S ⊂

⋃4
i=1 Si

of size Ω(max{|S1|, |S2|, |S3|, |S4|}) at all times, which is a O(1)-approximation of the MIS.
Moreover, our dynamic data structure for unit disks easily generalizes to fat objects of

comparable sizes in Rd for any constant dimension d ∈ N (see the full version [8]).
Our main result is a dynamic data structure for MIS of disks of arbitrary radii in R2.

I Theorem 1.2. For a fully dynamic set of disks of arbitrary radii in the plane, an O(1)-
approximate MIS can be maintained in polylogarithmic expected amortized update time.

To prove Theorem 1.2 in Section 2, we extend the core ideas developed for unit disks.
Finally, we note that, even for a dynamic set of unit disks in the plane, it is impossible

to maintain a (1 + ε)-approximate MIS with amortized update time nO((1/ε)1−δ) for any ε,
δ > 0, unless the Exponential Time Hypothesis (ETH) fails. This follows from a reduction to
a result by Marx [22], resembling the same result for hypercubes by Henzinger et al. [15].

2 Disks of Arbitrary Radii in the Plane

Summary of our data structures and update algorithms. When considering disks of
arbitrary radii, the general idea of our new data structure is to break the set of disks D
into subsets of disks of comparable radius. We will use several instances of shifted grids
Gi

1, . . . , G
i
4, as we also used in the unit disk case, where the grid cells now have side length

3i, are shifted by 3i
2 , and store disks with radius r, where 3i−1

4 < r ≤ 3i
4 , for i ∈ Z. The

resulting hierarchies of recursively 3× 3 subdivided grid cells form so-called nonatrees.
The main algorithmic ideas in using these nonatrees revolve around a bottom-up traversal

of the nonatree using a well-known greedy strategy [21, 13]. In the static case, greedily con-
sidering fat objects in ascending order of size allows us to find a constant-factor approximate
MIS. In the dynamic case, we want to mimic this idea by traversing paths in a nonatree
towards the root. However, the height of such a nonatree (even compressed) may be Θ(n)
for n disks (see Figure 2). Thus, for dynamic updates we cannot afford to traverse ascending
paths in their entirety with polylogarithmic update time.
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Figure 2 A nonatree with height linear in the number of stored disks, whose radii decay
exponentially. A compressed nonatree (with compressed nodes) has linear height.

Approximating a Maximum Independent Set. Regardless of the above observation, we
intend to traverse the nonatrees in bottom-up fashion, computing an O(1)-approximate MIS.
In the dynamic setting, we then ensure that we only have to update the nonatrees locally.

We start by explaining how we compute an O(1) approximation with our nonatrees. We
refer to the data structures Gi

k associated with each value i ∈ Z as a bucket, and we will
use only those buckets that store any disks, which we call relevant buckets. Within these
buckets, we call grid cells that contain disks the relevant grid cells. Furthermore, to prevent
computational overhead, our nonatrees are compressed, similar to compressed quadtrees [14,
Chapter 2]. Figure 3 illustrates the concepts in the previous and upcoming paragraph.

Two crucial high-level steps can be distinguished in our approach:

1. For each cell c ∈ Gi
k in our compressed nonatrees, we communicate upwards which disks

have been included in our independent set. To do so, we use obstacle disks, and only
input disks disjoint from obstacle disks can be chosen in the independent set. Once all
cells are handled, we output the largest independent sets computed for the nonatrees
N1, . . . , N4, to get an O(1)-approximation (Lemmata 6-8 in the full version [8]).

2. We want an obstacle disk for a cell c to cover the disks in the independent set selected
in the subtree rooted at c, to prevent overlaps. The obstacle disks for a cell c is hence
defined as the smallest enclosing disk of c. Additionally, if the independent set of the
children originates from more than one child, we do not add a disk from c, even if possible.
We still obtain an O(1) approximation under these constraints (Lemmata 9 and 10 in [8]).

I Lemma 2.1. For a set of disks in the plane, one of our shifted nonatrees N1, . . . , N4
maintains an independent set of size Ω(|OPT|), where OPT is a MIS.

Modifications to Support Dynamic Maintenance. We now highlight two changes in the
above data structures, to support efficient updates, while maintaining an O(1)-approximation.
Dynamic updates trigger bottom-up traversals through a nonatree, and these changes are
aimed at keeping updates local, leading to expected amortized polylogarithmic update time.

Obstacle cells. To support dynamic updates, we use slightly enlarged obstacle disks to
prevent cascading effects during updates. Obstacle disks are associated with so-called obstacle
cells of the nonatree Nk. Those cells that contribute to independent set Sk, are called true
obstacles. Cells of the nonatree with two or more children are also considered as obstacle cells
and are merge obstacles. The obstacle cells decompose the nonatree into ascending paths
in which each cell has relevant descendants in only one subtree (see Figure 4a). Inside an
ascending path, disks either intersect the obstacle disk of the (closest) obstacle cell below
them, or are part of Sk and therefore define a true obstacle cell (see Figures 4b and 4c).

I Lemma 2.2. A disk d in cell c ∈ Nk added to Sk can intersect only the disk do ∈ Sk in
the next obstacle cell co on the ascending path P (d) from c towards the root, if do even exists.



S. Bhore, M. Nöllenburg, C.D. Tóth, and J. Wulms 43:5

(a) (b)

i

i+ 1

i+ 2

bucket

N1Gi
1 Gi+1

1

Figure 3 (a) Two compatible grids in buckets i and i + 1, with (blue) disks of D in relevant
cells. In particular, the green cell in Gi

1 is relevant, but its (green) parent cell in Gi+1
1 is not. Three

(yellow) obstacle disks of Gi
1 are drawn in both grids. Only one blue disk in Gi+1

1 is disjoint from
an obstacle, and can be chosen in the greedy bottom-up strategy. (b) Part of the compressed
nonatree N1 corresponding to (a): The colored nodes of bucket i+ 2 correspond to colored squares
in (a) of the same color. Because the green cell in Gi+1

1 is not relevant, and does not have relevant
children in two subtrees, it is not represented in N1. Instead, the green node, corresponding to the
green relevant cell in Gi

1, directly connects to an ancestor in bucket i+ 2 (by the green edge).

Barrier disks. The naïve approach for a dynamic update of the independent set S in a
nonatree N would work as follows: When a new disk d is inserted or deleted, we find
a nonatree N and a cell c ∈ N associated with d; and then in an ascending path of N
from c to the root, we re-compute the disks in S to repair the greedy bottom-up property.
Unfortunately, we cannot afford this (recall Fig. 2). Instead, we run the greedy process only
locally, on an ascending path of N between two cells c1 ≺ c2 that contain disks s1, s2 ∈ S,
respectively. Here, ≺ denotes that c1 is a descendant of c2. The greedy process guarantees
that new disks added to S are disjoint from any smaller disk in S, including s1, but they
might intersect the larger disk s2 ∈ S. In this case, we remove s2 from S, keep it as a
”placeholder” in a set B of barrier disks, and ensure that S ∪ B is a dominating set of D.
This is one of the invariants that we maintain to show that the described changes still result
in a O(1)-approximate MIS (Lemma 16 in [8]). Furthermore, we maintain an assignment β
between barrier disks and the closest obstacle cells below them. Each barrier disk β(c1) lies
along an ascending path between two obstacle cells c1 ≺ c2. Importantly, another of our
invariants states that each ascending path contains at most one barrier disk.

(a) (b) (c)

Figure 4 (a) Decomposition of a nonatree into ascending paths between merge obstacle cells.
Only relevant leaves are drawn. One ascending path between merge nodes is highlighted in grey.
This path is shown (b) abstractly and (c) geometrically: The merge obstacle cells at the top and
bottom (with yellow obstacle disks) each have no disk of Sk associated with them. Every other
obstacle cell on the path also defines a brown obstacle disk. Each such cell contains a (dark blue)
disk of Sk, disjoint from the obstacle disk below it (indicated by red crosses). All (light blue) disks
on the (red) ascending path intersect the obstacle below. Green colors identify cells in (b) and (c).
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(a) (c)(b)

c2

c2

c2

β(c2)

c1 c1 c1 c1

Figure 5 Greedy updates in an ascending path: (a) There is no disk s2 ∈ Sk in c2 that can
intersect the new (brown) obstacle disks in the gray ascending path. (b) The disk s2 ∈ Sk in c2 is
turned into a barrier if it overlaps the obstacle disk of the highest new disk in the light green cell.
(c) If β(c2) exists, remove c2 from Sk and run the greedy algorithm up to the dark green cell.

Dynamic maintenance using farthest neighbor data structures. We now sketch how to
maintain our data structures with polylogarithmic update times. One key component is the
use of the dynamic farthest neighbor (DFN) data structure by Kaplan et al. [17] (generalizing
Chan’s famous dynamic convex hull data structure [10, 11]). We adapt this data structure to
efficiently find disks that are disjoint from obstacle disks in ascending paths of our nonatrees
in polylogarithmic time, and with polylogarithmic expected amortized update time.

When a disk d associated with a cell c ∈ Nk is inserted or deleted, then c lies in an
ascending path P (d) between two obstacle cells, say c1 � c ≺ c2. To update the independent
set Sk and the barrier disks Bk, in general we run the greedy algorithm in this path. The
greedy process queries the DFN data structure to find disks that are disjoint from any smaller
disk in Sk. Now we distinguish between three cases (see Figure 5): (a) If c2 is a merge
obstacle cell, then we are done. (b) However, if c2 is a true obstacle cell, then the last disk
added to Sk may intersect the disk s2 ∈ Sk associated with c2 (and only s2, by Lemma 2.2).
If so, we delete s2 from Sk, insert it into Bk, and assign it to the highest disk in Sk in P (d)
below s2.(c) Finally, if s2 was already associated with a barrier disk, β(c2), then adding s2 to
Bk would result in two barrier disks between consecutive obstacle cells, which is not allowed.
For this reason, if β(c2) exists, we remove s2 from Sk, run the greedy algorithm up to the
cell associated with β(c2), and then reassign β(c2) to the highest disk added to Sk.

3 Conclusions

One bottleneck in our framework is the nearest/farthest neighbor data structure [17, 20],
which provides only expected amortized polylogarithmic update time. This is the only reason
why our algorithm does not guarantee deterministic worst-case update time, and it does not
extend to balls in Rd for d ≥ 3, or to arbitrary fat objects in R2. It remains open whether
there is a dynamic nearest/farthest neighbor data structure in constant dimensions d ≥ 2 with
a worst-case polylogarithmic update and query time: Such a result would immediately carry
over to a fully dynamic algorithm for an approximate MIS for balls in higher dimensions.
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