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Abstract
Given two sets R and B of at most n points in the plane, we present efficient algorithms to find
a two-line linear classifier that best separates the “red” points in R from the “blue” points in B

and is robust to outliers. More precisely, we find a region WB bounded by two lines, so either a
halfplane, strip, wedge, or double wedge, containing (most of) the blue points B, and few red points.
Our running times vary between optimal O(n log n) and O(n4), depending on the type of region
WB and whether we wish to minimize only red outliers, only blue outliers, or both.

Related Version A full version can be found on arXiv [5]

1 Introduction

Let R and B be two sets of at most n points in the plane. Our goal is to best separate the
“red” points R from the “blue” points B using at most two lines. That is, we wish to find a
region WB bounded by lines ℓ1 and ℓ2 containing (most of) the blue points B, so that the
number kR of points from R in the interior int(WB) of WB and/or the number kB of points
from B in the interior int(WR) of the region WR = R2 \ WB is minimized. We refer to these
sets of red and blue outliers as ER = R ∩ int(WB) and EB = B ∩ int(WR), respectively, and
define E = ER ∪ EB and k = kR + kB .

Region WB is either: (i) a halfplane, (ii) a strip bounded by two parallel lines ℓ1 and ℓ2,
(iii) a wedge, i.e. one of the four regions induced by a pair of intersecting lines ℓ1, ℓ2, or (iv)
a double wedge, i.e. two opposing regions induced by a pair of intersecting lines ℓ1, ℓ2. See
Figure 1. We can reduce the case that WB would consist of three regions to the single-wedge
case, by recoloring the points. For each of these cases for the shape of WB we consider three
problems: allowing only red outliers (kB = 0) and minimizing kR, allowing only blue outliers
(kR = 0) and minimizing kB , or allowing both outliers and minimizing k. We present efficient
algorithms for each of these problems, see Table 1.

Related work. Binary classification is a key problem in computer science. Linear classifiers
such as SVMs [3] compute a hyperplane separating R and B; when R and B are not linearly
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Figure 1 We consider separating R and B by at most two lines. This gives rise to four types of
regions WB ; halfplanes, strips, wedges, and two types of double wedges; hourglasses and bowties.
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region WB minimize kR minimize kB minimize k

halfplane O(n log n) ⋆ O(n log n) ⋆ O((n + k2) log n) [2]
strip Θ(n log n) [8], §3 O(n2 log n) ⋆ O(n2 log n) ⋆

wedge O(n2) [8] O(n2kB O((n2k + nk3)
O(n log n) §4 log n log kB) ⋆ log n log k) ⋆

double (bowtie) wedge O(n2) §5 O(n2 log n) ⋆ O(n4) ⋆

Table 1 An overview of our results. A star ⋆ means this result is shown in the full version.

separable like in Figure 2 one could try using different (non-linear) separators, or allowing
for outliers. Hurtato et al. [6, 7] give O(n log n) algorithms for perfectly separating R and B

using two lines (i.e. a strip, wedge or double wedge) without outliers, which are optimal [1].
Alternatively, Chan [2] presented algorithms for linear programming in constant dimension
that allow for up to k violations, and thus solve hyperplane separation with up to k outliers.

A combination of the above, i.e. using more general separators while giving guarantees
on the number of outliers, seems to be less well studied. Seara [8] showed how to compute a
strip containing all blue points and minimal red points in O(n log n) time, and a wedge with
the same properties in O(n2) time. In this paper, we take some further steps toward the
fundamental problem of computing robust non-linear separators with performance guarantees.

Results. We present efficient algorithms for computing a region WB (strip, wedge, or double
wedge) that minimizes red (kR), blue (kB), or both (k) outliers. Refer to Table 1 for an
overview. In this extended abstract we focus on three entries of Table 1: minimizing kR for
strips (Section 3), wedges (Section 4), and double wedges (Section 5). The other results and
omitted proofs can be found in the full version [5] on arXiv.

Most notably, our optimal Θ(n log n) algorithm for computing a wedge minimizing kR

improves the earlier O(n2) time algorithm from Seara [8]. We also provide the first algorithms
for minimizing kB for strips, wedges, and double wedges, and surprisingly these problems
seem more difficult than their counterpart of minimizing kR.

2 Preliminaries

We assume B ∪ R contains at least three points and is in general position, i.e. no two points
have the same x- or y-coordinate, and no three points are co-linear.

Notation. Let ℓ− and ℓ+ be the two halfplanes bounded by line ℓ, with ℓ− below ℓ (or left
of ℓ if ℓ is vertical). Any pair of lines ℓ1 and ℓ2, with the slope of ℓ1 smaller than that of
ℓ2, subdivides the plane into at most four interior-disjoint regions North(ℓ1, ℓ2) = ℓ+

1 ∩ ℓ+
2 ,

East(ℓ1, ℓ2) = ℓ+
1 ∩ ℓ−

2 , South(ℓ1, ℓ2) = ℓ−
1 ∩ ℓ−

2 and West(ℓ1, ℓ2) = ℓ−
1 ∩ ℓ+

2 . When ℓ1 and ℓ2
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Figure 2 When considering outliers, we may allow only red outliers, only blue outliers, or both.
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are clear from the context we may simply write North to mean North(ℓ1, ℓ2) etc. We assign
each of these regions to either B or R, so that WB (= WB(ℓ1, ℓ2)) and WR (= WR(ℓ1, ℓ2))
are the union of some elements of {North, East, South, West}. In case ℓ1 and ℓ2 are parallel,
we assume that ℓ1 lies below ℓ2, and thus WB = East.

Duality. We make frequent use of the standard point-line duality [4], where we map objects
in primal space to objects in a dual space. In particular, a primal point p = (a, b) is mapped
to the dual line p∗ : y = ax − b and a primal line ℓ : y = ax + b is mapped to the dual point
ℓ∗ = (a, −b). If primal point p lies above line ℓ, then dual line p∗ lies below point ℓ∗.

For a set of lines L, we are often interested in the arrangement A(L), i.e. the vertices,
edges, and faces formed by the lines in L. Let U(L) be the upper envelope of L, i.e. the
polygonal chain following the highest line in A(L), and L(L) the lower envelope.

Property of an optimal wedge. It can be shown that, for any (double) wedge classification
problem, there exists an optimum where both lines go through a blue and a red point.
Therefore there exists a somewhat simple O(n4) algorithm for finding (double) wedges
minimizing either kR, kB , or k, which considers all pairs of lines through red and blue points.

3 Strip separation with red outliers

We first consider the case where WB forms a strip, bounded by parallel lines ℓ1 and ℓ2, with
ℓ2 above ℓ1. We want B to be inside the strip, and R outside, and here we show how to
minimize red outliers kR. We do this in the dual, where we want to find two points ℓ∗

1 and
ℓ∗

2 with the same x-coordinate such that vertical segment ℓ∗
1ℓ∗

2 intersects all blue lines and as
few red lines as possible. Note that ℓ∗

1 must be above U(B∗) and ℓ∗
2 must be below L(B∗).

Since shortening a segment can not make it intersect more red lines, we can even assume
they lie exactly on the envelopes.

As U(B∗) and L(B∗) are x-monotone, there is only one degree of freedom for choosing our
segment: its x-coordinate. We parameterize U(B∗) and L(B∗) over R, our one-dimensional
parameter space, such that each point p ∈ R corresponds to the vertical segment ℓ∗

1ℓ∗
2 on the

line x = p. We wish to find a point in this parameter space, i.e. an x-coordinate, whose
corresponding segment minimizes the number of red misclassifications. Let the forbidden
regions of a red line r be those intervals on the parameter space in which corresponding
segments intersect r. We distinguish between four types of red lines, as in Figure 3:

Line a intersects U(B∗) in points a1 and a2, with a1 ≤ a2. Segments with ℓ∗
1 left of a1 or

right of a2 misclassify a, so a produces two forbidden intervals: (−∞, a1) and (a2, ∞).
Line b intersects L(B∗) in points b1 and b2, with b1 ≤ b2. Similar to line a this produces
forbidden intervals (−∞, b1) and (b2, ∞).
Line c intersects L(B∗) in c1 and U(B∗) in c2. Only segments between c1 and c2 misclassify
c. This gives one forbidden interval: (min{c1, c2}, max{c1, c2}).
Line d intersects neither U(B∗) nor L(B∗). All segments misclassify d. This gives one
trivial forbidden region, namely the entire space R.

The above list is exhaustive. To see this, note that the two lines supporting the unbounded
edges of U(B∗) also support the unbounded edges of L(B∗).

Our goal is to find a point that lies in as few of these forbidden regions as possible. We
can compute such a point in O(n log n) time by sorting and scanning. Computing U(B∗) and
L(B∗) takes O(n log n) time. Given a red line r ∈ R∗ we can compute its intersection points

EuroCG’24
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Figure 3 Four types of red lines for strip separation, with restrictions on their parameter space.

with U(B∗) and L(B∗) in O(log n) time using binary search (since U(B∗) and L(B∗) are
convex). Computing the forbidden regions thus takes O(n log n) time in total. We conclude:

▶ Theorem 3.1. Given two sets of n points B, R ⊂ R2, we can construct a strip WB

minimizing the number of red outliers kR in O(n log n) time.

4 Wedge separation with red outliers

We consider the case where the region WB is a single wedge and WR is the other three
wedges. Here we show how to compute an optimal East or West wedge minimizing red
outliers, i.e. we compute two lines ℓ1 and ℓ2 such that every blue point and as few red points
as possible lie above ℓ1 and below ℓ2. In the dual this corresponds to two points ℓ∗

1 and
ℓ∗

2 such that all blue lines and as few red lines as possible lie below ℓ∗
1 and above ℓ∗

2, as in
Figure 4. In the full version, we compute an optimal North or South wedge in a similar way.
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Figure 4 The arrangement of B∗ ∪ R∗ with its parameter space and forbidden regions.

Clearly ℓ∗
1 must lie above U(B∗), and ℓ∗

2 below L(B∗); as in the strip case, we can even
assume they lie exactly on U(B∗) and L(B∗). Similar to the case of strips we parameterize
U(B∗) and L(B∗) over R2, such that a point (p, q) in this two-dimensional parameter space
corresponds to two dual points ℓ∗

1 and ℓ∗
2, with ℓ∗

1 on U(B∗) at x = p and ℓ∗
2 on L(B∗) at

x = q. See Figure 4. We wish to find a value in our parameter space whose corresponding
segment minimizes the number of red misclassifications. Let the forbidden regions of a
red line r again be those regions in the parameter space in which corresponding segments
misclassify r. We distinguish between five types of red lines, as in Figure 4 (left):

Line a intersects U(B∗) in a1 and a2, with a1 left of a2. Only segments with ℓ∗
1 left of a1

or right of a2 misclassify a. This produces two forbidden regions: (−∞, a1) × (−∞, ∞)
and (a2, ∞) × (−∞, ∞).
Line b intersects L(B∗) in b1 and b2, with b1 left of b2. Symmetric to line a this produces
forbidden regions (−∞, ∞) × (−∞, b1) and (−∞, ∞) × (b2, ∞).
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Line c intersects U(B∗) in c1 and L(B∗) in c2, with c1 left of c2. Only segments with
endpoints after c1 and before c2 misclassify c, producing the region (c1, ∞) × (−∞, c2).
(Segments with endpoints before c1 and after c2 do intersect c, but do not misclassify it)
Line d intersects U(B∗) in d1 and L(B∗) in d2, with d1 right of d2. Symmetric to line c

it produces the forbidden region (−∞, d1) × (d2, ∞).
Line e intersects neither U(B∗) nor L(B∗). All segments misclassify e. This produces
one forbidden region; the entire plane R2.

Our goal is again to find a point that lies in as few of these forbidden regions as possible.
Since all regions are axis-aligned rectangles, we can do so using a simple sweepline algorithm
in O(n log n) time. Constructing U(B∗) and L(B∗), finding the intersections of every red line
r with U(B∗) and L(B∗), determining the type of r (a − e), and constructing its forbidden
regions all take O(n log n) time as well.

▶ Theorem 4.1. Given two sets of n points B, R ⊂ R2, we can construct an East or West
wedge containing all points of B and the fewest points of R in O(n log n) time.

5 Double wedge separation with red outliers

Although the wedge algorithm was a direct extension of the strip algorithm, the double
wedge algorithm uses different techniques, which we briefly review; see the full version for
details. We consider finding a bowtie wedge WB while minimizing red outliers, i.e. all of B

and as little of R as possible lies in the West and East wedge. In the dual this corresponds
to a line segment intersecting all of B∗, and as little of R∗ as possible.

Observe that a segment intersecting all lines of B∗ must have endpoints in antipodal
outer faces of A(B∗), i.e. two opposite outer faces sharing the same two infinite bounding
lines. For all O(n) pairs of antipodal faces, we could apply a very similar algorithm to the
wedge algorithm in Section 4, resulting in O(n · n log n) = O(n2 log n) time.

Alternatively, we construct the entire arrangement A(B∗ ∪ R∗) of all lines explicitly in
O(n2) time (see e.g. [4]). Consider a pair of faces P and Q that are antipodal in A(B∗), and
assume w.l.o.g. they are separated by the x-axis, with P above Q. There are two types of
red lines: splitting lines that intersect both P and Q once, and stabbing lines that intersect
at most one of P and Q, see Figure 5. A red line is a splitting line for exactly one pair of
antipodal faces, while it can be a stabbing line for multiple pairs. Recall that we wish to find
a segment from P to Q intersecting as few red lines as possible. The s splitting lines divide
the boundary of P and Q into s + 1 chains P0..Ps (Q0..Qs). Within one such chain Pi on P

we only need to consider the point pi with the most stabbing lines above it: a segment from
pi to Q will not intersect those lines, since Q is below Pi. Similarly, we only need to consider
point qj on chain Qj with the most stabbing lines below it. Using dynamic programming
we can then find the pair of chains Pi, Qj such that piqj intersects the fewest red lines in
O(n + s2) time. Doing so for all pairs of antipodal faces yields a total running time of O(n2).

▶ Theorem 5.1. Given two sets of n points B, R ⊂ R2, we can construct the bowtie double
wedge WB minimizing the number of red outliers kR in O(n2) time.

Consider the related problem of finding a bowtie wedge while minimizing kB , which we
solve in O(n2 log n) time in the full version. Note that we can not just recolor the points and
use the above O(n2) time algorithm: after recoloring, we would wish to find a blue hourglass
wedge minimizing kR, which is a different problem. Therefore, unfortunately, finding any
double wedge (bowtie or hourglass) while minimizing kR still takes O(n2 log n) time.
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Figure 5 Two antipodal faces P and Q, with two splitting lines r1, r2 and two stabbing lines
r3, r4, and an optimal segment pq from P to Q.
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