Robust Bichromatic Classification using Two Lines

Erwin Glazenburg ${ }^{1}$, Thijs van der Horst ${ }^{1,2}$, Tom Peters ${ }^{2}$, Bettina Speckmann ${ }^{2}$, and Frank Staals ${ }^{1}$

1 Utrecht University
[e.p.glazenburg, t.w.j.vanderhorst, f.staals]@uu.nl
2 TU Eindhoven
[t.peters1, b.speckmann]@tue.nl

Abstract

Given two sets R and B of at most n points in the plane, we present efficient algorithms to find a two-line linear classifier that best separates the "red" points in R from the "blue" points in B and is robust to outliers. More precisely, we find a region \mathcal{W}_{B} bounded by two lines, so either a halfplane, strip, wedge, or double wedge, containing (most of) the blue points B, and few red points. Our running times vary between optimal $O(n \log n)$ and $O\left(n^{4}\right)$, depending on the type of region \mathcal{W}_{B} and whether we wish to minimize only red outliers, only blue outliers, or both.

Related Version A full version can be found on arXiv [5]

1 Introduction

Let R and B be two sets of at most n points in the plane. Our goal is to best separate the "red" points R from the "blue" points B using at most two lines. That is, we wish to find a region \mathcal{W}_{B} bounded by lines ℓ_{1} and ℓ_{2} containing (most of) the blue points B, so that the number k_{R} of points from R in the interior $\operatorname{int}\left(\mathcal{W}_{B}\right)$ of \mathcal{W}_{B} and/or the number k_{B} of points from B in the interior $\operatorname{int}\left(\mathcal{W}_{R}\right)$ of the region $\mathcal{W}_{R}=\mathbb{R}^{2} \backslash \mathcal{W}_{B}$ is minimized. We refer to these sets of red and blue outliers as $\mathcal{E}_{R}=R \cap \operatorname{int}\left(\mathcal{W}_{B}\right)$ and $\mathcal{E}_{B}=B \cap \operatorname{int}\left(\mathcal{W}_{R}\right)$, respectively, and define $\mathcal{E}=\mathcal{E}_{R} \cup \mathcal{E}_{B}$ and $k=k_{R}+k_{B}$.

Region \mathcal{W}_{B} is either: (i) a halfplane, (ii) a strip bounded by two parallel lines ℓ_{1} and ℓ_{2}, (iii) a wedge, i.e. one of the four regions induced by a pair of intersecting lines ℓ_{1}, ℓ_{2}, or (iv) a double wedge, i.e. two opposing regions induced by a pair of intersecting lines ℓ_{1}, ℓ_{2}. See Figure 1. We can reduce the case that \mathcal{W}_{B} would consist of three regions to the single-wedge case, by recoloring the points. For each of these cases for the shape of \mathcal{W}_{B} we consider three problems: allowing only red outliers $\left(k_{B}=0\right)$ and minimizing k_{R}, allowing only blue outliers ($k_{R}=0$) and minimizing k_{B}, or allowing both outliers and minimizing k. We present efficient algorithms for each of these problems, see Table 1.

Related work. Binary classification is a key problem in computer science. Linear classifiers such as SVMs [3] compute a hyperplane separating R and B; when R and B are not linearly

Figure 1 We consider separating R and B by at most two lines. This gives rise to four types of regions \mathcal{W}_{B}; halfplanes, strips, wedges, and two types of double wedges; hourglasses and bowties.

44:2 Robust Bichromatic Classification using Two Lines

region \mathcal{W}_{B}	minimize k_{R}	minimize k_{B}	minimize k
halfplane	$O(n \log n) \star$	$O(n \log n) \star$	$O\left(\left(n+k^{2}\right) \log n\right)[2]$
strip	$\Theta(n \log n)[8], \S 3$	$O\left(n^{2} \log n\right) \star$	$O\left(n^{2} \log n\right) \star$
wedge	$O\left(n^{2}\right)[8]$	$O\left(n^{2} k_{B}\right.$	$O\left(\left(n^{2} k+n k^{3}\right)\right.$
	$O(n \log n) \S 4$	$\left.\log n \log k_{B}\right) \star$	$\log n \log k) \star$
double (bowtie) wedge	$O\left(n^{2}\right) \S 5$	$O\left(n^{2} \log n\right) \star$	$O\left(n^{4}\right) \star$

Table 1 An overview of our results. A star \star means this result is shown in the full version.
separable like in Figure 2 one could try using different (non-linear) separators, or allowing for outliers. Hurtato et al. $[6,7]$ give $O(n \log n)$ algorithms for perfectly separating R and B using two lines (i.e. a strip, wedge or double wedge) without outliers, which are optimal [1]. Alternatively, Chan [2] presented algorithms for linear programming in constant dimension that allow for up to k violations, and thus solve hyperplane separation with up to k outliers.

A combination of the above, i.e. using more general separators while giving guarantees on the number of outliers, seems to be less well studied. Seara [8] showed how to compute a strip containing all blue points and minimal red points in $O(n \log n)$ time, and a wedge with the same properties in $O\left(n^{2}\right)$ time. In this paper, we take some further steps toward the fundamental problem of computing robust non-linear separators with performance guarantees.

Results. We present efficient algorithms for computing a region \mathcal{W}_{B} (strip, wedge, or double wedge) that minimizes red $\left(k_{R}\right)$, blue $\left(k_{B}\right)$, or both (k) outliers. Refer to Table 1 for an overview. In this extended abstract we focus on three entries of Table 1: minimizing k_{R} for strips (Section 3), wedges (Section 4), and double wedges (Section 5). The other results and omitted proofs can be found in the full version [5] on arXiv.

Most notably, our optimal $\Theta(n \log n)$ algorithm for computing a wedge minimizing k_{R} improves the earlier $O\left(n^{2}\right)$ time algorithm from Seara [8]. We also provide the first algorithms for minimizing k_{B} for strips, wedges, and double wedges, and surprisingly these problems seem more difficult than their counterpart of minimizing k_{R}.

2 Preliminaries

We assume $B \cup R$ contains at least three points and is in general position, i.e. no two points have the same x - or y-coordinate, and no three points are co-linear.

Notation. Let ℓ^{-}and ℓ^{+}be the two halfplanes bounded by line ℓ, with ℓ^{-}below ℓ (or left of ℓ if ℓ is vertical). Any pair of lines ℓ_{1} and ℓ_{2}, with the slope of ℓ_{1} smaller than that of ℓ_{2}, subdivides the plane into at most four interior-disjoint regions $\operatorname{North}\left(\ell_{1}, \ell_{2}\right)=\ell_{1}^{+} \cap \ell_{2}^{+}$, $\operatorname{East}\left(\ell_{1}, \ell_{2}\right)=\ell_{1}^{+} \cap \ell_{2}^{-}, \operatorname{South}\left(\ell_{1}, \ell_{2}\right)=\ell_{1}^{-} \cap \ell_{2}^{-}$and $\operatorname{West}\left(\ell_{1}, \ell_{2}\right)=\ell_{1}^{-} \cap \ell_{2}^{+}$. When ℓ_{1} and ℓ_{2}

Figure 2 When considering outliers, we may allow only red outliers, only blue outliers, or both.
are clear from the context we may simply write North to mean $\operatorname{North}\left(\ell_{1}, \ell_{2}\right)$ etc. We assign each of these regions to either B or R, so that $\mathcal{W}_{B}\left(=\mathcal{W}_{B}\left(\ell_{1}, \ell_{2}\right)\right)$ and $\mathcal{W}_{R}\left(=\mathcal{W}_{R}\left(\ell_{1}, \ell_{2}\right)\right)$ are the union of some elements of \{North, East, South, West \}. In case ℓ_{1} and ℓ_{2} are parallel, we assume that ℓ_{1} lies below ℓ_{2}, and thus $\mathcal{W}_{B}=$ East.

Duality. We make frequent use of the standard point-line duality [4], where we map objects in primal space to objects in a dual space. In particular, a primal point $p=(a, b)$ is mapped to the dual line $p^{*}: y=a x-b$ and a primal line $\ell: y=a x+b$ is mapped to the dual point $\ell^{*}=(a,-b)$. If primal point p lies above line ℓ, then dual line p^{*} lies below point ℓ^{*}.

For a set of lines L, we are often interested in the arrangement $\mathcal{A}(L)$, i.e. the vertices, edges, and faces formed by the lines in L. Let $\mathcal{U}(L)$ be the upper envelope of L, i.e. the polygonal chain following the highest line in $\mathcal{A}(L)$, and $\mathcal{L}(L)$ the lower envelope.

Property of an optimal wedge. It can be shown that, for any (double) wedge classification problem, there exists an optimum where both lines go through a blue and a red point. Therefore there exists a somewhat simple $O\left(n^{4}\right)$ algorithm for finding (double) wedges minimizing either k_{R}, k_{B}, or k, which considers all pairs of lines through red and blue points.

3 Strip separation with red outliers

We first consider the case where W_{B} forms a strip, bounded by parallel lines ℓ_{1} and ℓ_{2}, with ℓ_{2} above ℓ_{1}. We want B to be inside the strip, and R outside, and here we show how to minimize red outliers k_{R}. We do this in the dual, where we want to find two points ℓ_{1}^{*} and ℓ_{2}^{*} with the same x-coordinate such that vertical segment $\overline{\ell_{1}^{*} \ell_{2}^{*}}$ intersects all blue lines and as few red lines as possible. Note that ℓ_{1}^{*} must be above $\mathcal{U}\left(B^{*}\right)$ and ℓ_{2}^{*} must be below $\mathcal{L}\left(B^{*}\right)$. Since shortening a segment can not make it intersect more red lines, we can even assume they lie exactly on the envelopes.

As $\mathcal{U}\left(B^{*}\right)$ and $\mathcal{L}\left(B^{*}\right)$ are x-monotone, there is only one degree of freedom for choosing our segment: its x-coordinate. We parameterize $\mathcal{U}\left(B^{*}\right)$ and $\mathcal{L}\left(B^{*}\right)$ over \mathbb{R}, our one-dimensional parameter space, such that each point $p \in \mathbb{R}$ corresponds to the vertical segment $\overline{\ell_{1}^{*} \ell_{2}^{*}}$ on the line $x=p$. We wish to find a point in this parameter space, i.e. an x-coordinate, whose corresponding segment minimizes the number of red misclassifications. Let the forbidden regions of a red line r be those intervals on the parameter space in which corresponding segments intersect r. We distinguish between four types of red lines, as in Figure 3:

- Line a intersects $\mathcal{U}\left(B^{*}\right)$ in points a_{1} and a_{2}, with $a_{1} \leq a_{2}$. Segments with ℓ_{1}^{*} left of a_{1} or right of a_{2} misclassify a, so a produces two forbidden intervals: $\left(-\infty, a_{1}\right)$ and $\left(a_{2}, \infty\right)$.
- Line b intersects $\mathcal{L}\left(B^{*}\right)$ in points b_{1} and b_{2}, with $b_{1} \leq b_{2}$. Similar to line a this produces forbidden intervals $\left(-\infty, b_{1}\right)$ and $\left(b_{2}, \infty\right)$.
- Line c intersects $\mathcal{L}\left(B^{*}\right)$ in c_{1} and $\mathcal{U}\left(B^{*}\right)$ in c_{2}. Only segments between c_{1} and c_{2} misclassify c. This gives one forbidden interval: $\left(\min \left\{c_{1}, c 2\right\}, \max \left\{c_{1}, c_{2}\right\}\right)$.
- Line d intersects neither $\mathcal{U}\left(B^{*}\right)$ nor $\mathcal{L}\left(B^{*}\right)$. All segments misclassify d. This gives one trivial forbidden region, namely the entire space \mathbb{R}.

The above list is exhaustive. To see this, note that the two lines supporting the unbounded edges of $\mathcal{U}\left(B^{*}\right)$ also support the unbounded edges of $\mathcal{L}\left(B^{*}\right)$.

Our goal is to find a point that lies in as few of these forbidden regions as possible. We can compute such a point in $O(n \log n)$ time by sorting and scanning. Computing $\mathcal{U}\left(B^{*}\right)$ and $\mathcal{L}\left(B^{*}\right)$ takes $O(n \log n)$ time. Given a red line $r \in R^{*}$ we can compute its intersection points

EuroCG'24

Figure 3 Four types of red lines for strip separation, with restrictions on their parameter space.
with $\mathcal{U}\left(B^{*}\right)$ and $\mathcal{L}\left(B^{*}\right)$ in $O(\log n)$ time using binary search (since $\mathcal{U}\left(B^{*}\right)$ and $\mathcal{L}\left(B^{*}\right)$ are convex). Computing the forbidden regions thus takes $O(n \log n)$ time in total. We conclude:

- Theorem 3.1. Given two sets of n points $B, R \subset \mathbb{R}^{2}$, we can construct a strip \mathcal{W}_{B} minimizing the number of red outliers k_{R} in $O(n \log n)$ time.

4 Wedge separation with red outliers

We consider the case where the region \mathcal{W}_{B} is a single wedge and \mathcal{W}_{R} is the other three wedges. Here we show how to compute an optimal East or West wedge minimizing red outliers, i.e. we compute two lines ℓ_{1} and ℓ_{2} such that every blue point and as few red points as possible lie above ℓ_{1} and below ℓ_{2}. In the dual this corresponds to two points ℓ_{1}^{*} and ℓ_{2}^{*} such that all blue lines and as few red lines as possible lie below ℓ_{1}^{*} and above ℓ_{2}^{*}, as in Figure 4. In the full version, we compute an optimal North or South wedge in a similar way.

Figure 4 The arrangement of $B^{*} \cup R^{*}$ with its parameter space and forbidden regions.
Clearly ℓ_{1}^{*} must lie above $\mathcal{U}\left(B^{*}\right)$, and ℓ_{2}^{*} below $\mathcal{L}\left(B^{*}\right)$; as in the strip case, we can even assume they lie exactly on $\mathcal{U}\left(B^{*}\right)$ and $\mathcal{L}\left(B^{*}\right)$. Similar to the case of strips we parameterize $\mathcal{U}\left(B^{*}\right)$ and $\mathcal{L}\left(B^{*}\right)$ over \mathbb{R}^{2}, such that a point (p, q) in this two-dimensional parameter space corresponds to two dual points ℓ_{1}^{*} and ℓ_{2}^{*}, with ℓ_{1}^{*} on $\mathcal{U}\left(B^{*}\right)$ at $x=p$ and ℓ_{2}^{*} on $\mathcal{L}\left(B^{*}\right)$ at $x=q$. See Figure 4 . We wish to find a value in our parameter space whose corresponding segment minimizes the number of red misclassifications. Let the forbidden regions of a red line r again be those regions in the parameter space in which corresponding segments misclassify r. We distinguish between five types of red lines, as in Figure 4 (left):

- Line a intersects $\mathcal{U}\left(B^{*}\right)$ in a_{1} and a_{2}, with a_{1} left of a_{2}. Only segments with ℓ_{1}^{*} left of a_{1} or right of a_{2} misclassify a. This produces two forbidden regions: $\left(-\infty, a_{1}\right) \times(-\infty, \infty)$ and $\left(a_{2}, \infty\right) \times(-\infty, \infty)$.
- Line b intersects $\mathcal{L}\left(B^{*}\right)$ in b_{1} and b_{2}, with b_{1} left of b_{2}. Symmetric to line a this produces forbidden regions $(-\infty, \infty) \times\left(-\infty, b_{1}\right)$ and $(-\infty, \infty) \times\left(b_{2}, \infty\right)$.
- Line c intersects $\mathcal{U}\left(B^{*}\right)$ in c_{1} and $\mathcal{L}\left(B^{*}\right)$ in c_{2}, with c_{1} left of c_{2}. Only segments with endpoints after c_{1} and before c_{2} misclassify c, producing the region $\left(c_{1}, \infty\right) \times\left(-\infty, c_{2}\right)$. (Segments with endpoints before c_{1} and after c_{2} do intersect c, but do not misclassify it)
- Line d intersects $\mathcal{U}\left(B^{*}\right)$ in d_{1} and $\mathcal{L}\left(B^{*}\right)$ in d_{2}, with d_{1} right of d_{2}. Symmetric to line c it produces the forbidden region $\left(-\infty, d_{1}\right) \times\left(d_{2}, \infty\right)$.
- Line e intersects neither $\mathcal{U}\left(B^{*}\right)$ nor $\mathcal{L}\left(B^{*}\right)$. All segments misclassify e. This produces one forbidden region; the entire plane \mathbb{R}^{2}.

Our goal is again to find a point that lies in as few of these forbidden regions as possible. Since all regions are axis-aligned rectangles, we can do so using a simple sweepline algorithm in $O(n \log n)$ time. Constructing $\mathcal{U}\left(B^{*}\right)$ and $\mathcal{L}\left(B^{*}\right)$, finding the intersections of every red line r with $\mathcal{U}\left(B^{*}\right)$ and $\mathcal{L}\left(B^{*}\right)$, determining the type of $r(a-e)$, and constructing its forbidden regions all take $O(n \log n)$ time as well.

- Theorem 4.1. Given two sets of n points $B, R \subset \mathbb{R}^{2}$, we can construct an East or West wedge containing all points of B and the fewest points of R in $O(n \log n)$ time.

5 Double wedge separation with red outliers

Although the wedge algorithm was a direct extension of the strip algorithm, the double wedge algorithm uses different techniques, which we briefly review; see the full version for details. We consider finding a bowtie wedge \mathcal{W}_{B} while minimizing red outliers, i.e. all of B and as little of R as possible lies in the West and East wedge. In the dual this corresponds to a line segment intersecting all of B^{*}, and as little of R^{*} as possible.

Observe that a segment intersecting all lines of B^{*} must have endpoints in antipodal outer faces of $\mathcal{A}\left(B^{*}\right)$, i.e. two opposite outer faces sharing the same two infinite bounding lines. For all $O(n)$ pairs of antipodal faces, we could apply a very similar algorithm to the wedge algorithm in Section 4, resulting in $O(n \cdot n \log n)=O\left(n^{2} \log n\right)$ time.

Alternatively, we construct the entire arrangement $\mathcal{A}\left(B^{*} \cup R^{*}\right)$ of all lines explicitly in $O\left(n^{2}\right)$ time (see e.g. [4]). Consider a pair of faces P and Q that are antipodal in $\mathcal{A}\left(B^{*}\right)$, and assume w.l.o.g. they are separated by the x-axis, with P above Q. There are two types of red lines: splitting lines that intersect both P and Q once, and stabbing lines that intersect at most one of P and Q, see Figure 5. A red line is a splitting line for exactly one pair of antipodal faces, while it can be a stabbing line for multiple pairs. Recall that we wish to find a segment from P to Q intersecting as few red lines as possible. The s splitting lines divide the boundary of P and Q into $s+1$ chains $P_{0} . . P_{s}\left(Q_{0} . . Q_{s}\right)$. Within one such chain P_{i} on P we only need to consider the point p_{i} with the most stabbing lines above it: a segment from p_{i} to Q will not intersect those lines, since Q is below P_{i}. Similarly, we only need to consider point q_{j} on chain Q_{j} with the most stabbing lines below it. Using dynamic programming we can then find the pair of chains P_{i}, Q_{j} such that $\overline{p_{i} q_{j}}$ intersects the fewest red lines in $O\left(n+s^{2}\right)$ time. Doing so for all pairs of antipodal faces yields a total running time of $O\left(n^{2}\right)$.

- Theorem 5.1. Given two sets of n points $B, R \subset \mathbb{R}^{2}$, we can construct the bowtie double wedge \mathcal{W}_{B} minimizing the number of red outliers k_{R} in $O\left(n^{2}\right)$ time.

Consider the related problem of finding a bowtie wedge while minimizing k_{B}, which we solve in $O\left(n^{2} \log n\right)$ time in the full version. Note that we can not just recolor the points and use the above $O\left(n^{2}\right)$ time algorithm: after recoloring, we would wish to find a blue hourglass wedge minimizing k_{R}, which is a different problem. Therefore, unfortunately, finding any double wedge (bowtie or hourglass) while minimizing k_{R} still takes $O\left(n^{2} \log n\right)$ time.

Figure 5 Two antipodal faces P and Q, with two splitting lines r_{1}, r_{2} and two stabbing lines r_{3}, r_{4}, and an optimal segment $\overline{p q}$ from P to Q.

References

1 Esther M. Arkin, Ferran Hurtado, Joseph S. B. Mitchell, Carlos Seara, and Steven Skiena. Some lower bounds on geometric separability problems. International Journal of Computational Geometry \mathcal{E}^{\prime} Applications, 16(1):1-26, 2006. doi:10.1142/S0218195906001902.
2 Timothy M. Chan. Low-dimensional linear programming with violations. SIAM Journal on Computing, 34(4):879-893, 2005. doi:10.1137/S0097539703439404.
3 Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273297, Sep 1995. doi:10.1007/BF00994018.
4 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational geometry: algorithms and applications, 3rd Edition. Springer, 2008.
5 Erwin Glazenburg, Thijs van der Horst, Tom Peters, Bettina Speckmann, and Frank Staals. Robust bichromatic classification using two lines, 2024. arXiv:2401.02897.
6 Ferran Hurtado, Mercè Mora, Pedro A. Ramos, and Carlos Seara. Separability by two lines and by nearly straight polygonal chains. Discrete Applied Mathematics, 144(1-2):110-122, 2004. doi:10.1016/j.dam.2003.11.014.

7 Ferran Hurtado, Marc Noy, Pedro A. Ramos, and Carlos Seara. Separating objects in the plane by wedges and strips. Discrete Applied Mathematics, 109(1-2):109-138, 2001. doi:10.1016/S0166-218X(00)00230-4.
8 Carlos Seara. On geometric separability. PhD thesis, Univ. Politecnica de Catalunya, 2002.

