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Abstract
We can label dense sets of feature points by placing the labels along a rectangular boundary around
the illustration and using non-crossing leader lines to connect each label with its feature. Although
boundary labeling is well-studied, semantic constraints on the labels have not been investigated
much. We consider grouping and ordering constraints for one-sided boundary labeling. Grouping
constraints enforce that a subset of the labels must occupy a contiguous region on the boundary, and
ordering constraints define a partial order on the features. While we show that it is weakly NP-hard
to find an admissible labeling for non-uniform labels that can slide along the boundary, we present
polynomial-time algorithms for the case of fixed candidate label positions or uniform-height labels.

Related Version arXiv:2402.12245

1 Introduction

One common guideline when creating labeled illustrations in technical and medical domains
is to “not obscure important details with labels” [8, p. 35]. Therefore, designers tend to
place the labels outside the illustrations, creating an external labeling as in Figure 1a. Short
non-crossing polyline leaders are used to connect labels with the feature points, here called
sites, they describe. Boundary labeling is a restricted setting, where we only allow placing
labels along a rectangular boundary B around the illustration [3]. Initial work placed the
labels on one or two sides of the boundary, usually right and left, but extensions to more sides
are also possible [14, 18]. Different leader styles have been considered [2, 3], but we focus on
so-called po-leaders that consist of two segments: one is parallel and the other orthogonal to
the side of the boundary on which the label is placed [3]. See Figure 1b for an example.

Although extensions of boundary labeling have been considered [1, 11, 15, 16], little work
has been performed to respect semantic constraints, such as those from Figure 1a. Here, the
layers are labeled from inside-out and some labels are grouped together and thus placed next
to each other. The survey of Bekos et al. [4] reports a handful of papers that group or cluster
labels. Many rely on heuristics [17] or group (spatially close) sites together to label them
with a single label [10, 21]. To the best of our knowledge, Niedermann et al. [22] are the first
that support the grouping of labels while ensuring non-crossing leaders. They investigated
contour labeling, a generalization of boundary labeling, and considered the grouping of labels
as a possible extension without analyzing it further. Although grouping labels sees a growing
interest [14, 20], recent results still heavily restrict the possible position of the labels and
only support a limited set of grouping constraints.

∗ This research has been funded by the Vienna Science and Technology Fund (WWTF)
[10.47379/ICT19035] and [10.47379/ICT22029], and received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
Grant Agreement No 101034253.

40th European Workshop on Computational Geometry, Ioannina, Greece, March 13–15, 2024.
This is an extended abstract of a presentation given at EuroCG’24. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2402.12245


45:2 Constrained One-Sided Boundary Labeling

(a) (b)

Reggio di Calabria

Vandoies
Aosta
Como
Milan

Catania

Messina

Palermo

Catanzaro
Tropea

Cagliari

Cosenza

Salerno

Taranto
Potenza

Naples

Sassari

Foggia

Bari

Latina
Campobasso

Rome

Pescara

Perugia

Livorno

Florence

Ancona

Prato

Rimini
Genoa

Ravenna

Bologna
Modena
Parma
Turin

Venice
Trieste
Brescia

Bergamo

Verona

Figure 1 Labelings that adhere to semantic constraints. (a) © ScienceFacts.net [6]; (b) created
by our algorithm from Section 2, colors indicate grouping and arrows ordering constraints.

Problem Description. Let S be a set of n sites in R2 in general position, i.e., no two sites
share the same x- or y-coordinate, and enclosed in a bounding box B. For each site si ∈ S,
we have an open rectangle ℓi of height h(ℓi) and some width, which we call the label of the
site. The rectangles describe the bounding box of the (textual) labels, which are usually a
single line of text in a fixed font size. Hence, we often restrict ourselves to uniform-height
labels, but neglect their width. The po-leader λi = (si, pi) connects si with the port pi of ℓi,
which is the place where λi touches ℓi. We define the port for each label ℓ to be at half its
height. In a one-sided boundary labeling L we place for each site s ∈ S a label ℓ such that
p is on, w.l.o.g., the right side of B and connect s with ℓ using λ. If we are given a set of
candidates for the ports P , we say that we have fixed ports, otherwise sliding ports. Let Λ be
the set of all possible leaders. A labeling is called planar if no two labels overlap and there is
no leader-leader or -site crossing. We can access the x- and y-coordinate of a site or port
with x(·) and y(·). Furthermore, we are given a set of constraints C = (G,≼), consisting of a
family of grouping constraints G and a partial order ≼ on the sites. A grouping constraint
∅ ≠ G ⊆ S enforces that the labels for the sites in G appear consecutively on the boundary,
as in Figure 2a, i.e., it is not required that the labels are directly next to each other, as

(a) (b) (c)

Figure 2 (a) Length- and (b) bend-minimal admissible labelings. (c) Planar but non-admissible
length-minimal labeling. Colors indicate grouping and arrows ordering constraints.
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Figure 3 Creating an obstacle using grouping constraints as indicated by colored bands. An
alternative way of forcing the same structure with only ordering constraints is shown with the arrows.

in Figure 2b. An ordering constraint si ≼ sj enforces that we have for the ports pi and
pj y(pi) ≥ y(pj), i.e., the label for sj must not appear above the label for si. We assume
the existence of reflexive and transitive constraints in ≼ and denote with r the number of
constraints in the transitive reduction of (S,≼).

We say that a labeling respects the grouping/ordering constraints if all the grouping/order-
ing constraints are satisfied. Furthermore, we call the grouping/ordering constraints consistent
if there exists a (not necessarily planar) labeling that respects them. A labeling is admissible
if it is planar and respects the constraints. Furthermore, if an admissible labeling exists, we
aim for one that optimizes a quality criterion expressed by a function f : Λ → R+

0 . In this
paper, the optimization function f measures the length of a leader or expresses whether it has
a bend or not. Figure 2 highlights the differences and shows in (c) that an optimal admissible
labeling might be, w.r.t. f , worse than its planar (but non-admissible) counterpart.

In an instance I of the Constrained One-Sided Boundary Labeling problem1

(1-CBL in short), we want to find an admissible one-sided po-labeling L∗ for I (possibly on
a set of m ports P) that minimizes

∑
λ∈L∗ f(λ) or report that no admissible labeling exists.

Computational Complexity of 1-CBL. Fink and Suri reduced the Partition problem to
the problem of finding a planar labeling with non-uniform height labels and sliding ports in
the presence of a single obstacle [11]. We can create with our constraints an obstacle on the
boundary that serves the same purpose. Let (A = {a1, . . . aN }, w : A → N) be an instance of
Partition with

∑
a∈A w(a) = 2A for some A ∈ N2 [13]. We create for each element ai a

site si whose corresponding label has a height of w(ai), and place the sites on a horizontal
line next to each other. To mimic the obstacle, we place five sites in the configuration from
Figure 3. Note that there is no alternative order for the labels of these sites nor room to slide
them around. Hence, these labels must be placed contiguously, i.e., without any free space,
at a fixed position on the boundary, i.e., they form a block. These blocks can be used to
create two A-high free windows on the boundary where we can place the labels for the sites
representing the elements of A in, see Figure 4. Thus, we can form an equivalence between
partitioning the elements of A into two sets and placing the labels for the sites in the upper
or lower window on the boundary. Finally, Figure 3 shows that we can replace the grouping
constraints with ordering constraints, and thus we can prove Theorem 1.1.

1 As we can show for a reasonable extension to two-sided labeling that finding an admissible labeling is
NP-hard even for unit-height labels and fixed ports [9], we consider only one-sided labelings.

2 Otherwise, (A, w) would be a trivial negative instance.
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Figure 4 The placement of the sites in the reduction that shows weakly NP-hardness for 1-CBL.

▶ Theorem 1.1. Deciding if an instance of 1-CBL has an admissible labeling is weakly
NP-hard, even for a constant number of grouping or ordering constraints.

Despite Theorem 1.1, we can solve 1-CBL in polynomial time if we use a pre-defined set
of fixed ports (Section 2) or have uniform-height labels (Section 3).
Due to space constraints, all omitted details and proofs can be found in the full version [9].

2 Fixed Ports

We assume that we are given a set P of m ≥ n ports. Benkert et al. [5] observed that in
a planar labeling L, the leader λL connecting the leftmost site sL ∈ S with some port pL

splits the instance I into two independent sub-instances, I1 and I2, excluding sL and pL.
Therefore, we can describe a sub-instance I of I by two leaders (s1, p1) and (s2, p2) that
bound the sub-instance from above and below, respectively. We denote the sub-instance as
I = (s1, p1, s2, p2) and refer with S(I) (P(I)) to the sites (ports) in I, excluding those used in
the definition of I, i.e., S(I) := {s ∈ S | x(s1) < x(s), x(s2) < x(s), y(p2) < y(s) < y(p1)}
and P(I) := {p ∈ P | y(p2) < y(p) < y(p1)}. Similarly, for a leader λ = (s, p), we say that a
site s′ with x(s) < x(s′) is above λ if y(s′) > y(p) holds and below λ if y(s′) < y(p) holds.
See also Figure 5 for a visualization of these definitions.

Two more observations about admissible labelings can be made: First, λL can never split
sites s, s′ ∈ G with sL /∈ G. Second, λL never splits sites s, s′ ∈ S with s above λL and s′

below λL, for which we have s′ ≼ sL, s′ ≼ s, or sL ≼ s. Now, we could immediately define
a dynamic programming (DP) algorithm that evaluates the induced sub-instances for each
leader that adheres to these observations. However, we would then check every constraint in
each sub-instance and not make use of implicit constraints given by, for example, overlapping
groups. The following data structure makes these implicit constraints explicit.

PQ-A-Graphs. Every labeling L induces a permutation π of the sites by reading the labels
from top to bottom. Let k = |G| and assume k > 0. Let M(S,G) be a n × k binary matrix
with mi,j = 1 iff si ∈ Gj for Gj ∈ G. We call M(S,G) the sites vs. groups matrix, and observe
that L satisfies the constraint Gj iff the ones in the column j of M(S,G) are consecutive
after we order the rows of M(S,G) according to π. If this holds for all columns of M(S,G),
then the matrix has the so-called consecutive ones property (C1P) [12].
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Figure 5 A sub-instance I = (s1, p1, s2, p2) of our DP-algorithm and the used notation.

▶ Lemma 2.1. G are consistent for S iff M(S,G) has the C1P.

Booth and Lueker [7] propose an algorithm to check whether a binary matrix has the
C1P. They use a PQ-Tree to keep track of the allowed row permutations. A PQ-Tree τ ,
for a given set A of elements, is a rooted tree with one leaf for each element of A and two
different types of internal nodes t: P-nodes, that allow to freely permute the children of t,
and Q-nodes, where the children of t can only be inversed [7]. Lemma 2.1 tells us that each
family of consistent grouping constraints can be represented by a PQ-Tree. Note that we can
interpret each subtree of the PQ-Tree as a grouping constraint and call them the canonical
groups. However, not every grouping constraint results in a canonical group.

▶ Definition 2.2 (PQ-A-Graph). Let S be a set of sites, G be a family of consistent grouping
constraints, and ≼ be a partial order on S. The PQ-A-Graph T = (τ , A) consists of the
PQ-Tree τ for G, on whose leaves we embed the arcs A of a directed graph representing ≼.

We denote with Ti the subtree in the underlying PQ-Tree τ rooted at the node ti and with
leaves(Ti) the leaf set. Figure 6 visualizes a PQ-A-Graph and the introduced terminology.
Furthermore, observe that checking on the consistency of C = (G,≼) is equivalent to solving
the Reorder problem on τ and ≼, i.e., asking whether we can re-order leaves(τ) such that
the order induced by reading them from left to right extends the partial order ≼ [19].

▶ Lemma 2.3. We can check whether the constraints C = (G,≼) are consistent for S and, if
so, create the PQ-A-Graph T in O(n + |G| + |≼| +

∑
G∈G |G|) time. T uses O(n + |≼|) space.

The DP-Algorithm. Let I = (s1, p1, s2, p2) be a sub-instance and sL the leftmost site in
S(I). Let T (s1, s2) denote the sub-graph of the PQ-A-Graph T rooted at the lowest common
ancestor of s1 and s2 (in T ). Note that T (s1, s2) contains all the sites in S(I), together
with s1 and s2, and hence represents all constraints relevant for the sub-instance I. Other
constraints either do not affect sites in I or are trivially satisfied. Imagine we want to place
the label ℓL for sL at the port pL ∈ P(I). We have to ensure that λL = (sL, pL) does not
violate planarity w.r.t. the already fixed labeling and that in the resulting sub-instances
there are enough ports for the sites. Let Admissible(I, T , pL) be a procedure that checks
this and, in addition, verifies that pL respects the constraints expressed by T (s1, s2).

To do the latter, we make use of the procedure RespectsConstraints(I, T , λL), which
is defined as follows. Let tL be the leaf for sL in T (s1, s2). There is a unique path from tL

to the root of T (s1, s2), which we traverse bottom up and consider each internal node t on it.
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Figure 6 A sample PQ-A-Graph together with the used terminology.

Assume that t has the children t1, . . . , tz in this order from left to right. Let Ti, 1 ≤ i ≤ z,
be the subtree that contains the site sL, rooted at ti. The labels for all sites represented
by leaves(T1), . . . , leaves(Ti−1) will be placed above ℓL in any labeling L of S in which the
children of t are ordered as stated. Therefore, we call these sites above sL (at t). Analogously,
the sites represented by leaves(Ti+1), . . . , leaves(Tz) are below sL (at t). Figure 6 visualizes
this. Note that the sites represented by leaves(Ti) are neither above nor below sL at t.

If t is a P-node, there must exist at least one permutation π of the children of t in which
all the sites in S(I) above sL at t (in π) are above λL (recall Figure 5), and all the sites in
S(I) below sL at t (in the permutation π) are below λL, i.e., the sites are on the correct side
of λL w.r.t. π. To not iterate through all possible permutations, we distribute the children of
t, except ti, into two sets, tabove and tbelow, depending on whether they contain only leaves
for sites that should be above or below sL at t. If neither applies, we return with failure. We
also have to ensure that this complies with the definition of I and the ordering constraints.

If t is a Q-node, we do the same, however, we only have to check which of the two orderings
allowed by the Q-node complies with the position of the leader and whether it adheres to
the definition of I, i.e., labels s1 above s2. RespectsConstraints(I, T , λL) performs the
above checks for each of the O(n) nodes on the path from sL to tr in O(n (n + |≼|)) time.

For a sub-instance I = (s1, p1, s2, p2), we store in a table D the value f(L∗) of an optimal
admissible labeling L∗ on I or ∞ if none exists. If I does not contain a site we set D[I] = 0.
Otherwise, we use the following relation, where the minimum of the empty set is ∞.

D[I] = min
pL∈P(I) where

Admissible(I,T ,pL) is true

(D[(s1, p1, sL, pL)] + D[(sL, pL, s2, p2)]) + f((sL, pL))

Correctness follows from the correctness of the approach from [5] combined with the fact
that we consider only those ports that are admissible for sL. By adding two auxiliary sites
s0, sn+1 and ports p0, pm+1 above and below the sites and ports from I, we can describe I
by the sub-instance I0 = (s0, p0, sn+1, pm+1). Hence, D[I0] will store in the end f(L∗), or
∞, if I does not possess an admissible labeling. We fill the O(n2m2) entries of D top-down
using memoization. The time to evaluate an entry is dominated by the admissibility checks.

▶ Theorem 2.4. 1-CBL, with fixed ports, can be solved in O(n5m3 log m + |G| +
∑

G∈G |G|)
time and O(n2m2) space.

In the full version [9], we discuss an implementation of the algorithm for uniform-height
labels. See Figure 1b for an example computed by this implementation.
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Figure 7 An instance whose admissibility depends on the position of the ports.

3 Sliding Ports with Uniform-Height Labels

Fixed ports have the limitation that the admissibility of an instance depends on the choice
and position of the ports, as Figure 7 shows. By allowing the labels to slide along a vertical
boundary line, we remove this limitation but require that all labels now have uniform height
h. We would like to use the idea of Fink and Suri [11] and let each site s induce O(n)
ports placed at multiples of h away from s, as in Figure 8a. Then, assuming that there
exists an admissible labeling L, we want to obtain a new one L′ by sliding the labels along
the boundary until each port in L′ is induced by a site. To avoid the need for re-routing
leaders in case of leader-site crossings, as this could violate constraints, we introduce O(n2)
additional ports placed sufficiently close to the induced ones. They guarantee us that there
is a port (vertically) between any two sites, as Figure 8b shows. Hence, while sliding labels,
we can reach a port before hitting a site with a leader, i.e., we never need to re-route leaders.
As we defined O(n2) canonical ports, for which we show in the full version [9] that they are
sufficient for an admissible labeling, we can use our DP-Algorithm to obtain Theorem 3.1.
In the full version [9], we further show that such canonical ports also exist for length- and
bend-minimal labelings.

▶ Theorem 3.1. 1-CBL, with uniform-height labels, can be solved in O(n11 log n + |G| +∑
G∈G |G|) time and O(n6) space.

(a) (b)

h

h

Figure 8 Set of ports (a) induced by the sites as in [11] and (b) extended to our canonical ports.
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