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—— Abstract
In this paper, we consider the Weighted Region Problem. In the Weighted Region Problem, the

length of a path is defined as the sum of the weights of the subpaths within each region, where the
weight of a subpath is its Euclidean length multiplied by a weight «@ > 0 depending on the region.
We study a restricted version of the problem of determining shortest paths through a single weighted
rectangular region. We prove that even this very restricted version of the problem is unsolvable
within the Algebraic Computation Model over the Rational Numbers (ACMQ). On the positive side,
we provide the equations for the shortest paths that are computable within the ACMQ. Additionally,
we provide equations for the bisectors between regions of the Shortest Path Map for a source point
on the boundary of (or inside) the rectangular region.

Related Version A full version of this paper is available at arXiv:2402.12028

1 Introduction

The Weighted Region Problem (WRP) [10] is a well-known geometric problem that, despite
having been studied extensively, is still far from being well understood. Consider a subdivision
of the plane into (usually polygonal) regions. Each region R; has a weight «; > 0, representing
the cost per unit distance of traveling in that region. Thus, a segment o, of length |o|,
between two points in the same region has weighted length «;|o| when traversing the interior
of R;, or min{e;, a;}|o] if it goes along the edge between R; and R;. Then, the weighted
length of a path w(s,t) through a subdivision is the sum of the weighted lengths of its
subpaths through each face or edge. The resulting metric is called the Weighted Region
Metric. The WRP entails computing a shortest path between two given points s and ¢ under
this metric. We denote the weighted length of 7(s,t) by d(s,t). Figure 1 shows how the
shape of a shortest path changes as the weight of one region varies.

Existing algorithms for the WRP—in its general formulation—are approximate. Since
the seminal work by Mitchell and Papadimitriou [10], with the first (1 + £)-approximation,
several algorithms have been proposed, with improvements on running times, but always
keeping some dependency on the vertex coordinates sizes and weight ranges. These methods
are usually based on the continuous Dijkstra’s algorithm (e.g., [10]), or on adding Steiner
points (e.g., see [1, 2, 3, 4, 13]). However, rather recently it has been proved that computing
an exact shortest path between two points using the weighted region metric, even if there are
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Figure 1 Examples of shortest paths between two points—shown in orange—for two weighted

regions. The unbounded region has weight 1, the squares have varying weight «.

only three different weights, is an unsolvable problem in the Algebraic Computation Model
over the Rational Numbers (ACMQ) [5]. In the ACMQ one can compute exactly any number
that can be obtained from rational numbers by applying a finite number of operations from
+,—, X, +, and A for any integer k > 2. This provides a theoretical explanation for the lack
of exact algorithms for the WRP, and justifies the study of approximation methods.

This also raises the question of which are the special cases for which the WRP can be
solved exactly. Two natural ways to restrict the problem are by limiting the possible weights,
and by restricting the shape of the regions. For example, computing a shortest path among
polygonal obstacles can be seen as a variant of the WRP with weights in {1,00}. The case
for weights in {0,1,00} can be solved in O(n?) time [6]. Other variants that can be solved
exactly correspond to regions shaped as regular k-gons with weight > 2 (since they can be
considered as obstacles), or regions with two weights {1, a} consisting of parallel strips [11].

Our results. In light of the fact that the WRP is unsolvable in the ACMQ for three
different weights, in this work we study the case of two arbitrary weights, that is, weights
in {1, a}. This case is particularly interesting, since an algorithm for weights {1, a} can be
transformed into one for weights in {0, 1, a, 00} [8]. However, the variant with weights {1, a}
was conjectured to be as hard as the general WRP problem, see the first open problem in [6,
Section 7]. (The results in [5] do not directly apply to weights {0, 1, a, 00}.)

This paper is organized as follows. First we present some preliminaries in Section 2. In
Section 3 we consider two weights and one rectangular region R, with the source point s on
its boundary or inside. For this setting, we figure out all types of possible optimal paths and
give exact formulas to compute their lengths. In Section 3.3 we focus on the case where s is
outside of R, and prove that in this case the WRP with weights {1, o} is already unsolvable
in the ACMQ. In Section 4 we explore the computation of the shortest path map for s. We
finish with some conclusions in Section 5. Omitted proofs are in the full version of the paper.

2  Shortest paths and their properties

In this section we briefly review some key properties of shortest paths in weighted regions.

First, shortest paths in the weighted region problem will always be piecewise linear,
see [10, Lemma 3.1]. Second, it is known that shortest paths must obey Snell’s law of
refraction. So we can think of a shortest path as a ray of light. We define the angle of
incidence 6 as the minimum angle between the incoming ray and the vector perpendicular to
the region boundary. The angle of refraction 6’ is defined as the minimum angle between the
outgoing ray and the normal (see Figure 3). Snell’s law states that whenever the ray goes
from one region R; to another region R;, then a;siné = a;siné’. In addition, whenever
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a; > aj, the angle 6. at which g—; sinf, = 1 is called the critical angle. A ray that hits an
edge at an angle of incidence greater than 6., will be totally reflected from the point at which
it hits the boundary. In our problem, a shortest path will never be incident to an edge at an
angle greater than 6. Finally, if the space only contains orthoconvex regions! with weight at
least v/2, they can be simply considered obstacles [11]. Thus, since we focus on a rectangular
region R, we assume that its weight is 0 < o < /2. However, first we provide some general

properties of shortest paths for arbitrary weighted regions that are interesting on their own.

» Lemma 2.1. Let S be a polygonal subdivision for which each region has a weight in the set
{1,a}, with a > 0. A shortest path ©(s,t) visits any edge of the subdivision at most once.

Proof. Assume, for the sake of contradiction, that 7(s,t) intersects an edge e in at least
two disjoint intervals I; and I3. Moreover, let p; € I; and p3 € I3 be points for which the
subpath 7(p1,ps) C 7(s,t) does not intersect e in any points other than p; and ps. Let po
be a point on 7(p1, p3) between p; and ps, which thus does not lie on e. Now observe that
there exists a path pips from p; to ps of length min{1, a}|pips|. Since ps does not lie on
D1p3, it follows by the triangle inequality that the length of 7(p1,ps) is strictly larger than
min{1l, a}|pips|. Hence, 7(s,t) is not a shortest path, and we obtain a contradiction. <

» Corollary 2.2. Let S be a polygonal subdivision with n vertices, such that the weight of
each region is within the set {1, a}, with o > 0. Any shortest path (s, t) is a polygonal chain
with at most O(n) vertices.

Proof. Any shortest path is a polygonal chain whose interior vertices all lie on edges of S,
see [10, Proposition 3.8]. By Lemma 2.1, each edge contributes with at most two vertices. <

We observe that if the regions use only one of two weights {1, a}, Corollary 2.2 implies
that the time complexity of the algorithm proposed by Mitchell and Papadimitriou [10] can
be improved by a quartic factor to O(n*L), where L is the precision of the instance.

3 Computing a shortest path

We now consider the problem of computing a shortest path 7 (s,t) from s to ¢ when the
region R is an axis-aligned rectangle of weight . The exact shape of 7(s,t) depends on the
position of s and ¢ with respect to R, and on the value of .

In Sections 3.1 and 3.2 we consider the case that s lies on the boundary or inside of R,
respectively. We categorize the various types of shortest paths, and show that we can compute
the shortest path of each type, and thus we can compute 7(s,t). In Section 3.3, we consider
the case that s and t lie outside R. In this case 7(s,t) may have two vertices on the boundary
of R. We show that the coordinates of these vertices cannot be computed exactly within the

ACMQ.

3.1 The source point s lies on the boundary of R

Throughout this section we consider the case where s is restricted to the boundary of R, a
rectangle of unit height with top-left corner at (0,0). Let s = (s,,0), s, > 0, be a point
on the top side of R, see Figure 2. In addition, we assume that ¢ is to the left of the line
through s perpendicular to the top side of R. The other cases are symmetric.

LA region is orthoconvex if its intersection with every horizontal and vertical line is connected or
empty [12].
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Figure 2 Path types for s on the boundary of R of weight o < 1 (blue) and 1 < a < /2 (orange).

Shortest path types. Lemma 2.1 implies that in this setting, there are only O(1) combina-
torial types of paths that we have to consider. More precisely, we have that:

» Observation 3.1. Let s be a point on the top boundary of a rectangle R with weight 0 <
a < /2. There are 12 types of shortest paths m;(s,t), shown in Figure 2, up to symmetries.

Length of 7;(s,t). When s is on the boundary of R, there is at most one vertex of m;(s,t)
without the critical angle property. This allows us to compute the exact coordinates of the
vertices of 7;(s,t). Theorem 3.2 gives the length d;(s,t) of the path m;(s,t). The proofs of
the equations, which are based on Snell’s law of refraction, are deferred to the full version.

» Theorem 3.2. Let s = (s,,0) be a point on the boundary of R with weight 0 < oo < /2. A
shortest path w(s,t) = m;(s,t) from s to a point t = (t,,t,) and its length can be computed in
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O(1) time in the ACMQ. In particular, the length d(s,t) = d;(s,t) is given by

(52 —t2)? +12 fi=1

sy —ty) + mty ifi=2

s+ Jt2 4+ 12 ifi=3

sm+\/ R iFi=4 and thus t lies

S0 — V2 oty — o _1t, ifi=5 (outsideR ) and
av/st + P+ Vi + (G —y) ifi=06
Va2 —1s, + 1+ /2 + (t, +1)2 ifi="7
Va2 —1(sy +t,) —vV2—a2(1+t,)+1  ifi=38
ay/(se —x)2+ 14 \/(te —2)2+ (t, +1)> ifi=9
sy —ty —VaZ — 1t, if i =10
di(s,t) = /(52 — tz)2 + 12 ifi=11 (
Va2 —1(sy +tz) —t, ifi=12

in which x is the unique real solution in the interval (t;, s,) to the equation

and thus t lies )
inside R ’

Bt —2B(t, + s.)2° + [B(52 + 12 + dsyty) + (1 +t,)? — 1]2?
— 2[B(tps2 +t25,) + (1 + 1) sy — o]z + Bt2s2 + a?(1+ t,)%s2 — 2 =0, (1)
where B = a? — 1, and y is the unique real solution in the interval (ty,0) to the equation

By' =2ty By’ + [0t + Bty — s7ly* + 255ty — sty = 0.

3.2 The source point s lies inside R

We now consider the case where s is restricted to the interior of the rectangle R.

» Observation 3.3. Let s be a point in a rectangle R with weight 0 < o < /2. There are 6
types of shortest paths, up to symmetries, namely m;(s,t), for i € {6,7,8,9,11,12}.

The types of shortest paths are similar to the ones defined in Observation 3.1, see the
paths in Figure 2 where the top side of R or the region above R is not intersected. As in
Theorem 3.2, we can thus compute the (length of) a shortest path (of each type) exactly,
albeit that the expressions for the length are dependent on the location of s in R. Theorem 3.2
gives exact lengths for all path types when R has height > 1 and s is at distance exactly 1
from the bottom boundary of R.

3.3 The source point s lies outside of R

When both the source and the target point are outside of R, the shortest path can again be

of many different types. In particular, the types in Figure 2 can be generalized to this setting.

There are two special cases where the shortest path bends twice at an angle that is not the
critical angle: it can bend on two opposite sides of the rectangle, or on two incident sides. In
the first case, the angles at both vertices of 7(s,t) are equal, and the shortest path can be
computed exactly [11]. For the second case, we show that it is not possible to compute the
coordinates of the vertices of 7(s,t) exactly in the ACMQ. Hence, the WRP limited to two
weights {1, a} is not solvable within the ACMQ. Note that this path type can occur in an
even simpler setting, where R is a single quadrant instead of a rectangle.

EuroCG’'24
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Figure 3 A shortest path from s to ¢ that bends twice under different angles.

» Theorem 3.4. The weighted region problem with weights in the set {1,a}, with0 < a < /2,
cannot be solved exactly within the ACMQ, even if R is a single quadrant.

Proof sketch. We obtain this result by following the approach of De Carufel et al. [5] to
show that the polynomial that represents a solution to the WRP in this situation is not
solvable within the ACMQ. We consider the situation in Figure 3. By applying Snell’s law on
both vertices of 7(s,t), and several trigonometric identities, we find the following expression
for u = sin 81, where 67 is the angle at which the path leaves s, with respect to the z-axis:

a2_u2(3_ 1 + 1 >:
u V1—u?2 V1-a2+u?

Note that a solution to this equation would give us the shortest path, as we can use Snell’s law

to find the other angles 6] and 0. By squaring appropriately, this equation can be transformed
into a degree 11 polynomial p(u). Finally, we show that this polynomial is unsolvable within
the ACMQ by applying a general lemma on the unsolvability of polynomials. <

4 Computing a Shortest Path Map

To find a shortest path from a source point s to all points at once, one can build a Shortest
Path Map (SPM), see e.g., [7, 9, 10]. A SPM is a subdivision of the space for a given source s,
where for each cell the paths 7(s,t), with ¢ in the cell, have the same type. To compute
the SPM, we consider computing the bisector b; ; = {q | ¢ € R* Ad;(s,q) = d;(s,q)} for all
relevant pairs of shortest path types m;, 7, i.e., pairs for which b; ; appears in the shortest
path map. As before, we consider the setting where R is a rectangular region. In Section 4.1,
we first consider the case when s lies on the boundary of R. In Section 4.2, we do the same
for the case s lies inside R. The case that s lies outside R is not interesting, as we cannot
even compute exactly a single shortest path in that case.

4.1 The source point s lies on the boundary of R

The SPM is given by the boundary of R and several bisector curves, expressed as points
(z,b;j(x)). If @ < 1, these curves all lie outside R (the interior of R is a single region
in the SPM). Bisectors involving my(s,t) are of a much more complicated form, as might
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be expected from the implicit representation used for dy(s,t) in Theorem 3.2. Therefore,
Lemma 4.1 gives the bisector curves, excluding the ones related to mg(s,t). The proofs are
deferred to the full version.

» Lemma 4.1. The SPM for a point s = (s4,0) on the boundary of R is defined by:

1=0% (5, — ) ifi=1,j=2
bij(r) =4 — I;O‘Qx ifi=2,j=3 (when a< 1), and
0 ifi=3,j=6
0 ifi=1j=4
Vel lu ifi=4,7=5
%m—m&g ifi=5,j=6
bij(x)=qz=0 ifi=6,7=7 (whenl<a<+2).
—1- Y52y ifi=7,j=8
—Va? —1(s, — ) ifi=10,7 =11
T ifi=11,j =12

We conjecture the following on the bisectors involving g (s, t).
» Conjecture. No point on b; 9 \ R, i € {4,...,8}, can be computed exactly within ACMQ.

We tried to prove this conjecture by taking a similar approach as in Theorem 3.4. However,
the solution to Equation (1) already seems to be of high degree. We therefore did not manage
to formulate a point on the bisector as a polynomial equation (not containing roots).

Note that in the more restrictive case where R is a single quadrant and s lies on the bound-
ary, the only types of shortest paths that exist are m;(s,t), for i € {1,2,3,4,5,6,10,11,12}.
Thus, we can compute the SPM in the ACMQ (the bisectors are given by the equations in
Lemma 4.1).

4.2 The source point s lies inside R

In this case we have shortest paths of type m;(s,t), for i € {6,7,8,9,11,12}. Hence, the
equations of the bisectors of the SPM are given by the sides of R, and bisector bg g if a < 1,
and bisectors b6,7, b7787b6,97 b7’9, bg,g and b11)12 fl<acx< ﬂ See Lemma 4.1.

5 Conclusion

We analyzed the WRP when there is only one weighted rectangle R, and showed how to
obtain the exact shortest path 7 (s,t) and its length when s lies in or on R. When both s
and t lie outside R the exact solution is unsolvable in ACMQ. We obtain similar results in
the case where R is a single quadrant. For future work, it would be interesting to analyze if
or how we can generalize this to other convex shapes.
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