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Abstract
Given a set of n points in the Euclidean plane, the k-MinSumRadius problem asks to cover this
point set using k disks with the objective of minimizing the sum of the radii of the disks. A
practically and structurally interesting special case of the k-MinSumRadius problem is that of
small k. For the 2-MinSumRadius problem, a near-quadratic time algorithm with expected running
time O(n2 log2 n log2 log n) was given over 30 years ago [Eppstein ’92].

We present the first improvement of this result, namely, a near-linear time algorithm to compute
the 2-MinSumRadius that runs in expected O(n log2 n log2 log n) time. We generalize this result to
any constant dimension d, for which we give an O(n2−1/(⌈d/2⌉+1)+ε) time algorithm. Additionally,
we give a near-quadratic time algorithm for 3-MinSumRadius in the plane that runs in expected
O(n2 log2 n log2 log n) time.

Related Version Full version: https://arxiv.org/abs/2312.08803

1 Introduction

Clustering seeks to partition a data set in order to obtain a deeper understanding of its
structure. There are different clustering notions that cater to different applications. An
important subclass is geometric clusterings [6]. In their general form, as defined in [6],
geometric clusterings try to partition a set of input points in the plane into k clusters such
that some objective function is minimized. More formally, let f be a symmetric k-ary function
and w a non-negative function over all subsets of input points. The geometric clustering
problem is defined as follows: Given a set P of points in the Euclidean plane and an integer
k, partition P into k sets C1, . . . , Ck such that f(w(C1), . . . , w(Ck)) is minimized. Popular
choices for the weight function w are the radius of the minimum enclosing disk, and the sum
of squared distances from the points to the mean. The function f aggregates the weights of
all clusters, for example using the maximum or the sum.
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Figure 1 The optimal 2-Center clustering (left) compared to the optimal 2-MinSumRadius
clustering (right) for the same point set. In this example 2-MinSumRadius clustering better captures
the structure of the point set than 2-Center clustering.

Arguably the most popular types of clustering in this setting are k-Center clustering
(with f being the maximum, and w being the radius of the minimum enclosing disk) and
k-Means clustering (with f being the sum, and w being the sum of squared distances to
the mean). While geometric clusterings have the advantage that their underlying objective
function can be very intuitive, unfortunately the cluster boundaries might sometimes be
slightly more complex. For example, the disks defining the clusters can have a large overlap
in k-Center clustering (see Figure 1), while in k-Means clustering the boundaries are
defined by the Voronoi diagram on the mean points of the clusters (whose complexity has an
exponential dependency on the dimension). An instance of geometric clustering for which
the cluster boundaries implicitly consist of non-overlapping disks is k-MinSumRadius. In
k-MinSumRadius clustering we want to minimize the sum of radii of the k disks with
which we cover the input point set. In the geometric clustering setting, this means that the
function f is the sum and w is the radius of the minimum enclosing disk. This is the notion
of clustering that we consider in this work.

While k-Center and k-Means are both NP-hard in the Euclidean plane when k is part
of the input [14, 16], the k-MinSumRadius problem can be solved in polynomial time [12]:
O(n881) 1. Although the running time of the known polynomial-time algorithm can likely be
slightly improved using the same techniques, the balanced separators that are used in the
algorithm inevitably lead to a high running time. Thus, we believe that further structural
insights into the problem — especially with respect to separators — are needed to greatly
reduce the exponent of the polynomial running time.

In order to obtain a deeper understanding of the problem and as clustering into a small
number of clusters is practically more relevant, we consider the k-MinSumRadius problem
for small values of k here. The importance of this setting is reflected in the extensive work
that was conducted in the analogous setting for the k-Center and k-Means problem,
especially for the case of two clusters [3, 4, 7, 8, 9, 11, 13, 17, 18] — also called bi-partition.
Bi-partition problems are of interest on their own, but they can additionally be used as a
subroutine in hierarchical clustering methods. Even more interestingly, while near-linear
time algorithms for 2-Center clustering received a lot of attention [7, 11, 8, 17, 18], the
best known algorithm for 2-MinSumRadius still has near-quadratic expected running time
O(n2 log2 n log2 log n) [10], which has seen no improvement in the last 30 years, despite
significant work on related problems.

1 As the radii of minimum enclosing disks can contain square roots, the value of a solution is a sum of
square roots. However, it is not known how to compare two sums of square roots in polynomial time in
the number of elements. The running time merely counts the number of such comparisons.
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Our results

In this work, we break the quadratic barrier for 2-MinSumRadius in the Euclidean plane by
presenting a near-linear time algorithm with expected running time O(n log2 n log2 log n).
Our method actually extends to any constant dimension d ≥ 3, again yielding a subquadratic
algorithm with running time O(n2−1/(⌈d/2⌉+1)+ε). Moreover, we extend our structural
insights to planar 3-MinSumRadius — matching the previously best 2-MinSumRadius
running time — and give an algorithm with expected O(n2 log2 n log2 log n) running, which
is the first non-trivial result on this special case that we are aware of. The running time
for planar 2-MinSumRadius and 3-MinSumRadius can be made deterministic by using
the deterministic algorithm to maintain a minimum enclosing ball [10], which increases the
running times to O(n log4 n) and O(n2 log4 n), respectively.

The main technical contribution leading to these results are structural insights that
simplify the problem significantly. Concretely, we show that the points on the boundary
of the minimum enclosing disk (or ball, in higher dimensions) of the point set, induce a
constant number of directions such that there is a line (or hyperplane) with one of these
directions that separates one cluster from the other clusters in an optimal solution. As
there are only linearly many combinatorially distinct separator lines for each direction, we
have linearly many separators in total that we have to consider. Note that this is the
main difference to the previously best algorithm for planar 2-MinSumRadius [10], which
considered quadratically many separators. We then check all clusterings induced by these
separators using an algorithm from [10] to dynamically maintain a minimum enclosing disk
and, in the k = 3 case, we use our 2-MinSumRadius algorithm as subroutine. For the
higher-dimensional 2-MinSumRadius problem, we similarly use an algorithm to maintain a
minimum enclosing ball in any dimension d ≥ 3 [2]. While our algorithms are interesting in
their own right, we additionally hope to enable a better understanding of the general case by
uncovering this surprisingly simple structure of separators in the cases k ∈ {2, 3}.

Structure of the paper. Due to space limitations, in this paper we focus on presenting
the algorithm and correctness of the planar k = 2 case, in Section 2 and Section 3. We give
a brief overview of the k = 3 case in Section 4. As outlined above, the algorithms for the
other cases than planar k = 2 are similar and rely on an analogous structural result for their
respective case, namely that we can identify a linear number of separators out of which one
separates one of the optimal clusters from the rest of the clusters. The extension to constant
dimensions for the k = 2 case as well as the proof for the k = 3 case — which is significantly
more technical — can be found in the full version [1].

2 Preliminaries

For a set of points Q ⊂ R2, let MED(Q) be the minimum enclosing disk that contains all
points of Q and let r(Q) be the radius of MED(Q).

▶ Definition 2.1 (k-MinSumRadius). Let P be a set of n points in Rd and k be a positive
integer. The k-MinSumRadius problem asks to partition P into k clusters C1, C2, ..., Ck

such that
∑k

i=1 r(Ci) is minimized.

Throughout the paper, let D denote the minimum enclosing disk of the input points of our
k-MinSumRadius instance, i.e., D := MED(P ), and let c be the center of D. We say that
a point set Q defines a disk D′ if MED(Q) = D′. Let p be a point on the boundary of D,
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we define p∗ to be the diametrically-opposing point of p on D. The diameter d(p) is then the
segment from p to p∗.

The next lemma states that in an optimal solution clusters are well-separated, in the
sense that their minimum enclosing disks are disjoint.

▶ Lemma 2.2. Given a k-MinSumRadius instance, there exists an optimal solution with
clusters C1, . . . , Ck such that MED(Ci) ∩ MED(Cj) = ∅ for all distinct i, j ∈ [k].

Proof. Consider an arbitrary optimal solution for which there are two clusters Ci, Cj where
MED(Ci) ∩ MED(Cj) ̸= ∅. We replace the clusters Ci, Cj by a single cluster C ′ := Ci ∪ Cj .
Note that this does not increase the total cost, as r(C ′) ≤ r(Ci) + r(Cj). Hence, we obtain
a clustering with one less cluster. We can recursively apply this argument until we either
end up with a single cluster (which trivially satisfies the lemma) or all clusters have pairwise
non-overlapping minimum enclosing disks. ◀

3 Near-Linear Algorithm for 2-MinSumRadius

In this section, we present our algorithm for 2-MinSumRadius for the plane. We generalize
this to higher dimensions in the full version of this paper. For the plane, we prove the
following result:

▶ Theorem 3.1. For a set P of n points in the Euclidean plane, an optimal 2-MinSumRadius
clustering can be computed in expected O(n log2 n log2 log n) or worst-case O(n log4 n) time.

3.1 Algorithm
Our algorithm uses the insight that there exist a linear number of separators, such that one
of them separates the points in cluster C1 from those in cluster C2.

▶ Lemma 3.2. Given a point set P in the Euclidean plane, let C1, C2 be an optimal 2-
MinSumRadius clustering of P . Furthermore, let p1, p2, p3 be three points of P that define
the minimum enclosing disk of P (with potentially p2 = p3). Then there exists a point
q ∈ {p1, p2, p3} and a line ℓ orthogonal to d(q) such that ℓ separates C1 from C2.

We prove this result in Section 3.2. We now explain our algorithm relying on Lemma 3.2.

Algorithm description. Let p1, p2, p3 denote a triple of points in P that define D (possibly
p2 = p3). These points can be computed in O(n) time [15]. We try out every combinatorially
distinct line orthogonal to d(pi) for i ∈ {1, 2, 3} as a separator. We consider the separators
orthogonal to a specific d(pi) in sorted order such that in each step only one point or multiple
collinear points switch sides with respect to the separator. This ensures that the minimum
enclosing disk on one side of the separator is incremental while it is decremental on the other
side. We can therefore use a data structure to dynamically maintain them. We then select
the best solution found using these separators.

Correctness follows directly from Lemma 3.2, hence let us consider the running time.
We can maintain the minimum enclosing disks A and B in expected O(log2 n log2 log n) or
worst-case O(log4 n) amortized time per update [10]. So, checking all n separators requires
expected O(n log2 n log2 log n) or O(n log4 n) worst-case time. As we only have diameters
d(p1), d(p2), and d(p3) to handle, we can compute the optimal solution in the same time.
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(a) Case 1: Two points define D.
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(b) Case 2: At least three points define D.

Figure 2 Visualization of the two cases in the proof for the existence of a separator that is
perpendicular to one of the diameters of p1, p2, p3.

3.2 Linear number of cuts

In this subsection we prove Lemma 3.2, which states that it suffices to only check separators
orthogonal to one of the diameters d(p1), d(p2), or d(p3). From now on, we assume that the
optimal solution consists of two non-empty clusters. If the optimal solution contains only a
single cluster, it must be D. So, only solutions that have sum of radii strictly smaller than
r(D) are relevant for us in the case of two non-empty clusters.

Proof of Lemma 3.2. We consider two different cases, depending on whether the minimum
enclosing disk D of the input points is defined by two or more points.

Case 1: Two points define D. We illustrate this case in Figure 2a. Let p1 and p2 be the
two points that define the minimum enclosing disk. Then, p1 must be diametrically opposing
p2 on D, so d(p1) = d(p2). As we assume that the optimal solution has value less than
r(D), we have that p1 and p2 must belong to different clusters; without loss of generality, let
p1 ∈ C1 and p2 ∈ C2.

Let ℓ be the line tangent to MED(C1) perpendicular to d(p1) furthest in direction −−−→
c − p1

(recall that c is the center of D). If ℓ does not separate MED(C1) and MED(C2), then
the projections of the disks MED(C1) and MED(C2) on d(p1) cover all of the diameter, so
r(C1) + r(C2) ≥ r(D), which is a contradiction. Hence, ℓ separates the clusters as desired.

Case 2: At least three points define D. We illustrate this case in Figure 2b. Let
p1, p2, p3 ∈ P be any three points that jointly define the minimum enclosing disk. In any
optimal solution, two out of these three points must be grouped together in a cluster. Without
loss of generality, assume that p1 and p2 are in the same cluster.

Any disk containing p1 and p2 that is defined by points in D (thus, also has radius at
most r(D)) must contain all of p̄1p2, the smallest of the two arcs on D connecting p1 and p2.
We now add the artificial point p∗

3 to the point set — the diametrically opposing point of
p3. We have that p∗

3 ∈ p̄1p2 as otherwise p1, p2, p3 would lie strictly inside one half of D and
could therefore not define the minimum enclosing disk [5, Lemma 2.2]. Hence, adding p∗

3 to
the point set does not change the optimal solution. Thus, we reduced our problem to Case 1,
where two points define the minimum enclosing disk. ◀
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4 Near-Quadratic Algorithm for 3-MinSumRadius

Due to the space limit, we can only give a very brief description of the k = 3 case here and
we refer to the full version for proofs and more details. Our near-quadratic algorithm for the
3-MinSumRadius problem again relies on the structural insight that there are only linearly
many cuts that need to be considered in order to find one that separates one cluster from
the two other clusters. For the separated cluster we can then simply compute the minimum
enclosing disk, while for the other two clusters we use our near-linear time algorithm for
2-MinSumRadius. Hence, we obtain a near-quadratic time algorithm.

The following is the main structural lemma that our algorithm relies on:

▶ Lemma 4.1. Given a point set P in the Euclidean plane, let C1, C2, C3 be an optimal
3-MinSumRadius clustering of P . Furthermore, let p1, p2, p3 be three points in P that
define the minimum enclosing disk of P (with potentially p2 = p3). Then there exists a point
q ∈ {p1, p2, p3} and a line ℓ orthogonal to d(q) such that ℓ separates the cluster containing q

from the other two clusters.

The proof can be found in the full version. We prove this lemma by a case distinction on
which cluster the points that define the minimum enclosing disk D belong to. We then
either reduce to the case in which the endpoints of one of the diameters lie in different
clusters (similar to the k = 2 case), or we show that non-existence of a separator results in a
contradiction.

We then obtain the following theorem.

▶ Theorem 4.2. For a set P of n points in the Euclidean plane an optimal 3-MinSumRadius
can be computed in expected O(n2 log2 n log2 log n) or worst-case O(n2 log4 n) time.
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