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Abstract
We prove the following variant of Levi’s Enlargement Lemma: for an arbitrary arrangement A of
x-monotone pseudosegments in the plane and a pair of points a, b with distinct x-coordinates and
not on the same pseudosegment, there exists a simple x-monotone curve with endpoints a, b that
intersects every curve of A at most once. As a consequence, every simple monotone drawing of a
graph can be extended to a simple monotone drawing of a complete graph.

Related Version arXiv:2312.17675

1 Introduction

Given k ≥ 1, a finite set A of simple curves in the plane is called an arrangement of
k-strings if every pair of the curves of A intersects at most k times, and every intersection
point is a proper crossing or a common endpoint. An arrangement of 1-strings is also
called an arrangement of pseudosegments, and each curve in the arrangement is called a
pseudosegment. In this paper, we represent simple curves as subsets of the plane that are
homeomorphic images of a closed interval.

A simple curve γ in the plane is x-monotone, shortly monotone, if γ intersects every line
parallel to the y-axis at most once.

Given an arrangement A of monotone pseudosegments in the plane and a pair of points
a, b with distinct x-coordinates and not on the same pseudosegment, we say that A is (a, b)-
extendable if there exists a monotone curve with endpoints a, b that intersects every curve
of A at most once. We say that A is extendable if it is (a, b)-extendable for all possible
choices of a and b.

Our main result is the following.

▶ Theorem 1.1. Every arrangement of monotone pseudosegments in the plane is extendable.

The proof of Theorem 1.1 can be turned into an algorithm: the new pseudosegment
extending an arrangement A and joining two given points a and b is constructed in at most
|A| steps. Starting with an initial curve from a to b, in each step the curve is locally rerouted
along one pseudosegment of A.

A drawing of a graph in the plane is simple if every pair of edges has at most one common
point, either a common endpoint or a proper crossing. A drawing of a graph is monotone if
every edge is drawn as a monotone curve and no two vertices share the same x-coordinate.
We have the following direct consequence of Theorem 1.1, illustrated in Figure 1.
▶ Corollary 1.2. Every simple monotone drawing of a graph in the plane can be extended to
a simple monotone drawing of the complete graph with the same set of vertices.
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Figure 1 Left: a simple monotone drawing of a graph. Right: an extension of the drawing on
the left to a simple monotone drawing of a complete graph. The added edges are dashed.

Figure 2 An example of an arrangement of three pseudosegments that cannot be extended to
pseudolines forming a pseudoline arrangement.

In the full version of this article we also study the extendability problem for cylindrically
monotone arrangements. We show that extending an arrangement of cylindrically monotone
pseudosegments is not always possible; in fact, the corresponding decision problem is NP-
hard.

We prove Theorem 1.1 in Section 2.

1.1 Related results
A pseudoline in the plane is an image of a Euclidean line under a homeomorphism of the
plane; in other words, a pseudoline is a homeomorphic image of the set R, unbounded in
both directions. An arrangement of pseudolines is a finite set of pseudolines such that every
pair of them has exactly one crossing, and no other common intersection point. Pseudolines
are also often defined in the projective plane, as nonseparating simple closed curves.

Levi’s Enlargement Lemma [9] states that for every arrangement of pseudolines and every
pair of points a, b not on the same pseudoline, one can draw a new pseudoline through a and
b, crossing every curve from the given arrangement exactly once. The lemma has several
alternative proofs in the literature [3, 10].

By a classical result of Goodman [6], [5, Theorem 5.1.4], every arrangement of pseudo-
lines can be transformed by a homeomorphism of the plane into an arrangement of monotone
pseudolines, or a so-called wiring diagram. Therefore, monotone arrangements of pseudoseg-
ments can be considered as a generalization of pseudoline arrangements. On the other hand,
Figure 2 shows an example that not every monotone arrangement of pseudosegments can
be seen as a “restriction” of a pseudoline arrangement, and so Theorem 1.1 does not easily
follow from Levi’s Lemma. See Arroyo, Bensmail and Richter [1, Figure 2] for more ex-
amples. Since a pseudoline (in the projective plane) can be considered as a union of two
pseudosegments, Theorem 1.1 can also be considered as a generalization of “a half” of Levi’s
Lemma.

A simple drawing of the disjoint union of two 2-paths that cannot be extended to a simple
drawing of K6 was constructed by Eggelton [4, Diagram 15(ii)] and later rediscovered by



J. Kynčl and J. Soukup 48:3

the first author [8, Figure 9]. Later a few more examples of non-extendable simple drawings
were constructed [7, Figures 1, 10]. None of these drawings are homeomorphic to monotone
drawings, which follows, for example, from Theorem 1.1.

Arroyo et al. [2] showed that it is NP-hard to decide, given an arrangement A of pseu-
dosegments and a pair of points a, b, whether a and b can be joined by a simple curve
crossing each pseudosegment of A at most once. Our NP-hardness proof in the full version
is a simple adaptation of this result to cylindrically monotone arrangements.

2 Monotone arrangements in the plane

We start with a few definitions and tools for analyzing x-monotone arrangements. Given
a pair of points a, b in the plane, we write a ≺ b if a has a smaller x-coordinate than b.
Clearly, ≺ is a strict linear order on the points of any monotone curve.

We can naturally talk about objects lying “below” and “above” monotone curves. Let a, b

be points such that a ≺ b. For any monotone curve γ we denote by γ[a, b] and γ(a, b) the
subset of γ formed by the points x of γ satisfying a ⪯ x ⪯ b and a ≺ x ≺ b, respectively.
Similarly, for an arrangement B of monotone pseudosegments we denote by B[a, b] the ar-
rangement of pseudosegments where we replace each γ ∈ B by γ[a, b].

By consecutive intersections of two monotone curves with finitely many intersections
we mean consecutive intersections with respect to their x-coordinates. Let α, β be two
monotone curves with finitely many intersections. Let a, b be two consecutive intersections
of α, β such that a ≺ b. Then the only intersections of α[a, b] with β[a, b] are the points a

and b. In this case we say that the curves α and β form a bigon. Furthermore, if α(a, b) lies
above β(a, b) we say that α and β form an α-top, or equivalently, a β-bottom bigon.

The lower envelope low(U) of a set U of curves is the set of all points p of these curves
such that no other point of any curve of U with the same x-coordinate as p is below p. Note
that if U is an arrangement of monotone pseudosegments, then low(U) is a finite union of
connected parts of pseudosegments.

2.1 Proof of Theorem 1.1
Let A be an arrangement of monotone pseudosegments. Let a, b, with a ≺ b, be points that
are not on the same pseudosegment of A. We need to find a monotone curve from a to b

that intersects every curve of A at most once. Since every curve of A is monotone, we can
without loss of generality assume that A = A[a, b].

Let A′ be an arrangement of monotone pseudosegments formed by all pseudosegments
of A together with three new segments τ1, τ2, τ3, defined as follows. The segment τ1 is an
almost vertical segment starting in a and ending in some new point to the right of a and
above all pseudosegments of A. Similarly, τ3 is an almost vertical segment ending in b and
starting in some new point to the left of b and above all pseudosegments of A. Finally, τ2 is
a horizontal segment crossing τ1 and τ3, and lying entirely above all pseudosegments of A;
see Figure 3. In this way, low({τ1, τ2, τ3}) is a monotone curve connecting a and b “from
above”, so that every pseudosegment γ ∈ A intersects it at most twice. Furthermore no
γ ∈ A forms a γ-top bigon with low({τ1, τ2, τ3}) (it can only form a γ-bottom bigon).

In order to find an extending curve we do the following. We find a nonempty subset
U ⊆ A′ of pseudosegments such that the lower envelope of U is a monotone curve connecting
a to b, intersecting every pseudosegment of A′ \ U at most once. Furthermore, we find U so
that no pseudosegment α touches low(U) from below in an inner point of α. After finding
such U , a new pseudosegment connecting a and b can clearly be drawn slightly below the
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Figure 3 An arrangement of monotone pseudosegments with three added segments τ1, τ2, τ3

connecting points a, b “from above”.

lower envelope of U and will indeed intersect every pseudosegment of A′ at most once. Thus,
if such U exists, A′, and consequently A, is (a, b)-extendable.

We find U inductively. We start with U0 = {τ1, τ2, τ3} and always look at the lower enve-
lope of Ui. In the ith step we select an arbitrary pseudosegment γi of A′ \ Ui−1 intersecting
low(Ui−1) at least twice. If there is no such γi then U = Ui−1 and we are done. Otherwise,
we set Ui = Ui−1 ∪ {γi}. The number of pseudosegments is finite, so this process finishes
with a set U such that the lower envelope of U intersects every pseudosegment of A′ \ U at
most once.

Additionally, we prove that the induction preserves the following invariants for every Ui.
(I1) No pseudosegment α of A′ \ Ui forms an α-top bigon with low(Ui).
(I2) No pseudosegment α of A′ \ Ui touches low(Ui) from below in an inner point of α.
(I3) The lower envelope of Ui contains no endpoints of any pseudosegment of A′ except for

the points a and b.
(I4) The lower envelope of Ui is connected and contains a and b. Hence, it is a monotone

curve connecting a to b.
In particular, by (I4), the lower envelope of U is a monotone curve connecting a to b and,
by (I2), no pseudosegment α of A′ \ U touches low(U) from below in an inner point of α.
Since low(U) intersects every pseudosegment of A′ \ U at most once by its construction, A
is (a, b)-extendable by the previous discussion. Thus, it suffices to prove the correctness of
these invariants to finish the proof.

The invariants hold for U0 by the construction of τ1, τ2 and τ3. Suppose all invariants hold
for Ui−1. In particular, low(Ui−1) is a monotone curve connecting a to b by invariant (I4).
We show that all invariants also hold for Ui.

The pseudosegment γi intersects low(Ui−1) at least twice. We show that γi intersects
low(Ui−1) exactly twice. Suppose, for contradiction, that there are three consecutive inter-
sections c, d and e of γi with low(Ui−1) such that c ≺ d ≺ e. Then γi[c, d] with low(Ui−1)[c, d]
forms a bigon and so does γi[d, e] with low(Ui−1)[d, e]. By invariant (I1) both of these bigons
must be low(Ui−1)-top bigons. However, in this case γi touches low(Ui−1) from below in the
point d. That is not possible by invariant (I2). Thus, γi intersects low(Ui−1) exactly twice.
Furthermore, by invariant (I1), γi and low(Ui−1) form a γi-bottom bigon.

Let x and y be the two intersection points of γi and low(Ui−1). Refer to Figure 4. Since
γi and low(Ui−1) form a γi-bottom bigon, the only part of the curve γi that lies below
low(Ui−1) is exactly γi(x, y). Thus, the lower envelope of Ui−1 ∪ {γi} is a monotone curve
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Figure 4 Induction step in the proof of Theorem 1.1. In the ith step (fourth step in the figure)
we add pseudosegment γi (dashed) intersecting the lower envelope (dotted) of the previous segments
twice. The lower envelope remains a connected curve connecting a with b and not containing any
other endpoints of pseudosegments even after this addition.
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Figure 5 Induction step in the proof of Theorem 1.1. During the selection of U some pseu-
dosegments may touch low(U) from above but never from below. Pseudosegment α touches
low({τ1, τ2, τ3, γ1, γ2, γ3}) from above. On the other hand, β cannot be in the same arrangement of
pseudosegments since it touches γ2.

connecting a and b. Therefore, invariant (I4) holds also for Ui.
Since γi is a pseudosegment, its subset γi(x, y) contains no endpoint of any pseudoseg-

ment of A′. Since low(Ui) \ γi(x, y) ⊆ low(Ui−1) and invariant (I3) holds for Ui−1, invariant
(I3) also holds for Ui.

Now, suppose that invariant (I2) does not hold, that is, there exists some pseudoseg-
ment β of A′ \ Ui that touches low(Ui) from below in an inner point of β. Refer to Figure 5.
By the definition of an arrangement of pseudosegments, the touching point is not an end-
point of any pseudosegment of A′. Thus, β has to touch γi or low(Ui−1) in an inner point
of β, a contradiction. Hence, invariant (I2) also holds for Ui. Note that the analogous state-
ment for touchings from above does not hold, that is, there may exist some pseudosegment
α of A′ \ Ui that both touches low(Ui) from above in an inner point of α and touches none
of γi or low(Ui) in an inner point of α.

Finally, suppose that invariant (I1) does not hold, that is, there exists some pseudoseg-
ment ρ of A′ \ Ui that together with low(Ui) forms a ρ-top bigon. Call s and t the vertices
of this bigon and assume s ≺ t. See Figure 6.

If s and t both lie on γi[x, y], then ρ and γi intersect twice, a contradiction. Otherwise
s or t does not lie on γi[x, y]. Without loss of generality assume that t does not lie on
γi[x, y] and y ≺ t. Then s either lies on low(Ui−1) or below it. In both cases ρ[s, t] intersects
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Figure 6 Induction step in the proof of Theorem 1.1. If there was some pseudosegment ρ that
together with the lower envelope (low({τ1, τ2, τ3, γ1, γ2, γ3, γ4}) in the picture) formed a ρ-top bigon,
it would either form a ρ-top bigon with the previous lower envelope or intersect twice the segment
that was added as the last. In the picture, there are three such possible ρ’s.

low(Ui−1) in some point other than t since ρ[s, t] together with low(Ui) forms a ρ-top bigon.
Denote the rightmost intersection of ρ[s, t] and low(Ui−1) other than t by u. Then ρ(u, t)
lies above low(Ui−1) and so ρ[u, t] together with low(Ui) forms a ρ-top bigon, a contradiction
with invariant (I1) for Ui−1. This concludes the proof of Theorem 1.1.
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