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Abstract
The weak graph distance is a distance measure for immersed graphs. We extend previous NP-
hardness results for deciding this distance. Also, we present variations that we conjecture to be fixed-
parameter tractable under regularity assumptions when parameterized in the number of crossings.

1 Introduction

Embedded and immersed graphs are widely used natural representations for many kinds
of geometric networks. Given multiple models of the same network or representations of
related networks, one is typically interested in comparing the models. In recent years, many
different distance measures for embedded and immersed graphs have been proposed, cf. [2].

Two such distance measures are the strong and weak graph distance proposed by Akitaya
et al. [1], which are based on the strong and weak Fréchet distance for polygonal curves,
respectively. Both distance measures are metrics, cf. [2]. A key advantage of these measures
is that they capture both geometric and topological (dis)similarity. As discussed in [1], first
experiments on reconstructions of real road networks showed promising results.

The strong graph distance is NP-complete to approximate within a 1.10566 ratio even
on plane graphs. The best known exact algorithm due to [1] runs in an XP-like time bound
when parameterized in the number of faces.

For the weak graph distance, there is a quadratic-time decision algorithm on spike-free
(i.e., cycles are embedded in a nice way) plane graphs. Akitaya et al. also showed that when
both graphs are immersed in R2, the weak graph distance is NP-complete to decide.

Hence we are interested in whether (a variant of) the weak graph distance is tractable
on realistic networks, in particular those with few edge crossings. For this, we first extend
the hardness result of [1] in showing that deciding the directed weak graph distance remains
NP-complete even if the source graph is plane. Moreover, we show that deciding the directed
distance is NP-complete for G1, G2 embedded in Rd for d ≥ 3. In both scenarios, constant-
factor approximation is NP-complete as well.

Then we suggest the family of crossing-rigid weak graph distances as alternative distance
measures. Under reasonable regularity assumptions, we conjecture that these measures
admit fixed-parameter tractable algorithms when parameterized in the numbers of crossings.

1.1 The weak graph distance
Here, we introduce relevant notation from [1]. First, we recall the weak Fréchet distance:

▶ Definition 1.1. Let s1, s2 : [0, 1] → R2 be curves. Define their weak Fréchet distance by

δwF (s1, s2) := inf
α,β

max
t∈[0,1]

d(s1(α(t)), s2(β(t))),
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where α, β range over all continuous self-surjections of [0, 1] that keep the endpoints fixed
and d is the standard Euclidean metric.

The weak graph distance is defined for embedded and immersed graphs. We use the terms
embedded and immersed in the topological sense, that is, an embedding is (essentially) a
crossing-free drawing in Rd and an immersion is any drawing that may also contain crossings.
Moreover, we use the term plane graph for embeddings of planar graphs in R2.

In the following, let G1 = (V1, E1) and G2 = (V2, E2) be graphs immersed in R2 using
straight-line immersions. We will slightly abuse notation and refer to the immersions of
graphs, edges and vertices using the same notation as for the abstract graphs.

To define the weak graph distance, we first define graph mappings:

▶ Definition 1.2. A graph mapping s : G1 → G2 is a map that maps
1. each vertex v ∈ V1 to a point s(v) on an edge of G2 and
2. each edge {u, v} ∈ E1 to a simple path from s(u) to s(v) in G2.

The weak graph distance is now defined as the maximum weak Fréchet distance between
an edge and its image under a (globally) optimal graph mapping:

▶ Definition 1.3. For immersed graphs G1, G2, define the directed weak graph distance via

δ⃗wG(G1, G2) := min
s:G1→G2

max
e∈E1

δwF (e, s(e)),

where s ranges over all graph mappings and e and s(e) refer to the corresponding immersions
as curves in R2. The (undirected) weak graph distance between G1 and G2 is defined as

δwG(G1, G2) := max(δ⃗wG(G1, G2), δ⃗wG(G2, G1)).

Lastly, we outline the general decision alg. described in [1]. For that, we define placements:

▶ Definition 1.4. An ε-placement of a vertex v is a connected component (w.r.t. the canon-
ical topologization of G2 as a simplicial complex) of G2 ∩ Bε(v). A weak edge placement of
an edge e = {u, v} ∈ E1 is a path P in G2 that connects placements of u and v, respectively,
such that δwF (e, P ) ≤ ε. A weak ε-placement of G1 is a graph mapping s : G1 → G2 that
maps each edge to a weak ε-placement.

Furthermore, we call a vertex placement Cv weakly valid if each adjacent vertex u has a
placement Cu such that Cv and Cu are connected by a weak ε-placement of {u, v}. Other-
wise, we call the placement weakly invalid.

The general decision algorithm now proceeds as follows:

Algorithm 1 General Decision Algorithm [1]
1: Compute vertex placements.
2: Compute mutual reachability information for vertex placements.
3: Prune invalid placements.
4: Decide if there exists a placement for the whole graph G1.

As described in [1], steps 1-3 can be performed in quadratic time for general immersed
graphs. However, existence of a weakly valid placement for each vertex does not imply
existence of a weak placement of the whole graph, cf. Fig. 1. Thus, step 4 is non-trivial
in general. In [1], it is shown that step 4 is in fact trivial if both graphs are plane and the
embedding of G1 meets the following regularity condition:
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Figure 1 Graphs G1 (blue) and G2 (red) such that each vertex of G1 has exactly two weakly
valid placements, but no weak placement for G1 exists.

▶ Definition 1.5. An immersed graph G is called spike-free if each cycle C of G is 2ε-thick
and, for each three consecutive vertices u, v, w ∈ C, the ε-ball around u does not intersect
the ε-tube around the edge {v, w}.

2 Hardness of deciding the weak graph distance

Here, we extend the hardness result from [1] to show that deciding the directed weak graph
distance remains NP-hard even if the source graph is plane. Our proof idea resembles their
original proof idea. However, their reduction is from binary CSP, where we cannot guarantee
planarity of the resulting graphs. Instead, we reduce from 3-colorability of planar graphs.

▶ Theorem 2.1. Deciding whether δ⃗wG(G1, G2) ≤ ε is NP-complete even if G1 is plane.

Proof idea. A more detailed version of this proof will be included in the full version due
to space restrictions. We reduce from planar 3-coloring, which is NP-complete due to [6].
Given a planar graph G = (V, E), we construct an embedding of G on a grid in linear time,
cf. [3]. We construct a graph Gc by placing vertices wv,i in ε-balls around each v ∈ V for
i ∈ {1, 2, 3}. For adjacent vertices u, v in G, Gc has an edge eu,v,i,j connecting wu,i to wv,j

iff i ̸= j and u ≺ v for some fixed linear order ⪯ on V .
By choosing ε sufficiently small, we can achieve that each u ∈ V has exactly three

placements in Gc corresponding to the wu,i. Our idea is that placing u onto the placement
corresponding to wu,i is comparable to coloring u with color i. However, since our distance
measure is based on the weak Fréchet distance, multiple edges might be used to connect
same colored placements of adjacent vertices.

This can be prevented by inserting a vertex in the middle of each edge of G. Denote the
resulting immersed graph by Gs. Then, all edges of G must be placed essentially through
some eu,v,i,j , which exists iff i ̸= j. Thus, a consistent ε-placement of Gs onto Gc must use
globally consistent eu,v,i,j , implying that G is 3-colorable. See Fig. 2 for an illustration. ◀

Starting with 4-regular planar graphs instead, the problem remains NP-complete due to
[4] and we obtain slightly stronger results. Those observations will be included in the full
version due to space restrictions, as well as detailed proofs of the following results:
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Figure 2 Illustration of the reduction in Thm. 2.1 on a single edge {u, v} of the input graph.

▶ Corollary 2.2. It is NP-hard to approximate δ⃗wG(G1, G2) within any constant ratio c ≥ 1
even if G1 is embedded in R2.

Proof idea. In the above construction, place the vertices of Gc within ε
c -balls instead. ◀

▶ Theorem 2.3. The (directed) weak graph distance is NP-hard to approximate within any
constant ratio c ≥ 1 for graphs G1, G2 embedded in Rd for all d ≥ 3.

Proof idea. In a similar construction, embed the vertices of G, Gc on the moment curve.
[5, Lemma 5.4.2] implies planarity. Approximation hardness is analogous to Cor. 2.2. ◀

3 Crossing-rigid weak graph distances

3.1 Definitions and properties
As seen in the previous results, the directed weak graph distance is NP-hard to decide if
we do not restrict the crossings of G2. Although the search space can be shown to have
subexponential size in various cases, it is currently unknown whether there exists an FPT
decision algorithm parameterized in the number of crossings of G2 for the general case.

Hence, we propose modifying the distance measure by requiring crossings to be mapped
onto crossings. This allows us to design FPT algorithms, and also captures the intuition
that if two immersed graphs describe similar networks, they should have similar crossings.

In our notation, a crossing is a tuple (e, p) of an edge e and a point p ∈ R2 in which the
immersion of e crosses the immersion of (at least) one other edge. First, we formalize the
notion of mapping crossings onto crossings:

▶ Definition 3.1. Let s : G1 → G2 be a graph mapping. We say that s is loosely crossing-
rigid if s maps each edge e = {u, v} that has crossings in points p1, . . . , pn to a sequence of
(possibly constant) paths P0, . . . , Pn in G2 such that
1. all initial and terminal points of the Pi are s(u), s(v) or crossings of G2,
2. the Pi visit no crossings except for their initial and terminal points and
3. the concatenated path P0P1 . . . Pn is defined and is a simple path from s(u) to s(v)
s is crossing-rigid if there exists such a sequence such that P0 and Pn are not constant. s is
strictly crossing-rigid if there exists such a sequence such that none of the Pi are constant.

In other words: For edges without crossings, nothing is changed. For an edge e that has
n ≥ 1 crossings, the image of e

under a loosely crossing-rigid graph mapping has at most n crossings,
under a crossing-rigid graph mapping has at least one and at most n crossings,
under a strictly crossing-rigid graph mapping has exactly n crossings.
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Figure 3 Graphs G1 (black) and G2 (blue and grey). The blue part is a valid image for G1

under a crossing-rigid graph mapping. The diagonal grey path may not be an image of an edge of
G1 since it passes 3 crossings (the upper right crossing is passed through two edges).

As such, crossing-rigidity is of purely combinatorial rather than geometric nature.

▶ Definition 3.2. For immersed graphs G1 = (V1, E1) and G2 = (V2, E2), the directed
crossing-rigid weak graph distance is defined as

δ⃗crwG(G1, G2) = inf
s : G1→G2

max
e∈E1

δwF (e, s(e))

where s ranges over all crossing-rigid graph mappings s : G1 → G2 and e and s(e) are
interpreted as the corresponding polygonal curves.

The directed loosely crossing-rigid weak graph distance δ⃗l
crwG(G1, G2) and the directed

strictly crossing-rigid weak graph distance δ⃗s
crwG(G1, G2) are defined analogous.

Respective undirected versions δcrwG, δl
crwG, δs

crwG can be defined as in Def. 1.3.

Note that when G1 has crossings and G2 is plane, there exist no (strictly) crossing-
rigid graph mappings and as such, δ⃗crwG(G1, G2) = δ⃗s

crwG(G1, G2) = ∞. Moreover, since
placements are no longer compact, we might have δ⃗crwG(G1, G2) = ε (analogous for the
loosely or strictly crossing-rigid versions) even if no ε-placement exists.

▶ Observation 3.3. Without further restrictions, the above distance measures have several
counterintuitive properties:
1. s may map crossing edges e1 and e2 such that s(e1) does not cross s(e2). Even if s(e1)

and s(e2) cross, they need not cross in the corresponding crossings from Def. 3.1.
2. The implicit mapping (e, p) 7→ (e′, p′) of crossings of G1 onto crossings of G2 need not

be one-to-one even for the strict distance.
3. A crossing p of an edge e may be mapped onto an edge crossing p′ such that d(p, p′) > ε.
See Figs. 3 and 4 for illustrations.

However, our FPT approach is to assign a crossing of G2 to each crossing of G1 and for
a fixed assignment, the above properties may be decided efficiently. Thus, we may require
the mappings to not have any subset of the above properties without impacting tractability.

▶ Lemma 3.4. Let G1, G2 be graphs immersed in R2. It holds that

δ⃗wG(G1, G2) ≤ δ⃗l
crwG(G1, G2) ≤ δ⃗crwG(G1, G2) ≤ δ⃗s

crwG(G1, G2). (1)

If G1 and G2 are plane, δ⃗wG(G1, G2) = δ⃗l
crwG(G1, G2) = δ⃗crwG(G1, G2) = δ⃗s

crwG(G1, G2).

▶ Remark. None of the ratios between the terms of eq. 1 are bounded.
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δ⃗crwG(G1, G2) = δ⃗lcrwG(G1, G2)

δ⃗scrwG(G1, G2)

Figure 4 Graphs G1 (black) and G2 (blue and red). For the (loosely) crossing-rigid distance, G1

can be mapped onto the blue edges. For the strict distance, the vertical edge needs to be mapped
onto the red vertical edge, resulting in a larger distance.

3.2 Decision algorithm
Note that we have to amend the definitions in Def. 1.4: Placements of a vertex v are now
connected components of G2\C(G2) within Bε(v), where C(G2) is the set of points in R2

in which G2 has crossings. Edge placements now have to adhere to Def. 3.1. We propose
the following algorithmic approach for the crossing-rigid distances:

Algorithm 2 Decision algorithm for the existence of a crossing-rigid weak ε-placement
1: If not given, compute where the immersion of G1 resp. G2 has crossings.
2: Compute vertex placements.
3: for each valid assignment of crossings of G2 to crossings of G1
4: Compute reachability information for vertex placements under current assignment.
5: Prune invalid placements.
6: if there exists a placement for the whole graph G1 then return true.
7: return false.

The definition of “validity” of an assignment in step 3 depends on whether we consider
the loosely crossing-rigid, crossing-rigid or strictly crossing-rigid distance. Less assignments
will be valid if we demand that the graph mapping does not have some of the properties
from Obs. 3.3. There are at most (k2 + 1)k1 such assignments. Restricting the assignments
in the sense of Def. 3.1 or Obs. 3.3 takes polynomial time per assignment.

Steps 1, 2, 4 and 5 can be performed in polynomial time. Regarding step 6, we conjecture:

▶ Conjecture 3.5. For the crossing-rigid and strictly crossing-rigid weak graph distance,
step 6 can be performed in polynomial time if G1 is spike-free. For the loosely crossing-rigid
weak graph distance, step 6 can be performed in polynomial time if G1 satisfies some slightly
stronger regularity condition.

Essentially, the idea is to have a similar situation to the plane case from [1, Lemma 7] for
edges without crossings. For edges with crossings, after assigning crossings, all consistent
weakly valid placements of the incident vertices are mutually reachable.

Verifying the above conjecture and developing a computation algorithm are natural next
steps. Additionally, as mentioned above, it is currently unknown whether the weak graph
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distance admits an FPT algorithm when parameterized in the respective number of crossings,
which is also an interesting question. Lastly, more experimental work would give insight into
the use of our distance measures for comparing realistic networks.
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