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Abstract
A polyiamond is a polygon composed of unit equilateral triangles, and a generalized deltahedron
is a convex polyhedron whose every face is a convex polyiamond. We study a variant where one
face may be an exception. For a convex polygon P , if there is a convex polyhedron that has P

as one face and all the other faces are convex polyiamonds, then we say that P can be domed.
Our main result is a complete characterization of which equiangular n-gons can be domed: only if
n ∈ {3, 4, 5, 6, 8, 10, 12}, and only with some conditions on the integer edge lengths.

1 Introduction

In the study of what can be built with equilateral triangles, the most well-known result is
that there are exactly eight convex deltahedra—polyhedra where every face is an equilateral
triangle—with n = 4, 5, 6, 7, 8, 9, 10, 12 vertices. See references in [3] or Wikipedia.1 What if
coplanar triangles are allowed? In the plane, the polygons built of equilateral triangles are
the polyiamonds. Convex polyiamonds have 3, 4, 5, or 6 vertices. The convex polyhedra
with polyiamond faces are the “non-strictly convex deltahedra”, or generalized deltahedra,
following the nomenclature of Bezdek [3]. See the above cited Wikipedia article for some
examples. There are an infinite number of generalized deltahedra, though the number of
combinatorial types is finite since they have at most 12 vertices. There is no published
characterization, though a forthcoming one is mentioned in [3].

Our goal (only partially achieved) is to characterize when a convex polygon can be
“domed” with a convex surface composed of equilateral triangles. For a convex polygon P ,
if there is a convex polyhedron that has P as one face and all the other faces are convex
polyiamonds, then we say that P can be deltahedrally domed, or just domed for short.
Here the deltahedral dome (dome for short), denoted by D, is the part of the polyhedron
excluding face P , and P is called the base of the dome. Note that P itself may or may not
be a polyiamond.

We assume that all the equilateral triangles have unit edge length, so P must be an
integer polygon (with integer side lengths). Here is a simple example:
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I Lemma 1.1. Every integer rectangle can be domed.2

Figure 1 “Roof” dome over a 3× 1 rectangle.

1.1 Main Theorem
I Theorem 1.2. (a) The only equiangular polygons that can be domed have n vertices,
where n ∈ {3, 4, 5, 6, 8, 10, 12}; for each such n, any regular integer n-gon can be domed.
(b) Moreover, for n = 3, 4, 5, 6 every equiangular integer polygon can be domed, and for
n = 8, 10, 12, an equiangular integer n-gon can be domed iff the odd edge lengths are equal
and the even edge lengths are those of an equiangular n

2 -gon.

For small n, edge-length conditions for an equiangular integer polygon are known [2]:
for n = 4 these are rectangles; for n = 5 there is only the regular pentagon; and for n = 6
the edge lengths must be integers a, b, c, a′, b′, c′ with a − a′ = b′ − b = c − c′ (a 6-sided
polyiamond).

Part (a) of Theorem 1.2 is proved in Sections 2 and 3. We have established several
results beyond the main theorem (for example, that all polyiamonds, equiangular or not, are
domeable, and that there is no domeable polygon with 25 or more vertices)—see Section 4.

1.2 Glazyrin and Pak
The source of our work derives from a paper by Glazyrin and Pak: “Domes over Curves” [4],
which answers a question posed by Richard Kenyon in 2005.3 In [4], a “curve” P is a closed
polygonal chain in R3, and a dome is a PL-surface composed of unit equilateral triangles
whose boundary is ∂P . Then they say that P can be spanned. We note the following two
differences with our definitions:

(1) Our P is a 2D convex polygon; theirs is a 3D possibly self-intersecting polygonal chain.
(2) Our dome D is embedded (non-self-intersecting) and convex. Their PL-surface is (in

general) nonconvex, immersed, and self-intersecting.

Under their conditions, they show that certain nonplanar rhombi cannot be spanned, which
answers Kenyon’s question in the negative.4 More interesting for our purposes, they prove

2 Due to space limitations, several proofs appear only in the full version of this paper.
3 https://gauss.math.yale.edu/~rwk25/openprobs/.
4 Recent work [1] extends the Glazyrin-Pak negative result to show that “generic” integer polygons
cannot be spanned.

https://gauss.math.yale.edu/~rwk25/openprobs/
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that every planar regular polygon can be spanned (their Theorem 1.4). In contrast, our
Theorem 1.2 says that the regular 7-, 9-, and 11-gons cannot be domed, nor can any regular
n-gon for n > 12. And here “regular” can be strengthened to “equiangular.” Compared to
their results, our conditions constrain the geometry and limit what can be domed.

2 Domed Regular Polygons

We prove one part of Theorem 1.2(a) by exhibiting domes over regular integer n-gons, for
n ∈ {3, 4, 5, 6, 8, 10, 12}. We will use P̄n to denote a regular integer n-gon.

3, 4, 5 : P̄n for n = 3, 4, 5 can each be domed by a pyramid: Fig. 2.
6 : Hexagonal antiprism: Fig. 3(a).
8 : A slice through a gyroelongated square diprism: Fig. 3(b).
10 : A slice through an icosahedron: Fig. 3(c).
12 : A slice through a hexagonal antiprism: Fig. 3(d).

A few remarks. The pyramid pattern for n = 3, 4, 5 cannot be extended to P̄6, for that
would result in a doubly-covered hexagon, not a dome by our definition. For n = 8, 10, 12,
we show P̄n as a slice of a convex polyhedron, with the dome the upper half of the surface.
But we have established that not every doming of an equiangular polygon derives from a
slice.

Figure 2 Pyramids over P̄n, n = 3, 4, 5.

Figures 2 and 3 show one way to dome each regular polygon P̄n, but there are other
solutions. For example, P̄5 can be domed by a low slice through the icosahedron as shown in
Fig. 4(a). And again, these figures illustrate regular polygons, special cases of equiangular
polygons. To give a hint of the further possibilities, Fig. 4(b) shows an equiangular decagon
P10 whose edge lengths alternate 1 and 3.

3 Proof of Theorem 1.2(a): Restrictions on n

In this section we complete the proof of the first half of Theorem 1.2: The only equiangular
n-gons that can be domed have n ∈ {3, 4, 5, 6, 8, 10, 12}. For a dome over an equiangular
n-gon, n ≥ 6, we use the following steps:

(1) Each base vertex has three incident dome triangles.
(2) Curvature constraints imply that the number of (non-base) dome vertices is at most 6.

EuroCG’24
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(a) n = 6 (b) n = 8

(c) n = 10 (d) n = 12

Figure 3 Examples of P̄n domes for n = 6, 8, 10, 12.
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(a) n = 5 (b) n = 10

Figure 4 (a) A different dome over P̄5. (b) Equiangular decagon with edge lengths alternating
1, 3.

(3) Of the n dome faces incident to base edges, at least half tilt toward the outside of the
base and have a “private” dome vertex. Furthermore, for n odd we strengthen this to
all dome faces incident to base edges.

(4) Thus, since there are at most 6 dome vertices, n ≤ 12, and for n odd, there are no
solutions for n ≥ 6.

Note that the base angle β of an equiangular n-gon is n−2
n 180◦ so if n ≥ 6, then every

base angle is ≥ 120◦. This weaker assumption on a domeable convex n-gon is enough for
most of our argument.

I Lemma 3.1. If a base vertex bi has base angle βi ≥ 120◦, then it is incident to three dome
vertices.

Proof. Base vertex bi cannot be incident to just one or two triangles, otherwise the total
face angle is ≤ 120◦, which is not enough to span βi. Vertex bi cannot be incident to four
triangles, because βi + 240◦ ≥ 360◦, and similarly for five (or more) triangles. J

From this we can analyze the base curvature:

I Lemma 3.2. If every base vertex bi is incident to three dome triangles, then the sum of
the curvatures at the base vertices is 2π.

Proof. Let βi be the angle of P at vertex bi. Then the curvature at bi is ωi = 2π− (βi +π),
where the final π term follows from the assumption that bi is incident to three triangles.
Recalling that

∑
i βi = π(n− 2) for any simple polygon, we have:∑

i

ωi =
∑
i

(π − βi) = nπ −
∑
i

βi = nπ − π(n− 2) = 2π.

J

I Lemma 3.3. If D is a dome over a convex polygon P that has all angles ≥ 120◦, then D
has at most 6 dome vertices.

EuroCG’24
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Proof. Let V3, V4, V5 be the number of (non-base) dome vertices with 3, 4, 5 incident trian-
gles, respectively. By the Gauss-Bonnet theorem, the total curvature of a convex polyhedron
is 4π. The curvature of a Vk vertex is 2π − k π3 . By Lemmas 3.1 and 3.2 (this is where we
use the assumption that all base angles are ≥ 120◦) the curvature at the base vertices of
any dome over P is 2π. Thus, in units of π:

V3 + 2
3V4 + 1

3V5 = 2 .

Therefore the number of dome vertices of D is V3 + V4 + V5 ≤ 3V3 + 2V4 + V5 = 6. J

3.1 Face Normals and Private Dome Vertices
It remains to show step (3): that, of the n dome faces incident to base edges, at least half
of them [and for odd n, all of them] tilt toward the outside of the base and each have a
“private” dome vertex. We say that a dome vertex v is private if there is a unique dome
face incident to v and to a base edge.

Orient the dome with the base in the horizontal xy-plane. A dome triangle/face has an
upward normal if its normal has a positive z-component, and a downward normal if its
normal has a negative z-component. (This formalizes “tilting towards the outside”).

I Lemma 3.4 (±Normals). Consider a base vertex bi with base angle ≥ 120◦. Suppose the
three dome triangles incident to bi are t1, t2, t3 where t1 and t3 are incident to the base edges
at bi (possibly t2 is coplanar with t1 or with t3, but not both). Then t2 has an upward normal
and at least one of t1, t3 has a downward normal.

Lemma 3.4 is proved in the full version of this paper using the Gauss map and spherical
trigonometry.

− −

+(a) 

(b) 
−+

+

t2

bi

t3 t1

Figure 5 Overhead view of three triangles incident to base vertex bi. Triangles with upward
normals pink, downward normals blue. (a) Both t1 and t3 downward. (b) Only t1 downward.

I Observation 3.5. In Lemma 3.4, if t1 has a downward normal, then it cannot be coplanar
with t2 (which has an upward normal), and thus the dome face containing t1 has a face angle
of 60◦ at the base vertex bi.

I Lemma 3.6. If P is a domeable convex n-gon with all angles ≥ 120◦, then n ≤ 12.
Furthermore, there is no domeable equiangular n-gon for odd n ≥ 6.
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Proof. For the second statement in the lemma, note that an equiangular n-gon, n ≥ 6 has
all angles ≥ 120◦. So consider an n-gon P with all angles ≥ 120◦, and suppose P has a
dome D. By Lemma 3.3, D has at most 6 dome vertices. We will prove that n ≤ 12, and
derive a contradiction for odd n ≥ 6.

Consider the n faces of D incident to a base edge. Let d be the number of those faces
with downward normals. By Observation 3.5, a downward pointing face f incident to base
edge e has 60◦ face angles at the the endpoints of e, so it must include a dome vertex whose
projection to the xy-plane lies in the equilateral xy-triangle on edge e. See Fig. 5 and Fig. 6.
Such a dome vertex is unique to base edge e so we call it a “private” dome vertex. Thus
there are at least d private vertices. Since D has at most 6 dome vertices, we have d ≤ 6.

60º

Pn

e
f −

Figure 6 Projection of downward face f lies within an equilateral triangle outside base edge e.
Here Pn = P7.

Now Lemma 3.4 implies that d ≥ n
2 . Thus

n
2 ≤ d ≤ 6 so n ≤ 12. Furthermore:

I Lemma 3.7. For any dome over an equiangular n-gon with odd n ≥ 6, all the dome faces
incident to base edges have downward normals, i.e., d ≥ n.

Therefore there is no domeable equiangular n-gon with odd n ≥ 6, since we would need
n ≤ d ≤ 6. J

Proof outline for Lemma 3.7. Each base vertex bi has four incident faces and thus, consid-
ered in isolation, has only one degree of freedom for the dihedral angles of incident edges.
Let δi be the dihedral angle of D at base edge ei = bibi+1. Because bi and bi+1 share edge
ei and have the same face angles, we can show that δi−1 = δi+1. Since n is odd, this implies
that all the δi’s are equal. Lemma 3.4 implies that at least one δi is > 90◦, so they all
are. J

4 Further Results and Open Questions

We have characterized equiangular domeable polygons. Many open problems remain. Here
are a few.

(1) Is there any convex n-gon with n > 12 that can be domed? A rough bound is n ≤ 55:
every dome vertex has curvature at least π

3 so there are at most 11 dome vertices; every

EuroCG’24
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base vertex must be adjacent to a dome vertex and dome vertices have degree at most 5.
We can prove the stronger bound n ≤ 24.

(2) Is there any convex 7-gon that can be domed? We have constructed 9- and 11-gons
(non-equiangular) that can be domed. See Fig. 7.

(3) Is there any non-equilateral triangle that can be domed? Glazarin and Pak conjectured [4]
that, even under their looser conditions, an isosceles triangle with edge lengths 2, 2, 1
cannot be spanned.

Top Bottom
Figure 7 The top (red) is a polyiamond of 13 equilateral triangles. The base (blue) is a 9-gon

with base angles 120◦ and 150◦.
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