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Abstract
We consider variants of the clustered planarity problem for level-planar drawings. So far, only convex
clusters have been studied in this setting. We introduce two new variants that both insist on a
level-planar drawing of the input graph but relax the requirements on the shape of the clusters.
In unrestricted Clustered Level Planarity (uCLP) we only require that they are bounded by
simple closed curves that enclose exactly the vertices of the cluster and cross each edge of the graph
at most once. The problem y-monotone Clustered Level Planarity (y-CLP) requires that
additionally it must be possible to augment each cluster with edges that do not cross the cluster
boundaries so that it becomes connected while the graph remains level-planar, thereby mimicking a
classic characterization of clustered planarity in the level-planar setting.

We give a polynomial-time algorithm for uCLP if the input graph is biconnected and has a
single source. By contrast, we show that y-CLP is hard under the same restrictions and it remains
NP-hard even if the number of levels is bounded by a constant and there is only a single non-trivial
cluster.

Related Version full version including missing proofs: arXiv:2402.13153

1 Introduction

A level graph (G, γ) is a graph G = (V, E) and a function γ : V → {1, 2, . . . , k} with k ∈ N
that assigns vertices to levels such that no two adjacent vertices are assigned to the same
level. A level planar drawing of a level graph (G, γ) is a crossing-free drawing of G that maps
each vertex v to a point on the line y = γ(v) and each edge to a y-monotone curve between
its endpoints. A level graph is level planar if it has a level planar drawing. Level planarity
can be tested in linear time [11].

Let G = (V, E) be a graph. A clustering T of G is a rooted tree whose leaves are the
vertices V . Each inner node µ of T represents a cluster, which encompasses all leaves Vµ

of the subtree rooted at µ. The pair (G, T ) is called a clustered graph. A clustered planar
drawing of a clustered graph (G, T ) is a planar drawing of G that also maps every cluster µ

to a region Rµ that is enclosed by a simple closed curve such that (i) Rµ contains exactly the
vertices Vµ, (ii) no two region boundaries intersect, and (iii) no edge intersects the boundary
of a cluster region more than once. The combination of (i) and (iii) implies that an edge may
intersect a cluster boundary if and only if precisely one of its endpoints lies inside the cluster.
A clustered graph is clustered planar if it has a clustered planar drawing. The problem of
testing this property and finding such drawings is called Clustered Planarity. In a
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Figure 1 (a) A drawing that is level planar and clustered planar and thus cl-planar, but not
convex cl-planar or y-cl-planar. (b) A drawing that is y-cl-planar (with the augmentation edge in
E′ shown dashed in red) and thus also cl-planar, but not convex cl-planar.

recent breakthrough, Fulek and Tóth gave the first efficient algorithm for this problem [9],
which was soon after improved to a quadratic-time solution [2].

In this paper, we seek to explore the combination of the two concepts of level planarity
and clustered planarity. Namely, our input is a clustered level graph (cl-graph), which is a
tuple (G, γ, T ) such that (G, γ) is a level graph and (G, T ) is a clustered graph. We insist
on a level-planar drawing of G. However, it is not immediately clear which conditions the
cluster boundaries should fulfill. Forster and Bachmaier [8] proposed the problem variant
Convex Clustered Level Planarity (short cCLP), which requires to draw the clusters
as convex regions1. They showed that cCLP can be solved in linear time if the graph is
proper (i.e., all edges connect vertices on adjacent levels) and the clusters are level-connected
(i.e., each cluster contains an edge between any pair of adjacent levels it spans). Angelini et
al. [1] showed that testing cCLP is NP-complete, but can be tested in quadratic time if the
input graph is proper, thereby dropping the requirement of level-connectedness.

In this paper we consider two new variants that relax the conditions on the drawing
of the cluster. In unrestricted Clustered Level Planarity (short uCLP) we keep the
conditions (i)–(iii) as stated above, i.e., the shapes of clusters are not restricted by the levels.
Our second variant y-monotone Clustered Level Planarity (short y-CLP) is based
on the characterization that a planar drawing G of a graph G is clustered planar w.r.t. to a
clustering T if and only if it is possible to insert a set of augmentation edges into G in a planar
way such that each cluster becomes connected and no cycle formed by vertices of a cluster µ

encloses a vertex not in µ in its interior [5]. In analogy to this, we define a level-planar
drawing to be y-cl-planar if it satisfies these conditions but additionally the augmentation
edges can be added as y-monotone curves. Figure 1 shows that cCLP, uCLP, y-CLP are
indeed different problems. We are not aware of work that concerns uCLP or y-CLP.

We show that uCLP can be solved in polynomial time if the input graph is biconnected
and has a single source, i.e., a vertex that does not have neighbors on a lower level. On the
other hand we show that y-CLP is NP-complete under the same conditions and also if the
number of levels is 5 and there is only a single non-trivial cluster, i.e., that not contains
all vertices.

1 they only considered this convex setting and used the name CLP instead of cCLP
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2 Single-Source Biconnected (unrestricted) Clustered Level Planarity

We show that uCLP can be solved efficiently if G is a biconnected graph with a single source.
To this end, we combine the polynomial-time solution for Clustered Planarity [2] with a
combinatorial description of all level-planar drawings of a biconnected single-source graph [4].

Note that whether a drawing of G is clustered planar depends only on its combinatorial
embedding, rather than the precise drawing. Thus, we call an embedding E of G clustered
planar if the corresponding drawings are. We call an embedding E of G level planar if G

admits a level-planar drawing with embedding E . To solve uCLP for an instance (G, γ, T ),
we need to find an embedding of G that is both cluster planar and level planar.

We first introduce yet another type of constraints called synchronized fixed-vertex con-
straints (sfv-constraints for short). For a graph G = (V, E) an sfv-constraint is a set Q of
pairs (v, σv), where v ∈ V and σv is a fixed cyclic order of the edges incident to v, called its
default rotation. An embedding E of G satisfies the constraint Q if for each pair (v, σv) ∈ Q

the rotation of v in E is its default rotation or if for each pair (v, σv) ∈ Q the rotation of v

in E is the reverse of its default rotation. Given a set Q of sfv-constraints, we say that an
embedding of G satisfies Q if it satisfies each Q ∈ Q.

We use sfv-constraints to bridge from level-planarity to usual planarity. To this end,
we introduce a slightly generalized version of Clustered Planarity, where we seek a
clustered-planar embedding that additionally satisfies a given set Q of sfv-constraints. This
problem is called Sync CP. The point is that the algorithm of Bläsius et al. [2] reduces
Clustered Planarity to the intermediate problem Synchronized Planarity, which
includes the option to directly express sfv-constraints. The reduction that shows the following
lemma can be found in the full version of this paper at arXiv:2402.13153 together with all
further missing proofs.

▶ Lemma 2.1. Sync CP can be solved in O(n3) time.

We now turn to the second ingredient. Let (G, γ) be a biconnected single-source level-
planar graph and let Γ be an arbitrary level-planar embedding of G. Brückner and Rutter [4]
showed that there exists a data structure, called LP-tree, very similar to the famous SPQR-
tree, that represents precisely the level-planar embeddings of G; see fig. 2 for an example.
Like the SPQR-tree, the embeddings decisions for the LP-tree are made by (i) arbitrarily
reordering parallel subgraphs between a pair of vertices and (ii) flipping the embeddings of
some disjoint and otherwise rigid structures. Hence, the possible orderings of the edges around
each vertex v of G in any level-planar embedding can be described by a PQ-tree [3, 7] Tv,
called level PQ-tree that is straightforwardly derived from the LP-tree; it contains one
P-node uv,µ for each parallel structure µ in which v occurs and one Q-node uv,ρ for each
rigid structure ρ, in which v occurs; see fig. 2a. The level-planar embedding Γ is used as
reference to determine a default rotation σv,ρ for each Q-node uv,ρ.

If an embedding E of G is level-planar, the rotation of each vertex v is necessarily
represented by its level PQ-tree Tv. It further holds that all Q-nodes uv,ρ with v ∈ V that
stem from the same rigid structure either all have their default orientation or all its reversal.
An embedding where the last condition holds for each rigid structure is called ρ-consistent.

▶ Lemma 2.2. An embedding E is level-planar if and only if the rotation of each vertex v is
represented by its level PQ-tree Tv and moreover E is ρ-consistent.

For a biconnected single-source level-planar graph G with level-planar embedding Γ, we
derive a new graph G+ and a set Q of synchronized fixed-vertex constraints. We replace
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Figure 2 (a) A level graph G with two level PQ-trees Tw and Tv derived from (b) its LP-tree.
P-nodes are represented by black disks, Q-nodes as white double disks. (c) The graph after replacing
w, v by Tw, Tv; the orange arrow indicates the sfv-constraint due to ρ.
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each vertex v of G by a tree isomorphic to its level PQ-tree Tv; see Figure 2c. In order to
enforce ρ-consistency, we additionally create for each rigid structure ρ of the LP-tree an
sfv-constraint Qρ = {(uv,ρ, σv,ρ) | v occurs in the rigid structure ρ}. Let Q denote the set of
these constraints for all rigid structures. Clearly, we can obtain a planar embedding of G by
taking a planar embedding of G+ that satisfies Q and contracting each tree Tv back into
a single vertex. The embeddings we can obtain in this way are precisely those where the
rotation of each vertex v is represented by its level PQ-tree Tv and that are ρ-consistent.

Finally, it is time to connect clusters and level planarity. To this end, consider a
clustering T on G. We naturally obtain a corresponding clustering T + of G+ by placing
each vertex of G+ into the cluster of the vertex of G it replaces.

▶ Lemma 2.3. (G, γ, T ) admits a planar embedding that is level-planar and clustered-planar
if and only if (G+, T +) admits a clustered-planar embedding that satisfies Q.

Altogether, this reduces the problem uCLP of biconnected single-source graphs to Sync
CP, which can be solved efficiently by Lemma 2.1.

▶ Theorem 2.4. uCLP can be solved in O(n3) time for biconnected single-source level
graphs.

3 Hardness of y-monotone Clustered Level Planarity

It is easy to see that y-CLP lies in NP by guessing and verifying the augmentation edges and
an embedding. We show that it is NP-hard even for inputs with very restricted properties.

▶ Theorem 3.1. y-monotone Clustered Level Planarity is NP-complete, even if the
input is a biconnected graph with just one source.

Proof Sketch. We reduce from the NP-complete problem Planar Monotone 3-SAT [6],
which asks for the satisfiablity of 3-SAT formulas whose incidence graph has a drawing
where all variables lie on a vertical line ℓ, each clause contains only positive or only negative
literals, and the positive and negative clauses lie on opposing sides of ℓ; see Figure 3a.

Given such a drawing for a formula ϕ, we first reorient the clauses horizontally above
the variables as illustrated in Figure 3b. From this drawing, we construct an equivalent
instance of y-CLP as illustrated in Figure 3c. The variables and literals are represented by
triconnected pillars (a (3 × k)-grid for suitable k) that extend vertically towards the clause
gadgets. The horizontal flip of a pillar represents its truth value. To synchronize pillars of the
same variable, we use wedges that enclose a vertex of a disconnected cluster and, due to the
required y-monotonicity for cluster connections, prohibit corresponding wedges of adjacent
pillars to face each other, as such a connection would have to bypass both wedges. Using
two clusters per variable, we can thus ensure consistent flips for all variables; see Figure 3c.

Using a similar approach with wedges, we can construct a clause gadget that allows
all assignments for its literals except when all three literals are false; see Figure 3c for
the structure of the gadget. As shown in Figure 4, there exists one configuration for the
literal pillars of a clause where no valid embedding is possible, as the cluster of the gadget
cannot connect with only y-monotone curves. Figure 5 shows valid embeddings for all other
configurations. This way, we can construct in polynomial time an equivalent instance of
y-CLP where the graph is biconnected and only has a single source. ◀

Our second reduction is from 3-Partition, whose input is a multiset A = {a1, . . . , a3m}
positive integers and a bound B ∈ N+ with B/4 < ai < B/2 and

∑
a∈A a = m · B.
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Figure 3 (a) An instance of Planar Monotone 3-SAT. (b) The modified incidence graph.
(c) The structure of the corresponding y-CLP instance. Highlighted are a clause gadget (top right)
and the gadget for propagating variable assignments (bottom right).
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Figure 4 Neither flip of X ′ admits a valid embedding of the clause gadget if all literals are false.
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Figure 5 The seven variable assignments for which the clause gadget admits a valid embedding.
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Figure 6 (a) A receiver (bold) with a marked vertex r (box), and a second receiver (non-bold)
chained to the first one. (b) A 3-plug. (c) A bucket of size 7, filled with two 2-plugs and a 3-plug.
Every marked bucket vertex can be connected to a pin with a y-monotone curve.

The question is whether A can be partitioned into m sets A1, A2, . . . , Am, such that for
every j ∈ {1, . . . , m} it is

∑
a∈Aj

a = B. 3-Partition is strongly NP-complete, i.e., it
remains NP-complete even if B is polynomial in m [10].

▶ Theorem 3.2. y-monotone Clustered Level Planarity is NP-complete, even if the
input contains only one non-trivial cluster, the number of levels is at most 5, and all vertices
have a fixed rotation.

Proof Sketch. Let (m, A, B) be an instance of 3-Partition. We construct an instance of
uCLP with a single non-trivial cluster µ. The main idea is to build m buckets (the structure
in Figure 6c) by chaining B receivers (the structure in Figure 6a, each of which contains a
connector vertex r that belongs to µ), and closing the sides of each bucket with two paths
(also called walls). Note that each of the B connector vertices of a bucket must be connected
to the rest of µ due to the paths of length 2 attached to the vertices marked as t in the
receiver; see Figure 6a. For every a ∈ A, we generate an a-plug; the structure in Figure 6b).
The leaves of a plug are called pins and these are the only vertices that can link the connector
vertices to the remainder of cluster µ. Given a plug and a bucket, either all of the vertices of
the plug are drawn between the two bucket walls, or none of them. Thus, we can model a
solution A1, . . . , Am with the m buckets, and a drawing assigns a ∈ A to Ai if and only if the
corresponding a-plug is in the i-th bucket. Since every pin can join at most one connector
vertex, there are at least B pins inside a bucket in a valid drawing. Since there are m buckets
and a total of m · B pins, the instance is valid if and only if we can distribute the plugs
in such a way that there are precisely B pins per bucket, which corresponds directly to a
solution of (m, A, B). ◀

4 Conclusion

We have introduced the problems unrestricted Clustered Level Planarity and y-mono-
tone Clustered Level Planarity, gave an polynomial-time algorithm for unrestricted
Clustered Level Planarity if restricted to biconnected single-source graphs, and showed
that y-monotone Clustered Level Planarity is NP-complete under very restricted
conditions.
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We conclude by providing some open questions. On the one hand, these are inspired by
the restrictions imposed by our algorithm. The LP-trees we use in Theorem 2.4 only exist
for biconnected single-source instances and it is unlikely that this concept can be extended
to multiple sources [4, Section 5]. Is it possible to extend our algorithm to non-biconnected
graphs? More generally, what is the complexity of unrestricted Clustered Level Pla-
narity? On the other hand, the NP-hardness results on y-monotone Clustered Level
Planarity and (non-proper) Convex Clustered Level Planarity [1] raise the question
whether these problems are FPT with respect to natural parameters.
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