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Abstract
We show that each set of n ⩾ 2 points in the plane in general position has a straight-line matching
with at least (5n + 1)/27 edges whose segments form a connected set, while for some point sets the
best one can achieve is ⌈ n−1

3 ⌉.

1 Introduction

Consider a set P of n points in the plane in general position, meaning that no three points
of P are collinear. A (straight line) matching M for P is a set of segments with endpoints
in P such that no two segments share an endpoint. A matching M for P is connected (via
their crossings) if the union of the segments of M forms a connected set. Equivalently, a
matching is connected when the intersection graph of its segments is connected. The size of
the matching M is the number of edges (or segments) in M . In this paper, we study the
following problem.

▶ Question 1.1 (Connected Matching). Find for each n the largest value f(n) with the
following property: each set of n points in general position in the plane has a connected
matching with f(n) edges.

We provide upper and lower bounds for the function f(n). Our upper bounds are
constructive and lead to effective algorithms to compute the connected matching. In this
short version we focus on our constructions. Missing details and proofs of the algorithmic
claims will appear in the full paper, where we also consider a colored version of the problem.

The problem can be seen as a variant of the problem on crossing families of Aronov et
al. [3], where one wants to find as many segments as possible with endpoints in P such
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that any pair of segments crosses in their interior. While in our setting we are asking for a
connected subgraph in the intersection graph of the segments, the crossing families problem
asks that the intersection graph is a complete graph. The best lower bound, showing an
almost linear lower bound for crossing families, has been a recent breakthrough by Pach,
Rubin and Tardos [5]. Aichholzer et al. [2] have the currently best upper bound.

2 Balanced separation with a short path

In this section we provide a structural result about splitting the convex hull of a point set
with a single edge or with a 2-edge path in such a way that both sides contain a large fraction
of the point set. A very similar result can be found in Ábrego and Fernández-Merchant [1,
Lemma 2]. We include a proof because their bound has a small error1, our approach is
different in the treatment of the triangular case (Theorem 2.1), and we discuss the algorithmic
counterpart, a part that is not considered in [1] and that forces us to rework a proof.

We first consider the case when the convex hull is a triangle and the partition can be
with different number of points. This will be a tool for the general case. See Figure 1.
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Figure 1 Statement in Theorem 2.1.

▶ Theorem 2.1. Assume that we have a triangle with vertices p0, p1 and p2 and in its
interior there is a set P of m ⩾ 1 points such that P ∪ {p0, p1, p2} is in general position. For
any integer weights w0, w1, w2 such 0 ⩽ w0, w1, w2 < m and ℓ := w0 + w1 + w2 > 2m − 3,
there exist at least ℓ − 2m + 3 > 0 points q ∈ P such that, for each i ∈ {0, 1, 2}, the triangle
△(piqpi+1) contains at most wi+2 points of P in its interior, where all indices are modulo 3.

We can find ℓ − 2m + 3 points with this property in linear time.

Proof. In this proof, all indices are modulo 3. For i ∈ {0, 1, 2}, consider a ray ri that starts
at pi−1 and goes through pi. We rotate ri around pi−1 in the direction towards pi+1 until
we pass ri over m − wi − 1 points of P . See Figure 2, left, to visualize the case i = 1. For
any of the points q ∈ P we did not scan over, the triangle △(pi−1qpi+1) contains at most wi

points of P in its interior; note that q is not in the interior of △(pi−1qpi+1).
Some points of P may be scanned more than once, but in total we scan at most 3m −

w1 −w2 −w3 −3 = 3m− ℓ−3 points. So there are at least m− (3m− ℓ−3) = ℓ−2m+ 3 > 0
points remaining, and each of them satisfies the desired property. ◀

As a special case we state the following corollary, which might be of its own interest.

1 Lemma 2 in [1] is not correct for n = 4.
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Figure 2 Left: rotating r1 until we pass over m − w1 − 1 points. Right: the part of the triangle
that is not shadowed contains at least ℓ − 2m + 3 points.

▶ Corollary 2.2. Let ∆ be a triangle with a set P of m ⩾ 1 points in its interior. Then there
is a point of P that splits ∆ into three triangles, such that none of these parts contains more
than ⌈(2m − 2)/3⌉ points of P in its interior.

This result resembles the classical Centerpoint theorem [4, Section 1.4], which tells that
for each set P of n points in the plane there exists a so-called centerpoint q with the property
that each open halfplane that does not contain q has at most 2n/3 of the points of P inside.
However, the centerpoint does not need to be a point of P , and for some point sets it cannot
be an element of P .

Denote by CH(P ) the convex hull of P . A point p ∈ P is extremal for P if it lies on the
boundary of CH(P ). A k-separating path for P is a plane path π spanned by vertices of P

and connecting two different extremal points of P such that CH(P ) \ π has two parts, each
containing at least k points; the points on the path are counted in no part. See Figure 3.
The length of such a path is its number of edges.

Figure 3 Left: 5-separating path of length 1. Right: 7-separating path of length 2.

▶ Theorem 2.3. Let P be a set of n ⩾ 2 points in general position in the plane. There exists
a ⌈ n−4

3 ⌉-separating path for P of length 1 or 2 and it can be found in time linear in n.

Proof sketch. For n ⩽ 4 the statement is trivially true. So for the reminder of the proof
assume that n ⩾ 5. Let us set r = ⌈(2(n − 3) − 2)/3⌉ = ⌈(2n − 8)/3⌉. The intuition is that r

is the bound of Corollary 2.2 for n − 3 ⩾ 1 points; in our current setting, n is also counting
the vertices of the triangle. We also set k = ⌈(n − 4)/3⌉ ⩾ 1 as n ⩾ 5.

Choose an extremal point q0 ∈ P with the smallest y-coordinate. Let q1, . . . , qn−1 be the
points P \ {q0} sorted increasingly by the angle q0qi makes with the horizontal rightward ray
from q0. See Figure 4, left.
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Figure 4 Proof of Theorem 2.3.

If between qk and qn−k there is some extremal point qj for P , which implies that
k < j < n − k, then the segment q0qj is a k-separating path of length 1 and we are done. See
Figure 4, right. Otherwise, the rays q0qk and q0qn−k intersect the same edge e of CH(P ).
Let qaqb be the edge e, with a < b. This means a ⩽ k < n − k ⩽ b and the triangle △(q0qaqb)
has exactly b − a − 1 points in its interior. See Figure 5, left.
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Figure 5 Continuation of the proof of Theorem 2.3.

We want to apply Theorem 2.1 to △(q0qaqb) and the m = b−a−1 ⩾ (n+1)/3 ⩾ 1 points
of P in its interior. To this end, set p0 = q0, p1 = qa, p2 = qb, w0 = r, w1 = r − (n − b − 1),
and w2 = r − (a − 1). See Figure 5, right. After checking that indeed w0 + w1 + w2 > 2m − 3,
which we skip, Theorem 2.1 implies the existence of a point q ∈ P in the interior of
△(p0p1p2) = △(q0qaqb) that splits it into three triangular pieces such that the interior of
the triangle △(pi−1qpi+1) has at most wi points of P (for i = 0, 1, 2 and indices modulo 3).

We split CH(P ) into three parts A0, A1, A2 by removing the segments qq0 = qp0, qqa = qp1
and qqb = qp2. See Figure 5, right. The points q, q0, qa, qb belong to no part, while all the
other points of P belong to exactly one part. From the choices of weights wi, each part
contains at most r points of P . Any part among A0, A1, A2 with most points has at least
⌈(n − 4)/3⌉ = k points and its boundary defines a k-separating path of length 2. ◀

3 Upper bound

Consider n points split into three sets A0, A1, A2 of size ∼ n
3 , where each Ai lies on its own

slightly curved blade of a three-bladed windmill; see Figure 6. We use indices modulo three
in the discussion. We can form such a configuration so that each line determined by two
points of Ai separates Ai+1 from Ai+2, and no segment connecting one point of Ai with
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one point of Ai+1 crosses any segment connecting two points of Ai+1. Hence, the set of all
segments is separated into three parts where each part consists of segments connecting two
points of Ai or one point of Ai and one point of Ai+1, and segments from different parts do
not cross. Clearly, the size of the largest matching spanning Ai ∪ Ai+1, if their sizes differ by
at most one, is min{|Ai|, |Ai+1|}, and the largest of those values over i ∈ {0, 1, 2} gives the
largest connected matching. Treating carefully the modulus of n, we get for each n ⩾ 1 a
point set where the maximum connected matching has size ⌈ n−1

3 ⌉.

n
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n
3
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Figure 6 Upper bound for connected matchings.

4 Lower bound

We first consider the following special setting, depicted in Figure 7, left.
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Figure 7 Left: Situation in Lemma 4.1. Right: edges added to the matching when A has four
points not in convex position.

▶ Lemma 4.1. Assume that we have a horizontal segment uv, a set A of a points above the
line supporting uv, and a set B of b ⩽ a points below the line supporting uv such that, for all
(a, b) ∈ A × B, the segment ab intersects uv, and A ∪ B ∪ {u, v} consists of a + b + 2 points
in general position. Then, A ∪ B ∪ {u, v} has a connected matching of size at least

m(a, b) :=


1 + b if b ⩽ a ⩽ 2b + 3,

(a + 3b + 2)/5, if 2b + 3 ⩽ a ⩽ 7b + 3,

1 + 2b, if a ⩾ 7b + 3.
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Such a connected matching can be computed in O(1 + a log a) time.

Proof sketch. We first make two easy observations that will come in handy:

(a) A matching of B onto A with b edges together with the edge uv to “connect” them is
a connected matching of size b + 1. We want to improve upon this when the sides are
unbalanced, in particular when a is larger than 2b ± O(1).

(b) If A has a large subset A′ in convex position, then we can get a connected matching of
size ⌊ |A′|

2 ⌋, for example by connecting “antipodal” points along the boundary of CH(A′).

We construct a connected matching M iteratively as follows. At the start we add uv

to M . While |A| > |B| > 0 and A has four points p0, p1, p2, q such that q is in the interior
of △(p0p1p2), we take an arbitrary point r ∈ B, add the edge qr to M , and to M the edge
pp′ of △(p0p1p2) crossed by qr. See Figure 7, right. Note that {pp′, uv, qr} is a connected
matching. Then we remove p, p′, q from A, and r from B. With each repetition of this
operation, we increase the size of the matching by two, remove three points from A, and
remove a point from B. We repeat this operation until B is empty, |A| ⩽ |B|, or A is in
convex position, whatever happens first. Let k be the number of repetitions of this operation,
let A′ and B′ be the subsets of A and B, respectively, that remain at the end. Therefore, M

is a connected matching with 1 + 2k edges, A′ has a − 3k points, and B′ has b − k points.
We now consider the different conditions that hold at the end:

If we finish because B′ is empty, then k = b and the matching M has 1 + 2b edges.
If we finish because |A′| ⩽ |B′|, we match the remaining points of A′ to B′ arbitrarily
and add those edges |A′| to M ; since they cross uv, M keeps being a connected matching.
Using that the cardinality of A decreases at steps of size 3 and the cardinality of B

decreases at steps of size 1, it is possible to show that the size of the connected matching
M is in this case 1 + ⌊(a + b)/2⌋.
If we finish because A′ does not have any 4 points with the desired condition, the key
observation is to note that A′ is in convex position. (This is also true if |A′| ⩽ 3.) We
consider two connected matchings and take the best of both.
The first matching is obtained by adding to M a matching between all the vertices of B′

and any subset of A′ with |B′| points. The second matching, which we denote by M ′, is
obtained by taking a connected matching of the points A′; they are in convex position.
A comparison between M and M ′ shows that the larger one has size at least

1 + b if b ⩽ a ⩽ 2b + 3,

(a + 3b + 2)/5, if 2b + 3 ⩽ a ⩽ 7b + 3,

(a − 3b − 1)/2, if a ⩾ 7b + 3.

Since we have given a construction that can finish with 3 different conditions, one has to
show that in each scenario m(a, b) is a lower bound on the size of the connected matching.
We skip this computation. ◀

Note that the bound m(a, b) of Lemma 4.1 is monotone increasing in a and in b, also
when we take a and b as real values (with b ⩽ a always.) Moreover, when a + b is kept
constant, m(a, b) is larger for larger b. This means that m(a, b) ⩽ m(a − 1, b + 1), if b ⩽ a − 2.

▶ Theorem 4.2. Let P be a set of n ⩾ 2 points in general position in the plane. Then P has
a connected matching set of size at least (5n + 1)/27 and it can be computed in O(n log n)
time.
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Proof sketch. By Theorem 2.3 we know that there is a ⌈ n−4
3 ⌉-separating path P of length 1

or 2 for P . Let A and B be the sets of points of P on each side of π, such that |A| ⩾ |B|. Note
that the vertices of π do not go to any of the sides, which means that n−3 ⩽ |A|+ |B| ⩽ n−2
and

⌈
n−4

3
⌉
⩽ |B| ⩽ |A|. Each edge connecting a point of A to a point of B crosses π.

If π consists of a single edge e, then we match all points of B to points of A arbitrarily,
and include e also in the matching. Since all these edges intersect e, they form a connected
matching of size 1 + |B| ⩾ ⌈ n−1

3 ⌉ ⩾ 5n+1
27 . (This last inequality holds for n ⩾ 2.)

For the remainder of this proof we assume that π has length two, and denote its edges
by e1 and e2. We build a maximal matching M1 from B1 ⊆ B to A1 ⊆ A with edges that
cross e1. This means that |A1| = |B1| and there is no point in A \ A1 that can be connected
to a point in B \ B1 by crossing e1. Set A2 = A \ A1 and B2 = B \ B1. Each segment
connecting a point in A2 to a point of B2 must cross e2 because it does not cross e1. We
make an arbitrary matching M2 connecting each point of B2 to points of A2; this can be
done because |B2| = |B| − |M1| ⩽ |A| − |M1| = |A2|. We add e1 to M1 and e2 to M2 so that
M1 and M2 become connected matchings with |M1| + |M2| = 2 + |B|.

If M1 or M2 has size at least 5n+1
27 , then we are done. Therefore, we restrict our attention

to the case when |M1|, |M2| ⩽ 5n+1
27 . Since |A1| = |B1| = |M1| − 1 ⩽ 5n−26

27 , we have

|B2| = |B| − |B1| ⩾

⌈
n − 4

3

⌉
− 5n − 26

27 ⩾
4n − 10

27 .

We apply Lemma 4.1 to the segment e2 with A2 and B2 to get a connected matching,
where a = |A2| and b = |B2|. Using properties of the lower bound m(a, b) of Lemma 4.1, we
can see that a worst-case lower bound is obtained evaluating m(a, b) at the values a = 13n−19

27
and b = 4n−10

27 . With these values one obtains the lower bound (5n + 1)/27. ◀
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