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—— Abstract

We introduce the k-Plane Insertion into Plane drawing (k-PIP) problem: given a plane drawing
of a planar graph G and a set of edges F', insert the edges in F' into the drawing such that the
resulting drawing is k-plane. In this paper, we focus on the 1-PIP scenario. We present a linear-
time algorithm for the case that GG is a triangulation, while proving NP-completeness for the case
that G is biconnected and F' forms a path or a matching.

1 Introduction

Inserting edges into planar graphs is a long-studied problem in Graph Drawing. Most
commonly, the goal is to find a way to insert the edges while minimizing the number of
crossings and maintaining the planarity of the prescribed subgraph. This problem is a core
step in the planarization method to find graph drawings with few crossings [22]. Gutwenger
et al. [15] have studied the case of a single edge. For multiple edges the picture is more
complicated. In case the edges are all incident to one vertex previously not present in the
graph, the problem can again be solved in polynomial time [7]. However, the problem is NP-
hard even when the given drawing is fixed and its corresponding graph biconnected [23, 25].
Assuming a fixed drawing, Hamm and Hlinény presented an FPT-algorithm parameterized
by the number of crossings [16]. Finally, Chimani and Hlinény [8] gave an FPT-algorithm for
the fixed and variable embedding settings with the number of inserted edges as a parameter.

In this paper, we take a slightly different viewpoint and do not restrict the overall number
of created crossings, but instead their structure. Moreover, we focus on the case when the
drawing of the given planar graph is fixed. Then our goal is, given a plane drawing I' and
a set F' of edges with its endpoints being vertices of this graph, to find a k-plane drawing
containing I' as a subdrawing plus the edges of F. Here, a k-plane drawing of a graph is
one in which no edge is crossed more than k times. The class of k-planar graphs, which are
those admitting a k-plane drawing, is widely studied in Graph Drawing [10, 17].

» Problem 1 (k-Plane Insertion into Plane drawing (k-PIP)). Given a plane drawing I" of a
graph G = (V, E) and a set of edges F' with endpoints in V, find a k-plane drawing of the
graph (V, E U F') that contains T" as a subdrawing.

Our results. In this paper, we focus on 1-PIP. Note that we may assume that a solution
to an instance of 1-PIP is a simple 1-plane drawing, i.e., no two edges share more than
one point, since in a 1-plane drawing simplicity only affects the crossings of adjacent edges.
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In Section 2, we present an O(|V|) algorithm for the case that G is a triangulation. To
accomplish this, we first reduce the number of possible ways one edge can be inserted into
the given drawing to at most two per edge in F' and then use a 2-SAT formulation to
compute a solution if possible. In Section 3, we show that 1-PIP is NP-complete even if G
is biconnected and the edges in F' form a path or a matching.

Related work. k-PIP is related to the problem of extending a partial drawing of a graph to a
drawing of the full graph. Usually, the goal in such problems is to maintain certain properties
of the given drawing. For example, in works by Angelini et al. [1], Eiben et al. [13, 12],
Ganian et al. [14], or Arroyo et al. [3] the input is a plane, 1-plane, k-plane, or simple
drawing, respectively, and the desired extension must maintain the property of being plane,
1-plane, k-plane, or simple. Restrictions of the drawing such as it being straight-line [24],
level-planar [4], upward [20], or orthogonal [2] have been explored. Other results consider
the number of bends [6] or assume that the partially drawn subgraph is a cycle [5, 21].

2 Extending a triangulation

We assume standard notation and concepts from graph theory; compare, e.g., [11]. Given
an instance (G,T', F) of 1-PIP, an edge e € F might be inserted into I" in different ways.
Note that e cannot be inserted without crossings in a triangulation. An option for e is an
edge 7 of G such that e can be inserted into I' crossing only . Note that in a triangulation,
a pair of faces uniquely defines an edge v that must be crossed if e is inserted into said pair
of faces. Thus, with the term option we might also refer to a pair of faces. An option for e
is safe if, in case the instance admits a solution, there is one solution in which e is inserted
according to this option. Two options for two edges e and e’ of F' clash if inserting e and e’
according to these options violates 1-planarity. Examples of safe options are those of edges
with a single option and an option without clashes. An immediate solution can be found if
each edge in F' has a non-clashing option. However, it is not sufficient for each edge in F’
to have a safe option in order to find a solution, e.g. in the case that two single options are
clashing. Finally, observe that in a triangulation, each edge of I' can only be an option for
one edge of F' and clashes with at most four other options.

» Theorem 2.1. Given a plane drawing T’ of a triangulation G = (V, E) and a set of edges
F with endpoints in V, 1-PIP on (G,T', F) can be solved in time O(|V]).

Proof. The idea is to preprocess the instance until we are left with a set of edges F/ C F
with two options each. The resulting instance can then be solved using a 2SAT formula.
Begin by computing all options for every e € F. Since I is a plane drawing, we can get the
triangles incident to each v € V in cyclic order and also the options for edges in F' incident
to v. This way, we get the overall O(|V]) options for edges in F' in O(|V]) time. For an edge
(u,v) € F, u,v € V, with two or more options we say that two options are consecutive if
the corresponding faces are consecutive in the cyclic order around u (or v); see the options
for (u,v) in Fig. 1(c) for an illustration. We say a set of options is cyclically consecutive if
the corresponding edges induce a cycle in G; see the options for (u,v) in Fig. 1(d).

Whenever an edge e has no option left, we stop and output no and if e has exactly one
option left, we insert it into I'. Every time we insert an edge, we need to remove at most
four options of other edges plus all the options of the just inserted edge. Consider an edge
e = (u,v) € F, u,v € V, that has three or more options. We consider four cases.

(a) There are at least three options for e such that no two of them are consecutive. Given
one of these three options, say o;, we claim that it is either safe or never possible in a
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Figure 1 Cases with three or more options in a triangulation.

solution; see Fig. 1(a). If ; is not clashing with any other option, it is safe and we add it.
Otherwise, let w and x be the two endpoints of ;. Option o; can only be clashing with
two options for edges in F' incident to w and two options for edges in F' incident to x.
Moreover, any option for those edges clashes with ;. To see this, consider w.l.o.g. such
an edge in F' incident to w (illustrated in red in Fig. 1(a)). The other options for e define
a non-empty region in which this edge cannot be drawn (see red region in Fig. 1(a)),
restricting its options to options that clash with o;.

(b) There are at least three options for e, and one of them, o;, is not consecutive to any of
the other two; see Fig. 1(b). As in Case (a), o; is either safe or never possible.

(¢) There are at least four consecutive non-cyclic options for e; see Fig. 1(c). Let o; be one
of the central options. As in the previous cases, o; is either safe or never possible.

(d) There are three consecutive or four cyclically consecutive options for e; see Fig. 1(d).
Consider the middle option o; (or any option if there were four). If it is safe, we just
add it. Else, let w and x be the endpoints of o; and y, z the other endpoints of options
for e. Assume, w.l.o.g., that o; clashes with an option of an edge e,, incident to w and
to vertex y. For o; to be a possible option in a solution, e,, must have an option that
does not clash with it. There is only one possibility, and it implies that v,y, z or u,y, z
form a triangle. Assume, w.l.o.g., the former, so (y, z) is an edge in I'. Let ¢ be the set
of vertices {u,v,w,z,y, 2z} and G, the octahedron subgraph of G induced by o.

Edges in F' with exactly one endpoint in ¢\ {u} have at most one option. Thus, we can
insert them first and see whether we are still in Case (d). Edges incident to u and to
a vertex not in ¢ cannot clash with any option of an edge between vertices in ¢. Thus,
we can solve the constant-size subinstance consisting of inserting such edges into G,
independently, taking into account the single-option edges that we might have inserted.

Once each edge has exactly two options we create a 2SAT formula containing one variable
per option and clauses that ensure exactly one option per edge in F’ and exclude clashes.
This formula has size O(|V]) and is satisfiable iff the original instance has a solution. <

3 Inserting a path or a matching is NP-complete

We prove NP-hardness by reduction from PLANAR MONOTONE 3-SAT; the membership of
the problem in NP is straightforward. Let ¢ be a Boolean formula in CNF with variables
V ={x1,...,2,} and clauses C = {¢1,...,¢n . Each clause has at most three literals and
is either positive (all literals are positive) or negative (all literals are negative). Furthermore,
there is a rectilinear representation I'y of the variable-clause incidence graph of ¢, such
that all variables and clauses are depicted as axis-aligned rectangles connected via vertical
segments and all variables are positioned on the z-axis, all positive clauses lie above and all
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negative clauses lie below the z-axis; see Fig. 2 for an example. This problem is known to
be NP-complete [9, 19].
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Figure 2 Rectilinear representation of the variable-clause incidence graph of a PLANAR
MONOTONE 3-SAT instance.

In the following, starting from I'y, we construct a graph G = (V, E), its plane drawing
I', and the edge set F', which will be inserted into I' in a specific way. We start with the case
of F forming a path (see Theorem 3.4) and describe the changes to our construction for F'
being a matching afterwards (see Corollary 3.5). The bars in 'y, can be layered decreasingly
from top to bottom. We set the layer of the variables as layer zero and denote by L(c) the
layer of clause c; see Fig. 2. We denote by H the graph K4 missing one arbitrary edge and
create chains of copies of H, that are connected via their degree 2 vertices, such that the
chord is drawn inside the Cy4 cycle of H. This provides the structure for routing the path F
in the drawing. We say that an edge e € F is (-spanning if there are ¢ chords of H in the
chain between its endpoints.

The variable gadget. We replace each bar of a variable z in I'y by a variable gadget
which consists of a H-chain of 4a + 1 copies where a is the maximum over the number of
positive and negative occurrences of x in ¢. Let ui,...,usq42 be the vertices where the H
copies are joined from left- to rightmost copy. Moreover, we mark for i € {0,...,a — 1}
the vertices ugyq; as variable endpoints (c.f. the squares in Fig. 3). Each such vertex gets
two additional incident edges, called literal edges, which are going to connect the variable
gadgets to adjacent layers and encode the truth-value of the respective variables. We call a
literal edge exiting its variable endpoint upwards (downwards) positive (negative).

For each i € {0,...a — 1}, we define the path F to pass through wjy4;, tayaq, Ustai,
Ugt4i, Us+44, €xcept for a — 1 where we omit the last vertex; cf. red path in Fig. 3. Then, for
a variable gadget its edges in F’ consist of an alternation of 3-spanning and 1-spanning edges.
By 1-planarity and simplicity, F' cannot cross the H-chain. We refer to the 3-spanning edges
that cross literal edges as blocking 3-spanners and the others as forcing 3-spanners.

For the remainder, we depict literal edges representing the value true in blue and the
ones representing false in orange, while the edges in F' are colored in red; c.f. Figs. 3 to 6.
The proofs of statements marked with a (x) are available in the long version on arXiv [18].

> Lemma 3.1 (). Let v be a variable gadget described as above, then in any 1-planar
drawing containing it, its literal edges, and the edges F,, C F' incident to vertices in v either
all negative or all positive literal edges are crossed.
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Figure 3 Drawing of the variable gadget.

Figure 4 Drawing of the clause gadget.

Ty

If the negative literal edges are crossed, we think of the variable corresponding to the
gadget as set to true and false otherwise. We connect the variable gadgets by adding one
copy of H with a 1-spanning edge added to F' in between them; see Fig. 5.

The clause gadget. We describe the construction only for the positive clauses, as the
construction for the negative ones is symmetric. The clause gadget is depicted in Fig. 4. It
consists of a chain of two copies of H, followed by two edges, followed by two more copies
of H. We mark the middle vertices of each of the two copies and the two edges as variable
endpoints and add one additional edge to them, their literal edge. Assume that all literal
edges are drawn on the same side as shown in Fig. 4 and add edges to F' as shown in red.

» Lemma 3.2 (x). Let ¢ be a clause gadget drawn as describe above, then in any 1-planar
drawing containing c, its literal edges, and the edges F, C F incident to vertices of ¢, at
least one literal edge has to be crossed by an edge in F..

Propagating the variable state. In order to ensure that there is no interaction between
the path F' and other parts of the drawing, we insert H-chains with 1-spanning edges added
to F' on every layer of I'y and insert the clause gadgets into the respective layers as shown
in Fig. 5. We create further variable endpoints on the layers ¢ > 0, in order to propagate
the state of the variable gadgets to clauses in higher layers. For each pair of corresponding
variable endpoints of a variable gadget and clause gadget, we create a variable endpoint at a
merged vertex in the H-chain in each layer ¢ with 0 < i < L(c) and prescribe F' to span the
two neighboring copies of H. Further, we connect every two consecutive variable endpoints
on layer j and j + 1 with 0 < j < L(c) via a literal edge, as illustrated in Fig. 5.

» Lemma 3.3 (x). Let P = ey,...,er) be a path of literal edges such that ey is incident
to a variable endpoint of variable gadget v and er.) to one clause gadget c, if e1 is crossed
in v, then er ) is crossed by an edge of I' incident to vertices on layer L(c) — 1.

Note that if the first edge of P is not crossed in the variable gadget, this does not imply
that its last edge is uncrossed in layer L(c)—1. In fact, this is possible when multiple literals
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Figure 5 Solution (in red) of the 1-PIP instance coming from the graph given in Fig. 2.

evaluate to true for a clause gadget; e.g. the top- and leftmost orange edge in Fig. 5. If a
variable is not contained in the same number of negative and positive clauses we ensure the
alternating pattern of F' on layer zero by connecting the remaining variable endpoints to
ones on layer one, e.g., see x1 in Fig. 5. Lastly, the subpath of F' on every layer is joined to
the one of the previous layer in an alternating fashion by an H-chain and 1-spanning edges.

» Theorem 3.4 (x). 1-PIP is NP-complete even if G is biconnected and F forms a path.

We can use the same construction but replacing the alternating connections between the
layers by edges to prove NP-hardness also for the case that F' is a matching; see Fig. 6.

» Corollary 3.5. 1-PIP is NP-complete even if G is biconnected and F forms a matching.
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Figure 6 1-PIP instance where F is a matching reduced from the graph given in Fig. 2
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4 Conclusion

We introduced the k-PIP problem and showed that it is NP-complete even when the given
graph is biconnected and the inserted edges form a path or matching. We also presented
a linear-time algorithm when the given graph is triangulated. This naturally raises the
question if the triconnected case of k-PIP is polynomial-time solvable or NP-complete.
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