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Abstract
Let P be a set of n = 2m + 1 points in the plane in general position. We define the graph GMP

whose vertex set is the set of all plane matchings on P with exactly m edges. Two vertices in GMP

are connected if the two corresponding matchings have m − 1 edges in common. In this work we
show that GMP is connected.

1 Introduction

Reconfiguration is the process of changing a structure into another—either through con-
tinuous motion or through discrete changes. Concentrating on plane graphs and discrete
reconfiguration steps of bounded complexity, like exchanging one edge of the graph for another
edge such that the new graph is in the same graph class, a single reconfiguration step is
often called an edge flip. The flip graph is then defined as the graph having a vertex for each
configuration and an edge for each flip. Flip graphs have several applications, for example
morphing [6] and enumeration [8]. Three questions are central: studying the connectivity of
the flip graph, its diameter, and the complexity of finding the shortest flip sequence between
two given configurations. The topic of flip graphs has been well studied for different graph
classes like triangulations [3, 14, 15, 16, 17, 19, 20], plane spanning trees [11, 12], plane
spanning paths [2, 5], and many more. For a nice survey see [10].

For matchings usually other types of flips were considered since a perfect matching cannot
be transformed to another perfect matching with a single edge flip. A natural flip in perfect
matchings is to replace two matching edges with two other edges, such that the new graph
is again a perfect matching. These flips were studied mostly for convex point sets [9, 18].
While the according flip graph is connected on convex point sets it is open whether this flip
graph is connected for any set of points in general position. Other types of flips in perfect
matchings can be found in [1, 4, 7].

In this work we study a setting where single edge flips are possible for matchings. Let P

be a set of n = 2m + 1 points in the plane in general position (that is, no 3 points on a line).
An almost perfect matching on P is a set M of m line segments whose endpoints are pairwise
disjoint and in P . The matching M is called plane if no two segments cross.
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Figure 1 Flipping a matching edge: the previously unmatched point p is matched to q.

Let MP denote the set of all plane almost perfect matchings on P . We define the flip
graph GMP with vertex set MP through the following flip operation. Consider a matching M1
and let p be the unmatched point. Let q be a point in P such that the segment pq does
not cross any segment in M1. The flip now consists of removing the segment incident to q

from the matching and adding pq instead, see Figure 1. Note that this gives another plane
almost perfect matching M2. In the graph GMP , the vertices corresponding to M1 and M2
are adjacent.

In this paper, we prove the following theorem.

▶ Theorem 1.1. For any set P of n = 2m + 1 points in general position in the plane the flip
graph GMP is connected.

In Section 2 we give an overview of the used techniques and the proof of Theorem 1.1.
Then in Section 3 we prove the lemmata used for the proof of Theorem 1.1.

2 Overview and Proof of Theorem 1.1

In this section, we give an overview of our used techniques and the proof of Theorem 1.1.
Let G = (V, E) be a graph G and let M be a matching in G. We call a path P in G

an alternating path if the edges of P lie alternately in M and in E \ M . In the following,
we consider so-called segment endpoint visibility graphs: graphs that encode the visibility
between the endpoints of a set of segments. More precisely, given a set S of (non-intersecting)
segments in the plane, its segment endpoint visibility graph is the graph that contains a vertex
for every segment endpoint, and an edge between two vertices if the corresponding segment
endpoints either (1) are connected by a segment in S, or (2) “see” each other, meaning that
the open segment between them does not intersect any segment from S. Hoffmann and
Tóth [13] proved that segment endpoint visibility graphs always admit a simple Hamiltonian
polygon—this is a plane Hamiltonian cycle—, and moreover presented an algorithm to find
such a polygon. This result is crucial for us, as a plane perfect matching can be considered
as a set of segments in the plane. Hence, for every plane matching M there exists a plane
subgraph of the segment endpoint visibility graphs of M that is the (not necessarily disjoint)
union of a Hamiltonian cycle and M . Even disregarding planarity, we prove

▶ Lemma 2.1. Let G be an undirected graph that is the union of a Hamiltonian cycle C and
a perfect matching M . Let e1 = (a, b) and e2 = (c, d) be two matching edges. Then there
exists an alternating path P that starts with the vertex a and the edge e1 and ends with the
vertex c.

We denote the symmetric difference of two graphs A, B with A △ B. Given the setup
of Lemma 2.1, we can compute another matching M2 = M △ P in which both a and d are
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Figure 2 A plane alternating path in the visibility graph gives rise to a sequence of flips.

unmatched. Ignoring the point d, this augmentation corresponds to a sequence of flips in
a point set of odd size. See Figure 2 for an illustration. This flip sequence starts with the
matching M1 = M \ {e2} and point c being unmatched, and ends with the matching M2 and
point a being unmatched.

To prove that the flip graph GMP is connected, we show that there always exists a
sequence of flips which transforms a given plane almost perfect matching into a plane almost
perfect matching, where the unmatched point lies on the boundary of the convex hull.

▶ Lemma 2.2. Let M1 be a plane almost perfect matching and let t be a point on the convex
hull of P . Then there exists a sequence of flips to a matching M2 in which the unmatched
point is t.

We use Lemma 2.2 to show that we can flip every matching M to a canonical matching MC ,
which we now define. Let P = {p1, p2, . . . , p2m+1}, where the points are labeled from left to
right. The canonical matching MC now consists of the edges p1p2, p3p4, . . . , p2m−1p2m with
p2m+1 remaining unmatched. It follows from the ordering of the points that this matching is
plane.

Proof of Theorem 1.1. Let M be any plane almost perfect matching on P . Let i be the
smallest index for which the edge p2i−1p2i is not in M . We show that there is a sequence
of flips on the point set {p2i−1, p2i, . . . , p2m, p2m+1} after which p2i−1p2i is in the resulting
matching. In the following, for simplicity of notation, we set i = 1.

Using Lemma 2.2, we first flip to a matching M2 in which the point p1 is unmatched. As
the segment p1p2 cannot be crossed by any other segment, we can thus do one more flip
which puts p1p2 into the resulting matching. Now we can inductively continue the argument
on the point set P ′ = {p3, . . . , p2m+1} and eventually reach the canonical matching MC . ◀

▶ Remark. From our proof it follows directly that not more than O(n2) flips are needed
to transform any plane almost perfect matching on P into any other plane almost perfect
matching on P . Or in other words, the diameter of the flip graph GMP is in O(n2).

3 Proofs of the Lemmata

In this section, we prove Lemma 2.1 and Lemma 2.2. We begin this section with presenting
a procedure to find an alternating path in an abstract graph.

▶ Lemma 2.1. Let G be an undirected graph that is the union of a Hamiltonian cycle C and
a perfect matching M . Let e1 = (a, b) and e2 = (c, d) be two matching edges. Then there
exists an alternating path P that starts with the vertex a and the edge e1 and ends with the
vertex c.

Proof. In a first step, we reduce to the situation where no matching edge except possibly
e1 or e2 lies on the cycle C, that is, C ∩ M ⊆ {e1, e2}. To this end, assume that there is a
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matching edge f = {f1, f2} lying on the path (f0, f1, f2, f3) of the cycle C. We define the
graph G′ with vertex set V (G′) = V (G) \ {f1, f2} by keeping all edges of G induced by V (G′)
and adding the edge {f0, f3}. It follows from the construction that G′ is again the union of a
Hamiltonian cycle and a perfect matching and that G′ contains an alternating path starting
at a and ending at c if and only if G contains an alternating path starting at a and ending
at c. Thus, in the following we may assume that C ∩ M ⊆ {e1, e2}.

We now describe an algorithm that explicitly constructs a required alternating path. The
algorithm constructs a sequence of graphs G2, G3, . . . , Gp, starting with G2 = {e1}, with the
following properties:

(1) the graph Gk has the k vertices v1, . . . , vk;
(2) Gk has two vertices of degree 1, namely v1 and vk;
(3) all other vertices of Gk have degree 2 and are incident to one edge in M and one edge in

C \ M ;
(4) v1 = a, v2 = b and vp = c.

From these properties it follows that the last graph Gp is the disjoint union of cycles and
the required alternating path P . It remains to describe the algorithm and prove that the
constructed sequence of graphs satisfies the above properties. We start by setting G2 = {e1},
which trivially satisfies all the properties. In order to construct Gk+1 from Gk we distinguish
two cases, depending on whether in Gk the (unique) edge e incident to vk is in M or not.

Case 1: e ∈ C \ M . Let m = {vk, w} be the matching edge incident to vk. We define
Gk+1 by adding m to Gk. By Property (3) for Gk, all vertices in Gk except vk are incident
to an edge in M , and as M is a perfect matching, this implies that w is not a vertex of Gk.
Thus, Gk+1 has one more vertex, proving Property (1) for Gk+1. The only vertices whose
degrees have changed are w = vk+1, which now has degree 1, and vk which is now also
incident to an edge in M . This proves properties (2) and (3).

Case 2: e ∈ M . For an illustration of this case, see Figure 3. Consider the unique
path Q in C from vk to c which does not pass through a and let w be the first vertex on
this path that is not a vertex of Gk. Set vk+1 = w. For any edge e in Q, add e to Gk+1 if
and only if it is not in Gk and remove it otherwise. Properties (1) and (2) follow directly by
definition. For Property (3), note that the only vertices whose neighborhoods have changed
are the vertices on Q. As Q is a path on C and we assumed that C contains no matching
edge other than e1 and e2, it follows that no matching edge was removed. All vertices are
thus still incident to exactly one matching edge. Further, as C is a cycle, every vertex in Q

is incident to exactly two edges in C \ M . It follows from the construction that exactly one
of these edges is removed while the other one is added, proving Property (3).

Finally, we stop the procedure as soon as we add the vertex c, which has to happen for
some Gp, p ≤ n, where n is the number of vertices of G. This proves the last part of Property
(4) and thus finishes the proof. ◀

▶ Lemma 2.2. Let M1 be a plane almost perfect matching and let t be a point on the convex
hull of P . Then there exists a sequence of flips to a matching M2 in which the unmatched
point is t.

Proof. Let p be the unmatched point in M1. If p = t then we are trivially done, so assume
for the remainder that p ̸= t. We duplicate p such that the two points p, p′ have the same
neighborhood in the segment endpoint visibility graph. Moreover, we add the edge pp′ to M1.
By [13] there is a plane Hamiltonian cycle C that spans all segment endpoints of M1 and
M1 ∪ C is plane. Let u be the vertex that is matched to t in M1. By Lemma 2.1, there is an
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Figure 3 Constructing Gk+1 (right) from Gk (left). The paths Gk and Gk+1 are depicted with
lines, while unused edges of G are dashed. The matching edges are red, the cycle edges are black.

alternating path P from t to p in C ∪ M1 which starts with the edge tu. Since the underlying
graph is plane, P is also plane. If p and p′ are in P , then the edge pp′ is also in P because
pp′ is a matching edge. Hence, we can contract p and p′ to a single point p such that P is
still an alternating path.

Now, we construct a matching M2 by augmenting M1 via a sequence of flips along P to
get M2 = M1 △ P . M2 is an almost perfect matching in which p is matched, and t is the
unmatched point. ◀

4 Conclusion

We considered the flip graph GMP of plane matchings for point sets of odd size, and showed
that GMP is connected. In the course of the proof, we also showed that the union of a
Hamiltonian cycle and a perfect matching always contains an alternating path from an
arbitrary matching edge to any other arbitrary point.

While we showed that the flip graph is connected, it would be interesting to determine
more precise bounds for the diameter of GMP . Another interesting setting might be to study
this problem in two colored point sets with plane almost perfect bicolored matchings and
determine whether the according flip graph is still connected.
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